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ABSTRACT 

In this paper, the natural frequencies and mode shapes of Timoshenko multi-span beam 

carrying multiple point masses are calculated by using Numerical Assembly Technique 

(NAT) and Differential Transform Method (DTM). At first, the coefficient matrices for left-

end support, an intermediate point mass, an intermediate pinned support and right-end support 

of Timoshenko beam are derived. Equating the overall coefficient matrix to zero one 

determines the natural frequencies of the vibrating system and substituting the corresponding 

values of integration constants into the related eigenfunctions one determines the associated 

mode shapes. After the analytical solution, DTM is used to solve the differential equations of 

the motion. The calculated natural frequencies of Timoshenko multi-span beam carrying 

multiple point masses for the different values of axial force are given in tables.  

 

Keywords: Differential Transform Method, free vibration, intermediate point mass, natural 

frequency, Numerical Assembly Technique, Timoshenko multi-span beam 

 

ÖZ 
Bu çalışmada, çok sayıda topaklanmış kütle taşıyan Timoshenko kirişinin doğal frekansları ve 

mod şekilleri Nümerik Toplama Tekniği (NTT) ve Diferansiyel Transformasyon Metodu 

(DTM) kullanılarak hesaplanmıştır. İlk olarak, Timoshenko kirişinin sol uç mesnetinin, ara 

noktada topaklanmış kütlenin, ara mesnetin ve sağ uç mesnetin katsayılar matrisleri elde 

edilmiştir. Genel  katsayılar matrisinin determinantı sıfıra eşitlenerek titreşen sistemin doğal 

frekansları hesaplanmış ve  integrasyon sabitlerinin ilgili özdeğer fonksiyonlarında yerine 

yazılmasıyla aranan mod şekilleri elde edilmiştir. Analitik çözümden sonra, DTM kullanılarak 

diferansiyel hareket denklemleri çözülmüştür. Farklı eksenel kuvvet değerleri için çok sayıda 

topaklanmış kütle taşıyan Timoshenko kirişinin doğal frekans değerleri tablolar halinde 

sunulmuştur.  
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1. INTRODUCTION 

 

 The free vibration characteristics of the uniform or non-uniform beams carrying various 

concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, 

etc.) are an important problem in engineering. The situation of structural elements supporting 

motors or engines attached to them is usual in technological applications. The operation of 

machine and its free vibration may introduce severe dynamic stresses on the beam. Thus, a lot 

of studies have been published in the literature about the vibration characteristics of the 

uniform or non-uniform beams carrying concentrated elements. 

 

Liu et al. [1] formulated the frequency equation for beams carrying intermediate 

concentrated masses by using the Laplace Transformation Technique. Wu and Chou [2] 

obtained the exact solution of the natural frequency values and mode shapes for a beam 

carrying any number of spring masses. Gürgöze and Erol [3, 4] investigated the forced 

vibration responses of a cantilever beam with a single intermediate support. Naguleswaran [5, 

6] obtained the natural frequency values of the beams on up to five resilient supports 

including ends and carrying several particles by using Bernoulli-Euler Beam Theory and a 

fourth-order determinant equated to zero. Lin and Tsai [7] determined the exact natural 

frequencies together with the associated mode shapes for Bernoulli-Euler multi-span beam 

carrying multiple point masses. In the other study, Lin and Tsai [8] investigated the free 

vibration characteristics of Bernoulli-Euler multiple-step beam carrying a number of 

intermediate lumped masses and rotary inertias. The natural frequencies and mode shapes of 

Bernoulli-Euler multi-span beam carrying multiple spring-mass systems were determined by 

Lin and Tsai [9]. Wang et al. [10] studied the natural frequencies and mode shapes of a 

uniform Timoshenko beam carrying multiple intermediate spring-mass systems with the 

effects of shear deformation and rotary inertia. Yesilce et al. [11] investigated the effects of 

attached spring-mass systems on the free vibration characteristics of the 1-4 span Timoshenko 

beams. In the other study, Yesilce and Demirdag [12] described the determination of the 

natural frequencies of vibration of Timoshenko multi-span beam carrying multiple spring-

mass systems with axial force effect. Lin [13] investigated the free and forced vibration 

characteristics of Bernoulli-Euler multi-span beam carrying a number of various concentrated 

elements. Yesilce [14] investigated the effect of axial force on the free vibration of Reddy-

Bickford multi-span beam carrying multiple spring-mass systems. Lin [15] investigated the 

free vibration characteristics of non-uniform Bernoulli-Euler beam carrying multiple elastic-

supported rigid bars. 

