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On the weak solutions and determining modes of
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Abstract

In this paper we study the existence and uniqueness of weak solutions of
the g-Bénard problem. Then, we investigate the long-term dynamics;
speci�cally, we derive upper bounds for the number of determining
modes for this system.
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1. Introduction

In the �eld of the �uid dynamics the Boussinesq equations is studied and since the
�uid on the earth is laid in a layer we consider the Boussinesq equations in bounded
domains.

Let Ωg be a bounded domain de�ned by

Ωg = {(y1, y2, y3) ∈ R3 : (y1, y2) ∈ Ω2, 0 < y3 < g}

where Ω2 is a bounded region in the plane and g = g(y1, y2) is a smooth function de�ned
on Ω2. The governing equations for the �uid are of the form

∂U

∂t
+ (U · ∇)U − ν∆U +∇P = ξΘ + F1(t)(1.1)

∇ · U = 0(1.2)

∂Θ

∂t
+ (U · ∇)Θ− κ∆Θ = F2(t)(1.3)
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where U = (U1, U2, U3) is the �uid velocity, P is the pressure, Θ is the temperature, F1

is the external force function, F2 is the heat source function, ξ ∈ R3 is a constant vector,
ν kinematic viscosity and κ thermal di�usivity are positive constants.

The system of equations (1.1)− (1.3) describes the large scale motion of the �uids [7].
The existence and uniqueness of the weak solution of the Boussinesq equations has been
studied for arbitrary dimension, (see [30, 21]). The Navier - Stokes equations on thin do-
mains studied by Hale and Raugel [9]-[11] concerning the reaction - di�usion and damped
wave equations on thin domains. Then, Raugel and Sell [33, 34] proved global existence
of strong solutions for large initial data and forcing terms in thin three-dimensional do-
mains for the purely periodic boundary conditions and the periodic-Dirichlet boundary
conditions. By averaging along the vertical direction and using the uniqueness of so-
lutions of two-dimensional Navier-Stokes equations, Temam and Ziane obtained limit
models, together with existence and global regularity results in [40, 41]. One can refer
[12]-[18],[28],[29] for more on thin domain problems. The existence of weak solutions of
the g-Navier-Stokes equations established by Roh [35]-[37] for periodic boundary condi-
tions as well as Dirichlet boundary conditions on bounded domains. Kaya and Çelebi [25]
discussed the existence and uniqueness of weak solutions of g-Kelvin - Voight equations
by the use of the well known Feado - Galerkin method. Also they established the global
existence and uniqueness of weak solutions of the regularized Bénard problem and give a
proof for the existence of global attractor in the three-dimensional case [26]. The asymp-
totic behaviour of weak solutions for the three-dimensional Bénard problem is studied
in [22] and they constructed a one parameter family of multivalued semi�ows. Also, the
existence of global attractors in the weak topology for the 3D Bénard system in bounded
domains was proved in [24] and the existence of global ϕ-attractor for a modi�ed 3D
Bénard system on channel-like domains in [23].

The article is organized as follows. In Section 2, we introduce some notations and
the functional setting of the Bénard problem. In Section 3, we prove the existence and
uniqueness of weak solutions of the g-Bénard problem. In Section 4, we estimate upper
bounds for the number of determining modes for the g-Bénard problem.

2. Preliminaries

We introduce the usual notation used in the context of the mathematical theory of
Navier-Stokes equations [38, 39]. Let Ωg = Ω2 × (0, g) = (0, 1) × (0, 1) × (0, g) where
g = g(y1, y2) is a smooth function de�ned on Ω2. In addition we assume that

0 < m0 ≤ g(y1, y2) ≤M0 for all (y1, y2) ∈ Ω2(2.1)

|∇g|∞ = sup
Ω2

|∇g| <∞, g ∈ C∞per(Ω2).

We consider the three-dimensional Bénard convection model under Boussinesq approxi-
mation for incompressible �uids on Ωg with periodic boundary conditions

∂U

∂t
+ (U · ∇)U − ν∆U +∇P = ξΘ + F1(t), Ωg × [0, T ]

∇ · U = 0, Ωg × [0, T ]

∂Θ

∂t
+ (U · ∇)Θ− κ∆Θ = F2(t), Ωg × [0, T ]

We assume that U and Θ satisfy the boundary conditions

U · n = 0, ∇Θ · n = 0 on Γ1 ∪ Γ2(2.2)

Θ|y3=g = 0,
∂Θ

∂y3
|y3=g = 0(2.3)
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where n is the outward unit normal vector and

Γ1 = {(y1, y2, y3) ∈ Ωg : y3 = 0}
Γ2 = {(y1, y2, y3) ∈ Ωg : y3 = g(y1, y2)}.

