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Abstract 

The forced vibration analysis of warping considered curved composite Timoshenko beams 

resting on viscoelastic foundation is investigated via the mixed finite element method. Rocking 

is considered both for Winkler and Pasternak viscoelastic foundations. Two nodded curved 

element has 12 degrees of freedom. Problems are solved in frequency domain via Laplace 

transform and modified Durbin’s algorithm is used for back transformation to time domain. 

Warping considered average torsional rigidities of the composite cross-sections are calculated 

numerically by ANSYS and verified by the literature. After the verification of the algorithms, as 

benchmark examples, curved composite beams on rocking considered viscoelastic Pasternak 

foundation are solved. 
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1. INTRODUCTION 

 

The composite materials have a wide range application area in recent technology such as aerospace, 

medical, mechanical, civil engineering, etc. The increasing use of composite materials due to their 

advantages in stiffness, strength and lightness has resulted a growing demand for the investigation of their 

structural behaviors. 

 

In the case of non-circular composite cross-sections, torsional rigidity has a great influence on the static 

and dynamic analysis of curved beams. In such a case, torsional rigidity may be determined numerically 

in order to overcome the difficulties of analytical approaches. For example; finite element formulation of 

Saint-Venant torsion problem based on Prandtl stress functions or warping function let simple solutions. 

Although there is a great number of studies in the case of Saint-Venant torsion problem of isotropic 

composite sections, e.g. displacement type elements [1-6], stress functions [7-13] or some other numerical 

approaches [14-23], the studies of orthotropic composite sections are limited [24]. 

 

In spite of the vast number of studies examining static and free vibration analyses of curved beams resting 

on elastic foundation [25-40], the number of researches concerning the forced vibration analysis of curved 

beam on elastic or viscoelastic foundation is very limited. Thin circular ring resting on a tensionless 

Winkler foundation is considered under time dependent in-plane loads in [41]. A planar isotropic curved 

beam resting on Pasternak foundation is solved under time dependent load in Laplace domain by using 

mixed finite element method in [42]. [43,44] investigated curved Timoshenko beam on the rocking effect 

considered Winkler type elastic and viscoelastic foundation under triangle type impulsive loading in 

Laplace domain by using the complementary functions method. 

 

In this study, the forced vibration analysis of planar curved composite beams is investigated by the mixed 

finite element formulation based on Timoshenko beam theory. The warping considered torsional rigidity 
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of composite sections is calculated by the commercial finite element package ANSYS and verified by the 
finite element analysis given by [5]. In order to solve the problems in frequency domain, the element 
matrices of the two nodded curvilinear elements are transformed into Laplace domain. After the analysis, 
the results are transformed back to the time domain by Modified Durbin’s transformation algorithm 
[45,46]. Regarding the presented numerical results; first, the mixed finite element formulation is verified 
through the forced vibration analysis of a planar curved isotropic beam resting on viscoelastic Winkler 
foundation. Here, the rocking effect is considered and the results are compared with those available in the 
literature. Then, the forced vibration analysis of a planar curved composite beam resting on viscoelastic 
Pasternak foundation is conducted. As a benchmark example, curved beams resting on rocking considered 
viscoelastic Pasternak foundation is handled, which is completely original for the literature where the 
effects of some parameters (e.g. the opening angle of curved beam, foundation type, time-dependent load 
type) are discussed. 
 
2. FORMULATION 
 
2.1. Constitutive Relations for Laminates of a General Curved Beam 
 
The constitutive equations of linear elasticity theory yields :E  , where   is the stress tensor,   is 
the strain tensor and E  is the function of elastic constants. The derivation of the constitutive equations of 
a composite beam exists in [47,48]. Thus, in Frenet coordinate system (see Fig. 1), paying attention to 

0n b nb     , the constitutive relations yield    [T T
t bt tn t bt tn        where the matrix 

3 3[   is a function of orthotropic material constants. Timoshenko beam theory requires shear correction 

factors and it is assumed to be 5 / 6  for a general rectangular cross-section. Letting tu , nu , bu  the 
displacements on the beam axis and t , n , b  the rotations of the beam cross-section around the t, n, b 
Frenet coordinates, respectively, by means of the kinematic equations strain  terms are expressed as 
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The resultant forces and couple moments at a cross-section can be derived by analytical integration of the 
stresses and their moments in each layer through the thickness of the cross-section, respectively. 
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N  is the number of the layers, Ln  is the width of the layer, Lb  and 1Lb   are the directed distances to the 
bottom and the top of the thL  layer where b is positive in upwards direction. Finally, in accordance with 
the above equations, the constitutive equation in a matrix form yields to the form 
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   
m mfT T

t tn bt t n b t n b t n b

fm f

T T T M M M      
 
 
 

C C

C C
 (4) 

 

where , ,
t n b

    are curvatures and mC , fC , mfC , fmC  are compliance matrices of the elastic material 

where mfC , fmC  are coupling matrices [49,50]. 