 

DTM was applied to solve linear and non-linear initial value problems and partial 

differential equations by many researches. The concept of DTM was first introduced by Zhou 

[16] and he used DTM to solve both linear and non-linear initial value problems in electric 

circuit analysis. In the other study, the out-of-plane free vibration analysis of a double tapered 

Bernoulli-Euler beam, mounted on the periphery of a rotating rigid hub is performed using 

DTM by Ozgumus and Kaya [17]. Çatal [18, 19] suggested DTM for the free vibration 

analysis of both ends simply supported and one end fixed, the other end simply supported 

Timoshenko beams resting on elastic soil foundation. Çatal and Çatal [20] calculated the 

critical buckling loads of a partially embedded Timoshenko pile in elastic soil by DTM. Free 

vibration analysis of a rotating, double tapered Timoshenko beam featuring coupling between 

flapwise bending and torsional vibrations is performed using DTM by Ozgumus and Kaya 

[21]. In the other study, Kaya and Ozgumus [22] introduced DTM to analyze the free 

vibration response of an axially loaded, closed-section composite Timoshenko beam which 
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features material coupling between flapwise bending and torsional vibrations due to ply 

orientation. For the first time, Yesilce and Catal [23] investigated the free vibration analysis 

of a one fixed, the other end simply supported Reddy-Bickford beam by using DTM in the 

other study. Since previous studies have shown DTM to be an efficient tool, and it has been 

applied to solve boundary value problems for many linear, non-linear integro-differential and 

differential-difference equations that are very important in fluid mechanics, viscoelasticity, 

control theory, acoustics, etc. Besides the variety of the problems to that DTM may be 

applied, its accuracy and simplicity in calculating the natural frequencies and plotting the 

mode shapes makes this method outstanding among many other methods. 
 

 In the presented paper, we describe the determination of the exact natural frequencies of 

vibration of the uniform Timoshenko multi-span beam carrying multiple point masses with 

axial force effect by using NAT and DTM. The natural frequencies of the beams are 

calculated, the first five mode shapes are plotted and the effects of the axial force and the 

influence of the shear are investigated by using the computer package, Matlab. Unfortunately, 

a suitable example that studies the free vibration analysis of Timoshenko multi-span beam 

carrying multiple point masses with axial force effect using NAT and DTM has not been 

investigated by any of the studies in open literature so far. 

 

2. THE MATHEMATICAL MODEL AND FORMULATION 

 

 A Timoshenko uniform beam supported by h pins by including those at the two ends of 

beam and carrying n intermediate point masses is presented in Figure 1. The total number of 

stations is nhM '   from Figure 1. The kinds of coordinates which are used in this study 

are given below: 
'v

x  are the position vectors for the stations,  Mv  '1  , 

*
px  are the position vectors of the intermediate point masses,  np 1  , 

rx  are the position vectors of the pinned supports,  hr 1  . 

 

     From Figure 1, the symbols of  ''''   M, Mv 2 1,,,,,1'   above the x-axis refer to the 

numbering of stations. The symbols of  n  ,  p    2   ,,,,1  below the x-axis refer to the 

numbering of the intermediate point masses.  The symbols of  (h)  ,  ,(r) ,  ,(2) ),( 1  below 

the x-axis refer to the numbering of the pinned supports. 

   

 Using Hamilton’s principle, the equations of motion for axial-loaded Timoshenko beam 

can be written as: 
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where  txy ,  represents transverse deflection of the beam;  t,x  is the rotation angle due to 

bending moment; m is mass per unit length of the beam; N is the axial compressive force; A is 

the cross-section area; Ix is moment of inertia; k  is the shape factor due to cross-section 
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geometry of the beam; E, G is Young’s modulus and shear modulus of the beam, respectively; 

x is the beam position; t is time variable.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A Timoshenko uniform beam supported by h pins and carrying n intermediate point masses 

 

 The parameters appearing in the foregoing expressions have the following relationships: 
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where  t,xM  and  t,xT  are the bending moment function and shear force function, 

respectively, and  t,x  is the associated shearing deformation.  

 

 After some manipulations by using Eqs.(1) and (2), one obtains the following uncoupled 

equations of motion for the axial-loaded Timoshenko beam as: 
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 The general solution of Eq.(3) can be obtained by using the method of separation of 

variables as: 
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in which 
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L

x
z  ; C1, ..., C4 are the constants of integration; L is the total length of the beam; ω is 

the natural circular frequency of the vibrating system. 

 

 The bending moment and shear force functions of the beam with respect to z are given 

below: 
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3. DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES 

 

 The position is written due to the values of the displacement, slope, bending moment and 

shear force functions at the locations of z and t for Timoshenko beam, as: 

              t.sinzTzMzzyt,zS
T

                                                                 (6) 

 

where   t,zS shows the position vector. 