For the initial conditions we consider U(y, 0) = U0(y) and Θ(y, 0) = Θ0(y) de�ned in Ωg
and for the external functions F1 and F2, we will require that∫

Ωg

U0(y)dy = 0,

∫
Ωg

Θ0(y)dy = 0,

∫
Ωg

F1dy = 0,

∫
Ωg

F2dy = 0.

The approach we use is an adaptation of the theory presented in [33, 34, 35]. The
change of variables,

x1 = y1, x2 = y2 and x3 =
1

g(y1, y2)
y3

maps Ω3 onto Ωg where Ω3 = Ω2×(0, 1). Then for U = (U1(y1, y2), U2(y1, y2), U3(y1, y2, y3)) =
u(x1, x2, x3) similarly in [35] we obtain from the boundary conditions of the problem that

u3 = −gx3(
∂u1

∂x1
+
∂u2

∂x2
).

The orthogonal average operators M and M̃ in the thin direction are in the following;

(Mϕ)(y1, y2) =
1

g

∫ g

0

ϕ(y1, y2, y3)dy3, ϕ ∈ L2(Ω, g)

M̃u = (Mu1,Mu2, 0), u ∈ (L2(Ω, g))3.

Let v = (v1, v2) de�ned by vi = Mui =
∫ 1

0
ui(x1, x2, x3)dx3, i = 1, 2. Then we have

v1 = u1, v2 = u2 and from the incompressibility condition (1.2) we have ∇ · (gv) = 0.
Therefore, (see,[35, 1])

u3(x1, x2, x3) = x3(
∂g

∂x1
v1 +

∂g

∂x2
v2).

The application of the averaging operators to the system (1.1) − (1.3) results in an
involving system of equations. In order to simplify this system we impose the boundary
conditions (2.2)− (2.3). Therefore we arrive at the system

∂v

∂t
+ (v · ∇)v − ν∆v +M∇p = ξφ+Mf1, Ω2 × [0, T ](2.4)

∇ · (gv) = 0, Ω2 × [0, T ](2.5)

∂φ

∂t
+ (v · ∇)φ− κ∆φ− 2κ

g
(∇g · ∇)φ− κ∆g

g
φ = Mf2, Ω2 × [0, T ](2.6)

where φ = Mθ.
L2(Ω, g) denotes the Hilbert space with the inner product 〈u, v〉g =

∫
Ω

(u · v)gdx, the

norm |u|2g = 〈u, u〉g. Similarly H1(Ω, g) is the space with the norm

|u|2H1(Ω,g) = 〈u, u〉g +

n∑
i=1

〈 ∂u
∂xi

,
∂u

∂xi
〉g.
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We de�ne

V1 = {u ∈ (C∞per(Ω))n : ∇ · (gu) = 0,

∫
Ω

udx = 0 on Ω}

Hg = the closure of V1 in L2(Ω, g)

Vg = the closure of V1 in H1(Ω, g)

V ′g = the dual space of Vg

V2 = {ϕ ∈ C∞per(Ω) :

∫
Ω

ϕdx = 0}

Wg = the closure of V2 in H1(Ω, g)

W ′g = the dual space of Wg

Q = the closure of {∇ϕ : ϕ ∈ C1
per(Ω, R)} in L2(Ω).

where Hg is endowed with the inner product and the norm in L2(Ω, g) and Vg,Wg are
endowed with the inner product and the norm in H1(Ω, g). The inclusions

Vg ⊂ Hg = H ′g ⊂ V ′g , Wg ⊂ L2(Ω, g) ⊂W ′g
are valid where each space is dense in the following one and the injections are continuous
[30, 35]. By the Riesz representation theorem, it is possible to write

〈f, u〉g = (f, u)g, ∀f ∈ Hg, ∀u ∈ Vg.
Also, we de�ne the orthogonal projection Pg as Pg : L2

per(Ω, g) → Hg and we have that

Q ⊆ H⊥g . Similarly, we de�ne P̃g as P̃g : L2
per(Ω, g) → Wg. By taking into account the

following equality,

−1

g
(∇ · g∇u) = −∆u− 1

g
(∇g · ∇)u

we de�ne the g-Laplace operator and g-Stokes operator as −∆gu = − 1
g
(∇ · g∇u) and

Agu = Pg[−∆gu] respectively.

2.1. Proposition. [35, 1] For the g-Stokes operator Ag, the followings hold:

(1) The g-Stokes operator Ag is a positive, self-adjoint operator with compact in-
verse, where the domain of Ag is D(Ag) = Vg ∩H2(Ω, g).