 

 
Figure 1. The stresses in the Frenet Coordinate System (N: Total number of layers) 

 

2.2. Functional In Laplace Domain and Mixed Finite Element Method 

 

In Frenet coordinate system, the field equations and functional based on the Gâteaux differential and 

potential operator concept [51] for the isotropic homogenous spatial Timoshenko beam exist in [52,53,6]. 

The field equations and the functional are extended to laminated composite beams in [54,55]. The 

formulation of the elastic Pasternak and rocking foundation exists in [56,57]. In this study, as an original 

inclusion, rocking considered viscoelastic Pasternak foundation is formulated. Forced vibration problem 

of curved composite beams is examined in frequency domain and the field equations are transformed into 

Laplace space and the functional in frequency domain yields: 
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where s  is the arc axis of the spatial beam, z  is Laplace transformation parameter. Laplace transformed 

variables are denoted by the over bars [45,46]. ( )
W Wt Wn Wb

k ,k ,kk  and ( )
G Gt Gn Gb

k ,k ,kk  are the 

viscoelastic foundation vectors of Winkler and Pasternak, respectively. ( )
R Rt Rn Rb

k ,k ,kk  is the 

viscoelastic foundation rocking stiffness vector. If 0
R
k , (5) yields to viscoelastic Pasternak foundation. 

If we also let 0
G
k , (5) yields to viscoelastic Winkler foundation. In (5), if we let only 0

G
k , while 

R
k  is non-zero, then we obtain rocking considered viscoelastic Winkler foundation. In (5), the square 

brackets indicate the inner product, the terms with hats are known values on the boundary and the 

subscripts   and   represent the geometric and dynamic boundary conditions, respectively. Two-nodded 

2 12  degrees of freedom curved element is employed [52] for the discretization. 

 

2.3. Numerical Inverse Laplace Transformation Algorithm 

 

The finite element analysis of curved beam resting on viscoelastic Pasternak foundation is carried out in 

the Laplace domain and modified Durbin’s algorithm is used for the inversion of the results back to time 

space. This algorithm is developed from Durbin’s numerical inverse Laplace transformation method [58-

60]. The parameters used in the analysis for inverse Laplace transformation algorithm were discussed in 

[45]. 
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3. NUMERICAL EXAMPLES 

 

As a verification example, forced vibration results of a planar curved isotropic beam resting on rocking 

effect considered viscoelastic Winkler foundation is compared with [44]. Next, forced vibration analysis 

of a planar curved composite beam resting on rocking effect considered viscoelastic Pasternak foundation 

is performed. 

 

 
Figure 2. A planar curved beam on viscoelastic Winkler foundation 

 

3.1. Curved Isotropic Beam Resting On Viscoelastic Rocking Winkler Foundation 

 

The forced vibration problem of a planar curved isotropic square cross-sectioned beam under a triangular 

impulsive type load ( )
z

P t  acting at the midpoint of beam (Figure 2) is solved. The fixed-fixed end 

condition is employed. The radius of curved beam is 7.63mR . The opening angle is 180   . The 

dimension of square cross-section is 0.762ma  . The modulus of elasticity of the beam is 47.24GPaE  , 

Poisson's ratio is 0.2  , the density of material is 35000 kg/m  . The component of Winkler 

foundation parameter in the direction of b is 23.623MPa
Wb

k  , the foundation rocking stiffness constant 

in the direction of t is 1143kNm/m
Rt

k  . The intensity and the duration of the loading are 100kN
o

P   

and 0.064s
load
t  , respectively. The dynamic response of the beam is determined within 0 0.25st  . 

 

Convergence analysis: The dynamic analysis of the semi-circular curved beam resting on viscoelastic 

Rocking Winkler foundation is carried out for 22362.3Ns/m
Wb
   and 2362.3Ns

Rt
   using 40, 60, 80 

and 100 finite elements. The time history curve of vertical displacement ( )bu t  at the midpoint of the beam 

(Figure 2) are presented for 0 0.25st   in Figure 3. When Figure 3 is examined for 0.032st  , it is 

observed that the percentage differences for 80 elements with respect to 100 elements are zero for 
b

u . 

Thus, in the following examples, 80 elements are employed. 