 

 The boundary conditions for the left-end support of the beam are written as:  

 

   00zy '1
                                (7.a) 

 

   00zM '1
                                           (7.b) 

 

 From Eqs.(4.a) and (5.a), the boundary conditions for the left-end support can be written 

in matrix equation form as: 
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 The boundary conditions for the pth intermediate point mass are written by using 

continuity of deformations, slopes and equilibrium of bending moments and shear forces, as 

(the station numbering corresponding to the pth intermediate point mass is represented by 'p ):    
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where mp is the magnitude of the pth intermediate point mass; L and R refer to the left side and 

right side of the pth intermediate point mass, respectively.  

 

 In Appendix, the boundary conditions for the pth intermediate point mass are presented in 

matrix equation form.  

 The boundary conditions for the rth support are written by using continuity of 

deformations, slopes and equilibrium of bending moments, as (the station numbering 

corresponding to the rth intermediate support is represented by 'r ):    
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 In Appendix, the boundary conditions for the rth intermediate support are presented in 

matrix equation. 

 

 The boundary conditions for the right-end support of the beam are written as: 
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                              (11.b) 

 

 From Eqs.(4.a) and (5.a), the boundary conditions for the right-end support can be written 

in matrix equation form as: 
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where 
'
iM  is the total number of intermediate stations and is given by: 

 

 2MM ''

i                    (13.a) 

 

with 

 

 nhM '                                      (13.b) 

 

In Eq.(13.b), 'M is the total number of stations.  

 

 In Eq.(12.b), q denotes the total number of equations for integration constants given by 

 

   22M42q '                                 (14) 

 

 From Eq.(14), it can be seen that; the left-end support of the beam has two equations, each 

intermediate station of the beam has four equations and the right-end support of the beam has 

two equations.  

 

 In this paper, the coefficient matrices for left-end support, each intermediate point mass, 

each intermediate pinned support and right-end support of a Timoshenko beam are derived, 

respectively. In the next step, the NAT is used to establish the overall coefficient matrix for 

the whole vibrating system as is given in Eq.(15). In the last step, for non-trivial solution, 

equating the last overall coefficient matrix to zero one determines the natural frequencies of 

the vibrating system as is given in Eq.(16) and substituting the last integration constants into 

the related eigenfunctions  one determines the associated mode shapes.  

 

      0CB                       (15) 

 



Sayfa No: 146  Y. YEŞİLCE 

 

 

 0B                        (16) 

 

4. THE DIFFERENTIAL TRANSFORM METHOD (DTM) 

 

 Partial differential equations are often used to describe engineering problems whose 

closed form solutions are very difficult to establish in many cases. Therefore, approximate 

numerical methods are often preferred. However, in spite of the advantages of these on hand 

methods and the computer codes that are based on them, closed form solutions are more 

attractive due to their implementation of the physics of the problem and their convenience for 

parametric studies. Moreover, closed form solutions have the capability and facility to solve 

inverse problems of determining and designing the geometry and characteristics of an 

engineering system and to achieve a prescribed behavior of the system. Considering the 

advantages of the closed form solutions mentioned above, DTM is introduced in this study as 

the solution method.  

 

 DTM is a semi-analytic transformation technique based on Taylor series expansion and is 

a useful tool to obtain analytical solutions of the differential equations. Certain transformation 

rules are applied and the governing differential equations and the boundary conditions of the 

system are transformed into a set of algebraic equations in terms of the differential transforms 

of the original functions in DTM. The solution of these algebraic equations gives the desired 

solution of the problem. The difference from high-order Taylor series method is that; Taylor 

series method requires symbolic computation of the necessary derivatives of the data 

functions and is expensive for large orders. DTM is an iterative procedure to obtain analytic 

Taylor series solutions of differential equations. 

 

 A function  zy , which is analytic in a domain D, can be represented by a power series 

with a center at 0zz  , any point in D. The differential transform of the function  zy  is given 

by 

 

  
 

0zz

k

k

dz

zyd

!k

1
kY
















                                                        (17) 

 

where  zy  is the original function and  kY  is the transformed function. The inverse 

transformation is defined as: 

 

      





0k

k
0 kYzzzy                                           (18) 

 

 From Eqs.(17) and (18) we get 

 

 

0zz0k
k

kk
0

dz

)z(yd

!k

)zz(
)z(y







 















                                         (19) 

 

 Eq.(19) implies that the concept of the differential transformation is derived from Taylor’s 

series expansion, but the method does not evaluate the derivatives symbolically. However, 
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relative derivatives are calculated by iterative procedure that are described by the transformed 

equations of the original functions. In real applications, the function  zy  in Eq.(18) is 

expressed by a finite series and can be written as: 
 

 






N

0k

k
0 )k(Y)zz()z(y                                (20) 

 

 Eq.(20) implies that  







1Nk

k
0 )k(Y)zz(  is negligibly small. Where 



N  is series size and 

the value of 


N  depends on the convergence of the eigenvalues. 

 

 Theorems that are frequently used in differential transformation of the differential 

equations and the boundary conditions are introduced in Table 1 and Table 2, respectively.  
 

Table 1.  DTM theorems used for equations of motion 
 

Original Function Transformed Function 
 

     zvzuzy   
 

     kVkUkY   

 

   zuazy   
 

   kUakY   

 

 
 
m

m

dz

zud
zy   

 

 
 

 mkU
!k

!mk
kY 


  

 

     zvzuzy   
 

     



k

0r

rkVrUkY  

Table 2.  DTM theorems used for boundary conditions 

z = 0 z = 1 

Original Boundary 

Conditions 

Transformed 

Boundary 

Conditions 

Original Boundary 

Conditions 

Transformed Boundary 

Conditions 

0)0(y   0)0(Y   0)1(y   





0k

0)k(Y  

0)0(
dz

dy
  0)1(Y   0)1(

dz

dy
  






0k

0)k(Yk  

0)0(
dz

yd
2

2

  0)2(Y   0)1(
dz

yd
2

2

  





0k

0)k(Y)1k(k  

0)0(
dz

yd
3

3

  0)3(Y   0)1(
dz

yd
3

3

  





0k

0)k(Y)2k()1k(k  
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4.1. Using Differential Transformation o Solve Motion Equations  

 

 Eqs.(1.a) and (1.b) can be rewritten by using the method of separation of variables  as 

follows: 

 

 
 

 z
LA

I

kEI

LAG

dz

zdy

kEI

LAG

dz

)z(d
2

x
4

x

2

x
2

2










































                              (21.a) 

 

 
 

 zy
kEINLAG

kEI

dz

zd

kEINLAG

LAG

dz

)z(yd

x
2

r
2

x
4

x
2

r
2

3

2

2








































       

               1z0                        (21.b) 

 

 The differential transform method is applied to Eqs.(21.a) and (21.b) by using the 

theorems introduced in Table 1 and the following expression are obtained: 

 

  
 

 
   

 k
LA

I

kEI

LAG

2k1k

1
1kY

kEI

LAG

2k

1
2k

2

x
4

x

2

x













































    (22.a) 

 

 

 
 

 

   
 kY

kEINLAG

kEI

2k1k

1
                                               

1k
kEINLAG

LAG

2k

1
2kY

x
2

r
2

x
4

i

x
2

r
2

3















































                                                       (22.b) 

 

where  kY  and  k  are the transformed functions of  zy and  z , respectively. 

 

 The differential transform method is applied to Eqs.(5.a) and (5.b) by using the theorems 

introduced in Table 1 and the following expression are obtained: 

 

      1k
L

EI
1kkM x 








                (23.a) 

 

      










 k1kY

L

1k

k

AG
kT                                      (23.b) 

 

where  kM  and  kT  are the transformed functions of  zM and  zT , respectively. 

 

 Applying DTM to Eqs.(7.a) and (7.b), the transformed boundary conditions for the left-

end support are written as:  

 

     010Y '' 11
                                 (24) 
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 The boundary conditions and the transformed boundary conditions of the pth intermediate 

point mass and the rth intermediate support by applying the differential transform method, 

using the theorems introduced in Table 2 are presented in Table 3.  

 

 Applying DTM to Eqs.(11.a) and (11.b), the transformed boundary conditions for the 

right-end support are written as:  

 

  






N

0k
M

0kY '                              (25.a) 

 

  






N

0k
M

0kM '                              (25.b)      

    

 

 Substituting the boundary conditions expressed in Eqs.(24) and (25) into Eq.(22) and 

taking   11
1 cY '  ,   21

0 c'  ; the following matrix expression is obtained:  

 

 

   

   





























































0

0

c

c

AA

AA

2

1

)N(
22

)N(
21

)N(
12

)N(
11

                  (26) 

 

where c1 and c2 are constants and  )N(
aA


1 ,  )N(
aA


2  (a =1, 2) are polynomials of ω 

corresponding 


N . 

 

 In the last step, for non-trivial solution, equating the coefficient matrix that is given in 

Eq.(26) to zero one determines the natural frequencies of the vibrating system as is given in 

Eq.(27).  

 

 

   

   

0

AA

AA

)N(
22

)N(
21

)N(
12

)N(
11











                    (27) 

 

 The jth estimated eigenvalue, )N(

j



 corresponds to 


N and the value of 


N is determined as: 

 

  


)1N(

j

)N(

j                      (28) 
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where )N(

j

1


  is the jth estimated eigenvalue corresponding to 











1N and   is the small 

tolerance parameter. If Eq.(28) is satisfied, the jth estimated eigenvalue, )N(

j



 is obtained.  