 

 

Figure 3. Convergence analysis of the vertical displacement ( )bu t  of the curved beam on viscoelastic 

Rocking Winkler foundation 

 

Verification: The curved isotropic beam resting on viscoelastic Winkler foundation with rocking effect 

(Figure 2) is solved and the influence of the viscosity coefficients ( 20; 2362.3Ns/m ;
Wb
 
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2 223623Ns/m ; 236230Ns/m , 0; 2362.3Ns; 23623Ns; 236230Ns
Rt

  ) on the dynamic behavior of the 

curved beam is investigated. The mixed finite element results (displacement ( )
b

u t  and rotation ( )
t

t  at 

the midpoint of the beam and the moment ( )
t

M t  at the fixed end of the beam (Figure 2a)) are presented 

in Figure 4 and compared with literature [44]. It is observed that, all the results are compatible with each 

other. As viscosity increases, the amplitude of the displacement ( )
b

u t , the rotation ( )
t

t  and the moment 

( )
t

M t  (see Figure 4) decrease. If the first extrema of ( )
b

u t , ( )
t

t  and ( )
t

M t  in each 

2
2362.3Ns/m

Wb Rt
   , 

2
23623Ns/m , 

2
236230Ns/m  are normalized with respect to the results of 

0
Wb Rt
   , the percent reductions for 

b
u  are -0.44%, -4.28% and -30.6%; for 

t
  are -0.60%, -5.69% 

and -38.2%; for 
t

M  are -0.36%, -3.68% and -34.6%, respectively. 

 

(a)  

(b)  

(c)  
Figure 4. Time histories of curved beam on viscoelastic Rocking Winkler foundation for different 

viscosity coefficients (a) vertical displacement 
b

u , (b) rotation 
t

 , (c) moment 
t

M  

 

 
Figure 5. The planar curved composite beam resting on viscoelastic Pasternak foundation 
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3.2. Curved Composite Beam Resting On Viscoelastic Rocking Pasternak Foundation 

 

A circular-curved, composite beam made of steel and concrete rectangular cross-section is shown in 

Figure 5. The moduli of elasticity are 210GPasE   and 30GPacE  , Poissons ratios are 0.3
s

   and 

0.2
c
  , the density of materials are 37850 kg/ms  and 32400 kg/mc  . The radius of curved 

composite beam is 3mR  , the opening angles of the circular beam axis are chosen as 

45 , 90 ,135 ,180      . The width of rectangular cross-section 0.75 mb  , the height of steel and 

concrete are 0.05msh   and 0.40mch  , respectively (see Figure 5b). The parameters of the 

viscoelastic Pasternak foundation 69MPa
Wb

k  , 13.8MN
Rt

k  , 2138 kNsm
Wb
  , 5520 Ns

Rt
  , and 

100 kNs
Gb

  . The two form of the impulsive uniform dynamic load are rectangular and triangular with 

a maximum intensity 14.1kN/m
o

q   applied in a time interval 0.064s
load
t  . The time histories of ( )

b
u t  

and ( )
t

t  at the midpoint, ( )
b

T t , ( )
t

M t  and ( )
n

M t  at the fixed end of the beam are evaluated within the 

time interval 0 0.25st  . 

 

Influence of the viscoelastic foundation models on the dynamic behavior of structure: The planar semi-

circular composite beam under rectangular impulsive type load is analyzed. The viscoelastic foundation 

models are Winkler (W), Rocking Winkler (RW), Pasternak (P), and Rocking Pasternak (RP). The time 

histories of ( )
b

u t , ( )
t

t  and ( )
t

M t  are presented in Figure 6. The results of RW, P and RP models for 

first extrema value of ( )
b

u t  are normalized with respect to W model as shown in Figure 6(a), where the 

percent reductions for RW, P and RP models are -1.5%, -2.8% and -4.2%, respectively. To investigate the 

effect of rocking on the viscoelastic foundation, the rocking parameters are increased by 10%, 20%, and 

30% where Winkler and Pasternak parameters are kept constant. The first extrema values that occur 

within the forced vibration zone for RW and RP models are normalized with W model and results are 

shown in Figure 7. It is observed that the rocking effect is more influential in the rotation ( )
t

t . 

 

 

(a) ( )
b

u t  at the midpoint of the beam 

  

(b) ( )
t

t  at the midpoint of the beam (c) ( )
t

M t  at the fixed end of the beam 

Figure 6. The influence of viscoelastic foundation type on the behavior of the semi-circular composite 

beam 
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(a) vertical displacement 

b
u  (b) rotation 

t
            (c) shear force 

b
T  

  
(d) Moment 

t
M              (e) Moment 

n
M  

Figure 7. The influence of rocking parameter on the behavior of the semi-circular composite beam 

( R Rok Rk  where Ro Ro Rok k z   and R: rocking parameter ratio; : ,i W P) 

 

Influence of the curved beam geometry on the dynamic behavior of structure: Beams of various 

geometries resting on viscoelastic Rocking Pasternak foundation (RP) and subject to rectangular 

impulsive loading are analyzed. The time history responses of the beams are given in Figure 8. By the 

increasing opening angles 45 , 90 ,135 ,180      , 
b

u  is observed to be in an increasing trend. If the 

values of first extrema 
b

u  for the cases 45 , 90 ,135      is normalized with respect to the results of 

180  , the reductions are -97.2% , -71.2% and -26.2%, respectively. The vibration period decreases 

due to a decrease in opening angle (see Figure 8). 