 
Table 3. The boundary conditions and the transformed boundary conditions of the pth intermediate point mass 

and the rth intermediate support 

Boundary Conditions Transformed Boundary Conditions 

   '''' p

R

pp

L

p
zyzy       0kYzkYz

N

0k

R

p

k

p

N

0k

L

p

k

p ''''  





 

   '''' p

R

pp

L

p
zz       0kzkz

N

0k

R

p

k

p

N
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L

p

k

p ''''  





 

   '''' p

R

pp

L

p
zMzM       0kMzkMz
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0k

R

p
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p
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


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R

pp
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 
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   '''' r

R

rr

L

r
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N

0k
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

 

 

 The procedure that is explained below can be used to plot the mode shapes of Timoshenko 

multi-span beam carrying multiple point masses. The following equalities can be written by 

using Eq.(26): 

 

     0cAcA 212111                       (29) 

 

 Using Eq. (29), the constant c2 can be obtained in terms of c1 as follows: 

 

 
 
  1

12

11
2 c

A

A
c 




                      (30) 

 

 All transformed functions can be expressed in terms of ω, c1 and c2. Since c2 has been 

written in terms of c1 above,  kY ,  k ,  kM  and  kT  can be expressed in terms c1 as 

follows: 

 

    1c,YkY                                  (31) 
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    1c,k                                  (32) 

 

    1c,MkM                                  (33) 

 

    1c,TkT                                  (34) 

 

 The mode shapes can be plotted for several values of ω by using Eq.(31). 

 

5. NUMERICAL ANALYSIS AND DISCUSSIONS 

 

 In this study, three numerical examples are considered. For three numerical examples, 

natural frequencies of the beam, ωi (i = 1, …, 5) are calculated by using a computer program 

developed as part of the research undertaken in this paper. In this program, the secant method 

is used in which determinant values are evaluated for a range (ωi) values. The (ωi) value 

causing a sign change between the successive determinant values is a root of frequency 

equation and means a frequency for the system.  

 

 Natural frequencies are found by determining values for which the determinant of the 

coefficient matrix is equal to zero. There are various methods for calculating the roots of the 

frequency equation. One common used and simple technique is the secant method in which a 

linear interpolation is employed. The eigenvalues, the natural frequencies, are determined by a 

trial and error method based on interpolation and the bisection approach. One such procedure 

consists of evaluating the determinant for a range of frequency values, ωi. When there is a 

change of sign between successive evaluations, there must be a root lying in this interval. The 

iterative computations are determined when the value of the determinant changed sign due to 

a change of 10-4 in the value of ωi. 

 

 All numerical results of this paper are obtained based on a uniform, circular Timoshenko 

beam with the following data as:  

 

 Diameter d =0.05 m ; 
410347616  .EI x  Nm2 ;  m =15.3875 kg/m ; L =1.0 m ; for the 

shear effect, 34k  and 8105624892311  .AG N; for the axial force effect, Nr = 0, 0.25, 

0.50 and 0.75.   

 

5.1. Free Vibration Analysis of the Uniform Pinned-Pinned Timoshenko Beam Carrying 

Three to Five Intermediate Point Masses 

 

 In the first numerical example (see Figure 2 and Figure 3), the uniform pinned-pinned 

Timoshenko beam carrying three to five intermediate point masses is considered. In this 

numerical example, for the case with three intermediate point masses, the magnitudes and 

locations of the intermediate point masses are taken as:  Lm.m  2001 ,  Lm.m  5002  

and  Lm.m  0013  located at 1001 .z*  , 5002 .z*   and 9003 .z*  , respectively. For the 

case with five intermediate point masses, the magnitudes and locations of the intermediate 

point masses are taken as:  Lm.m  2001 ,  Lm.m  3002 ,  Lm.m  5003 , 
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 Lm.m  6504  and  Lm.m  0015  located at 1001 .z*  , 3002 .z*  , 5003 .z*  , 

7004 .z*   and 9005 .z*  , respectively.  

 

 Using DTM, the frequency values obtained for the first five modes are presented in Table 

4 being compared with the frequency values obtained by using NAT for Nr = 0, 0.25, 0.50, 

and 0.75 and for Nr = 0.75, mode shapes for the model with five intermediate point masses of 

the pinned-pinned Timoshenko beam are presented in Figure 4. 

 

 

 

 

 

 

 

 

 

Figure 2.  A pinned-pinned Timoshenko beam carrying three intermediate point masses 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  A pinned-pinned Timoshenko beam carrying five intermediate point masses 
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 From Table 4 one can sees that increasing Nr causes a decrease in the first five mode 

frequency values for two cases, as expected. Similarly, as the number of the intermediate 

point masses is increased for Nr is being constant, the first five frequency values are 

decreased. 

 

 In application od DTM, the natural frequency values of the beams are calculated by in 

increasing series size �̅�. In Table 4, convergences of the first five natural frequencies are 

introduced. Here, it is seen that; for the case with three intermediate point masses, when the 

series size is taken 54; for the case with five intermediate point masses, when the series size is 

taken 60, the natural frequency values of the fifth mode can be appeared. Additionally, here it 

is seen that higher modes appear when more terms are taken into account in DTM 

applications. Thus, depending on the order of the required mode, one must try a few values 

for the term number at the beginning of the calculations in order to find the adequate number 

of terms. 

 
 

Table 4. The first five natural frequencies of the uniform pinned-pinned Timoshenko beam carrying multiple 

intermediate point masses for different values of Nr 

No. of point 

masses, n  
ωα 

(rad/sec) 
METHOD Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75 

3 

ω1 
DTM  34N  

 

422.7835 366.2711 299.1718 211.6306 

NAT 422.7835 366.2710 299.1709 211.6298 

ω2 
DTM  42N  

 

1766.4628 1715.5836 1662.5698 1607.1784 

NAT 1766.4630 1715.5833 1662.5692 1607.1789 

ω3 
DTM  48N  

 

3181.5224 3131.6510 3081.1469 3029.9900 

NAT 3181.5220 3131.6503 3081.1458 3029.9894 

ω4 
DTM  50N  

 

6721.0894 6664.8292 6608.0762 6550.8178 

NAT 6721.0894 6664.8291 6608.0757 6550.8171 

ω5 
DTM  54N  

 

9674.2838 9623.4595 9572.3528 9520.9459 

NAT 9674.2835 9623.4595 9572.3528 9520.9457 

5 

ω1 
DTM  36N  

 

338.5581 293.3282 239.6171 169.5258 

NAT 338.5581 293.3282 239.6171 169.5258 

ω2 
DTM  44N  

 

1355.4886 1312.7533 1268.5024 1222.5708 

NAT 1355.4885 1312.7530 1268.5019 1222.5698 

ω3 
DTM  52N  

 

2893.3531 2854.1318 2814.2714 2773.7424 

NAT 2893.3528 2854.1313 2814.2702 2773.7415 

ω4 
DTM  56N  

 

4530.3380 4498.4436 4466.2835 4433.8462 

NAT 4530.3380 4498.4436 4466.2835 4433.8460 

ω5 
DTM  60N  

 

7109.2305 7068.1216 7026.7792 6985.2004 

NAT 7109.2305 7068.1215 7026.7789 6985.1995 



Sayfa No: 154  Y. YEŞİLCE 

 

 

 
Figure 4.  The first five mode shapes for the model with five intermediate point masses of the pinned-pinned 

Timoshenko beam, Nr = 0.75 

 

5.2. Free Vibration Analysis of the Uniform Two-Span Timoshenko Beam Carrying One 

Intermediate Point Mass 

 

 In the second numerical example (see Figure 5), the uniform two-span Timoshenko beam 

carrying one intermediate point mass is considered. In this numerical example, the magnitude 

and location of the intermediate point mass are taken as:  Lm.m  5001  at 5001 .z*   and 

the location of intermediate pinned support is at 401 .z  .  

 

 Using DTM, the frequency values obtained for the first five modes are presented in Table 

5 being compared with the frequency values obtained by using NAT for Nr = 0, 0.25, 0.50, 

and 0.75 and for Nr = 0.75, mode shapes of the uniform two-span Timoshenko beam carrying 

one intermediate point mass are presented in Figure 6. 

 

 

 

 

 

Figure 5.  A two-span Timoshenko beam carrying one intermediate point mass 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional Axial Coordinates

V
e
rt

ic
a
l M

o
d
e
 S

h
a
p
e
s

1st mode 2nd mode 3rd mode 4th mode 5th mode

y 

x 0 

L4.0  

L  

N N m1 

L5.0  



Fen ve Mühendislik Dergisi Cilt:17  No:3   Sayı:51 Sayfa No: 155 

 

 

Table 5. The first five natural frequencies of the uniform pinned-pinned Timoshenko beam with an intermediate 

pinned support and carrying one intermediate point mass for different values of Nr 

 

ωα 
(rad/sec) 

METHOD Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75 

ω1 
DTM  38N  

 

1856.4217 1795.2700 1731.6620 1665.3084 

NAT 1856.4217 1795.2700 1731.6619 1665.3080 

ω2 
DTM  46N  

 

4487.7604 4423.8529 4358.9435 4292.9863 

NAT 4487.7600 4423.8524 4358.9428 4292.9854 

ω3 
DTM  52N  

 

6015.0752 5965.9946 5916.4760 5866.5076 

NAT 6015.0752 5965.9943 5916.4754 5866.5068 

ω4 
DTM  58N  

 

11901.1078 11837.0343 11772.6287 11707.8852 

NAT 11901.1078 11837.0342 11772.6281 11707.8845 

ω5 
DTM  62N  

 

16654.4519 16589.1244 16523.5457 16457.7137 

NAT 16654.4518 16589.1240 16523.5451 16457.7125 

   

 From Table 5 one can sees that, as the axial compressive force acting to the beam is 

increased, the first five natural frequency values are decreased. It can be seen from Figure 6 

that, all five mode curves pass through the intermediate pinned support located at 401 .z  .  