 

  
(a) ( )

b
u t  at the midpoint of the beam (b) ( )

t
M t  at the fixed end of the beam 

Figure 8. The time histories of curved composite beam on viscoelastic Rocking Pasternak foundation 

 

The influence of time dependent load type on the behavior of structure: The results of the semi-circular 

beam under triangular impulsive loading (Figure 5c) are compared with those of the beam under 

rectangular impulsive loading (for 180   in Figure 8). The area of the forced vibration zone is kept 

constant for rectangular and triangular (Figure 5c) impulsive loads. The time histories of ( )bu t  and ( )t t  

at the midpoint of the beam, ( )tM t  at the fixed end of the beam are given for both the impulsive load 

cases in Figures. 9-10. The values of ( )bu t , ( )t t  and ( )tM t  for quasi-static case that occur at 

0.032st   are determined using Figure 9 and Figure 10 and the results of bu , t , tM  for triangular type 

load are normalized with respect to the rectangular type load. It is observed that, the percent increases in 

the case of the triangular impulsive load range between 89.4% 91.8%. If first extrema values of ( )bu t , 

( )t t  and ( )tM t  for dynamic case in Figure 10 are normalized with respect to the rectangular impulsive 
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load, the percent increases in the case of the triangular impulsive load are 41.6%, 35.6%, 44.1%, 

respectively. 

  

(a) ( )bu t  at the midpoint of the beam (b) ( )t t  at the midpoint of the beam 

 
(c) ( )tM t  at the fixed end of the beam 

Figure 9. Time histories of semi-circular composite beam resting on viscoelastic Rocking Pasternak 

foundation for rectangular impulsive type loading 

 

  
(a) ( )

b
u t  at the midpoint of the beam (b) ( )

t
t  at the midpoint of the beam 

 
(c) ( )

t
M t  at the fixed end of the beam 

Figure 10. Time histories of semi-circular composite beam resting on viscoelastic Rocking Pasternak 

foundation for triangular impulsive type loading 

 

4. CONCLUSION 

 

Dynamic behavior of planar curved Timoshenko beams on viscoelastic Pasternak foundations having 

rectangular composite cross-section is investigated via the mixed finite element method. The warping 

effect of composite cross-section of curved beam is considered. The rocking influence is also considered 

in viscoelastic foundation model. The solutions are obtained in Laplace space and the results are 

transformed back to time space by using modified Durbin's algorithm. First, a semicircular beam having 

isotropic square cross-section resting on Winkler viscoelastic foundation is handled, the mixed finite 

element results of the planar curved beam are compared with the literature and a good agreement is 

observed. As benchmark examples, planar curved composite beams resting on viscoelastic Rocking 

Pasternak foundation are analyzed and the influence of the viscoelastic foundation type (W, RW, P and 
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RP), the opening angle of the curved beam and time-dependent load type is investigated. According to the 

authors’ best knowledge, this discussion is original for the literature. The following remarks can be cited: 

Since shear effect is considered in viscoelastic Pasternak model (P) when compared with Winkler model 

(W), vertical displacements due to P model decreased with respect to W model. Consideration of the 

rocking effect increased the decrease trend of vertical displacement 
b

u , rotation 
t

  and moment 
t

M  (see 

Figure 6). 

 

The influence of the rocking parameters on the dynamic behavior of the structure are investigated in 

detail for viscoelastic Rocking Winkler (RW) and viscoelastic Rocking Pasternak (RP) foundation models 

and the results are normalized with respect to viscoelastic Winkler (W) foundation model. Pasternak and 

rocking parameters (viscoelastic RP model) cause reduction in the vertical displacement 
b

u , the rotation 

t
 , the shear force 

b
T  and the moment 

n
M  (except moment 

t
M ). The influence of rocking parameters is 

more apparent in the rotation 
t

  (see Figure 7). It means that, the type of viscoelastic foundation should 

be selected in accordance with the purpose and importance of structure. 

 

As expected an increase in the opening angles causes an increase in vertical displacement 
b

u , rotation 
t

  

and moment 
t

M  along the forced vibration zone and the dynamic response oscillates around zero along 

the free vibration zone (see Figure 8). 

 

Type of time-dependent load is efficacious on the behavior of the structure. Simple forms of time 

variations of loadings are considered in the examples (see Figures. 9-10). Therefore, for a more complex 

form of dynamic loading, such as time history of an earthquake, the influence of the loading need to be 

investigated, especially for the high-tech structures. 
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