 

 In application of DTM, the natural frequency values of the beams are calculated by 

increasing series size 


N . In Table 5, convergences of the first five natural frequencies are 

introduced. Here, it is seen that; when the series size is taken 62, the natural frequency values 

of the fifth mode appears.  

 

5.3. Free Vibration Analysis of the Uniform Multi-Span Timoshenko Beam Carrying 

Five Intermediate Point Masses 

 

 In the third numerical example (see Figure 7), the uniform Timoshenko beam carrying five 

intermediate point masses with one to four intermediate pinned supports is considered. In this 

numerical example, the magnitudes and locations of the intermediate point masses are taken 

as:  Lm.m  2001 ,  Lm.m  3002 ,  Lm.m  5003 ,  Lm.m  6504  and 

 Lm.m  0015  located at 1001 .z*  , 3002 .z*  , 5003 .z*  , 7004 .z*   and 9005 .z*  , 

respectively. In this example, three cases of the intermediate pinned supports are considered. 

 

 For the case with one intermediate pinned support, the location of the intermediate pinned 

support is taken as 401 .z  .For the case with two intermediate pinned supports, the locations 

of the intermediate pinned supports are taken as 401 .z   and 602 .z  , respectively. For the 

case with four intermediate pinned supports, the locations of the intermediate pinned supports 

are taken as 201 .z  , 402 .z  , 603 .z   and 804 .z  , respectively.  

 

 Using DTM, the frequency values obtained for the first five modes are presented in Table 

6 being compared with the frequency values obtained by using NAT for Nr = 0, 0.25, 0.50, 

and 0.75 and for  Nr = 0.75, mode shapes of pinned-pinned Timoshenko beam carrying five 
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intermediate point masses and with two intermediate pinned supports are presented in Figure 

8. 

 

 
 

Figure 6.  The first five mode shapes for the model with one intermediate point mass of two-span Timoshenko 

beam, Nr = 0.75 

 

 It can be seen from Table 6 that, as the axial compressive force acting to the beam is 

increased, the first five natural frequency values are decreased. From Table 6 one can sees 

that, the first five frequency values of Timoshenko beam increase with increasing number 

intermediate pinned supports for Nr is being constant.  
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Figure 7.  A pinned-pinned Timoshenko beam carrying five intermediate point masses and with multiple 

intermediate supports 

 

 In application of DTM, the natural frequency values of the beams are calculated by 

increasing series size


N . In Table 6, convergences of the first five natural frequencies are 

introduced. Here, it is seen that; for the case with one intermediate pinned support, when the 

series size is taken 62; for the case with two intermediate pinned supports, when the series 

size is taken 64 and for the case with four intermediate pinned supports, when the series size 

is taken 70, the natural frequency values of the fifth mode appears. 
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Table 6. The first five natural frequencies of the uniform pinned-pinned Timoshenko beam carrying five 

intermediate point masses and with multiple intermediate supports for different values of Nr 

 

No. of 

supports 

h 
Location  

of supports 

Lxz 11   

ωα 
(rad/sec) 

METHOD Nr = 0.00 Nr = 0.25 Nr = 0.50 Nr = 0.75 

1 0.4 

ω1 
DTM  38N  

 

1009.4985 975.9811 941.1671 904.9004 

NAT 1009.4985 975.9811 941.1670 904.9001 

ω2 
DTM  46N  

 

2871.5132 2830.3774 2788.4976 2745.8410 

NAT 2871.5130 2830.3776 2788.4972 2745.8398 

ω3 
DTM  52N  

 

3793.1357 3762.2137 3731.0649 3699.6820 

NAT 3793.1356 3762.2137 3731.0647 3699.6816 

ω4 
DTM  58N  

 

5990.2710 5962.1208 5933.7823 5905.2525 

NAT 5990.2710 5962.1208 5933.7822 5905.2522 

ω5 
DTM  62N  

 

8905.3494 8873.3926 8841.3288 8809.1559 

NAT 8905.3490 8873.3921 8841.3277 8809.1547 

2 

0.4 

 

0.6 

ω1 
DTM  38N  

 

2127.1555 2099.2842 2070.9711 2042.1948 

NAT 2127.1555 2099.2841 2070.9707 2042.1941 

ω2 
DTM  48N  

 

3350.9244 3309.0376 3266.5866 3223.5512 

NAT 3350.9244 3309.0376 3266.5865 3223.5500 

ω3 
DTM  54N  

 

5340.1176 5316.4338 5292.6119 5268.6496 

NAT 5340.1175 5316.4333 5292.6111 5268.6485 

ω4 
DTM  58N  

 

7769.6566 7740.2002 7710.5298 7680.6438 

NAT 7769.6567 7740.2001 7710.5294 7680.6427 

ω5 
DTM  64N  

 

9479.4964 9456.6222 9433.7603 9410.9113 

NAT 9479.4963 9456.6222 9433.7604 9410.9104 

4 

0.2 

 

0.4 

 

0.6 

 

0.8 

ω1 
DTM  42N  

 

4864.5918 4843.6994 4822.6842 4801.5457 

NAT 4864.5915 4843.6988 4822.6840 4801.5451 

ω2 
DTM  52N  

 

6739.7248 6716.6454 6693.4179 6670.0392 

NAT 6739.7248 6716.6453 6693.4177 6670.0392 

ω3 
DTM  58N  

 

8172.5070 8148.7995 8124.9158 8100.8535 

NAT 8172.5070 8148.7992 8124.9151 8100.8529 

ω4 
DTM  62N  

 

9414.0635 9389.1610 9364.2769 9339.4130 

NAT 9414.0632 9389.1605 9364.2765 9339.4126 

ω5 
DTM  70N  

 

11819.6673 11798.5832 11777.4779 11756.3515 

NAT 11819.6673 11798.5831 11777.4777 11756.3510 
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Figure 8.  The first five mode shapes of pinned-pinned Timoshenko beam carrying five intermediate point 

masses and with two intermediate supports located at Lx 4.01   and Lx 6.02  for Nr = 0.75 

 

6. CONCLUSIONS 

 

 In this study, frequency values and mode shapes for free vibration of the multi-span 

Timoshenko beam subjected to the axial compressive force with multiple point masses are 

obtained for different number of spans and point masses with different locations and for 

different values of axial compressive force by using DTM and NAT. In the three numerical 

examples, the frequency values are determined for Timoshenko beams with and without the 

axial force effect and are presented in the tables. The frequency values obtained for the 

Timoshenko beam without the axial force effect in this study are on the order of 2-5% less 

than the values obtained for the Bernoulli-Euler beam in [7], as expected, since the shear 

deformation is considered in Timoshenko beam theory. The increase in the value of axial 

force also causes a decrease in the frequency values. 

 

 It can be seen from the tables that the frequency values show a very high decrease as a 

point mass is attached to the bare beam; the amount of this decrease considerably increases as 

the number of point masses is increased. 

 

 The essential steps of the DTM application includes transforming the governing equations 

of motion into algebraic equations, solving the transformed equations and then applying a 

process of inverse transformation to obtain any desired natural frequency. All the steps of the 

DTM are very straightforward and the application of the DTM to both the equations of motion 

and the boundary conditions seem to be very involved computationally. However, all the 
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algebraic calculations are finished quickly using symbolic computational software. Besides all 

these, the analysis of the convergence of the results show that DTM solutions converge fast. 

When the results of the DTM are compared with the results of NAT, very good agreement is 

observed.  

  

APPENDIX 

 

 From Eqs.(2), (3), (4) and (5), the boundary conditions for the pth intermediate point mass 

can be written in matrix equation form as: 

 

      0CB '' pp
                                        (A.1) 

 

where 

 

    
4,p3,p2,p1,p4,1p3,1p2,1p1,1p

T
p '''''''' CCCCCCCCC

          (A.2) 

 

      

2p4  

1p4
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'
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
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







                                    

                                                                   (A.3) 

 

  'p11 zDcoshch    ;  'p22 zDcoshch    ;  'p11 zDsinhsh    ;   'p22 zDsinhsh    ;   

 

  'p11 zDcoscs    ;   'p22 zDcoscs    ;    'p11 zDsinsn    ;    'p22 zDsinsn    ;    

 

 







 3

1
5 K

L

D

k

AG
K  ;  








 4

2
6 K

L

D

k

AG
K ; 1

2
p1 chm   ; 1

2
p2 shm   

 

 2
2

p3 csm   ;   2
2

p4 snm   

 

 From Eqs.(2), (3), and (4), the boundary conditions for the rth intermediate support can be 

written in matrix equation form as:  

 

      0CB '' rr
                                          (A.4) 

 

where 

 

    
4,r3,r2,r1,r4,1r3,1r2,1r1,1r

T
r '''''''' CCCCCCCCC

            (A.5) 
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                                             (A.6) 

 

  'r11 zDcoshchr    ;   'r22 zDcoshchr    ;  'r11 zDsinhshr    ;   'r22 zDsinhshr     

 

  'r11 zDcoscsr    ;   'r22 zDcoscsr    ;    'r11 zDsinsnr    ;    'r22 zDsinsnr   
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