(2) There exist countable eigenvalues of Ag satisfying

0 <
4π2m0

M0
≤ λ1 ≤ λ2 ≤ λ3 ≤ ...

where λ1 is the smallest eigenvalue of Ag. In addition, there exist the corre-
sponding collection of eigenfunctions {wi}i∈N forms an orthonormal basis for
Hg.

Since the operators Ag and Pg are self-adjoint, using integration by parts we have

〈Agu, u〉g == 〈Pg[−
1

g
(∇ · g∇)u], u〉g =

∫
Ω

(∇u · ∇u)gdx = 〈∇u,∇u〉g.

Therefore,for u ∈ Vg we can write |A1/2
g u|g = |∇u|g = ‖u‖g.

Next, since the functional

τ ∈Wg → (∇θ,∇τ)g ∈ R

is a continuous linear mapping on Wg, we can de�ne a continuous linear mapping Ãg on
W ′g such that

∀τ ∈Wg, 〈Ãgθ, τ〉g = (∇θ,∇τ)g

for all θ ∈Wg.
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We denote the bilinear operator Bg(u, v) = Pg[(u · ∇)v] and the trilinear form

bg(u, v, w) =

n∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjgdx

where u, v, w lie in appropriate subspaces of L2
per(Ω, g). Then, one obtains bg(u, v, w) =

−bg(u,w, v) which implies that bg(u, v, v) = 0. Also bg satis�es the inequality (see
[39],[42]),

(2.7) |bg(u, v, w)|g ≤ c|u|1/2g ‖u‖1/2g |v|g|w|1/2g ‖w‖1/2g ,∀u, v, w ∈ Vg.

Similarly, for u ∈ Vg and θ, τ ∈Wg we de�ne B̃g(u, θ) = P̃g[(u · ∇)θ] and

b̃g(u, θ, τ) =

n∑
i,j=1

∫
Ω

ui(x)
∂θ(x)

∂xj
τ(x)gdx.

We denote the operators Cgu = Pg[
1
g
(∇g · ∇)u] and C̃gθ = P̃g[

1
g
(∇g · ∇)θ] such that

〈Cgu, v〉g = bg(
∇g
g
, u, v), 〈C̃gθ, τ〉g = b̃g(

∇g
g
, θ, τ).

Finally, let D̃gθ = P̃g[
∆g
g
θ] such that

〈D̃gθ, τ〉g = −b̃g(
∇g
g
, θ, τ)− b̃g(

∇g
g
, τ, θ).

We now rewrite the system of equations (2.4)−(2.6) as abstract evolutionary equations

du

dt
+Bg(u, u) + νAgu+ νCgu = ξθ + f1(2.8)

dθ

dt
+ B̃g(u, θ) + κÃgθ − κC̃gθ − κD̃gθ = f2(2.9)

u(x, 0) = u0(x), θ(x, 0) = θ0(x).(2.10)

We give the following two lemmas and for the proofs of these lemmas we refer to
[27, 1].

2.2. Lemma. For n = 2 there exists a positive constant c such that

|u|L4(Ω,g) ≤ c|u|
1/2
g |∇u|1/2g , ∀u ∈ H1(Ω, g).

2.3. Lemma. For u ∈ L2(0, T ;Vg), Bg(u, u)(t) ∈ L1(0, T ;V ′g ) and Cgu(t) ∈ L2(0, T ;Hg).

Lemma 2.2 is used in the proof of Lemma 2.3 and Lemma 2.3 is used when we are to
show that the solution of the system is almost everywhere equal to a continuous function
from [0, T ] to V ′g so that the solution satisfy the initial conditions.

3. Existence and uniqueness of weak solutions

3.1. De�nition. A pair of functions {u, θ} is called a weak solution of (2.4) − (2.6) if
u ∈ L2(0, T ;Vg) and θ ∈ L2(0, T ;Wg) satisfy the following equations

d

dt
(u, v)g + bg(u, u, v) + ν(∇u,∇v)g + ν(Cgu, v)g = (ξθ, v)g + (f1, v)g(3.1)

d

dt
(θ, τ)g + b̃g(u, θ, τ) + κ(∇θ,∇τ)g + κb̃g(

∇g
g
, τ, θ) = (f2, v)g(3.2)

for all v ∈ Vg and τ ∈Wg.

3.2. Theorem. If f1, f2 ∈ L2(0, T ;L2(Ω, g)), u0 ∈ Hg, θ0 ∈ L2(Ω, g) and g is a smooth
function satisfying the conditions given in (2.1) de�ned on Ω2 then, there exist a unique
weak solution {u, θ} of the system (2.8)−(2.10) satifying the periodic boundary conditions.
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For the proof of the theorem, we shall use the standard Feado - Galerkin method.
Since Vg is seperable and V1 is dense in Vg, there exists a sequence {ui}i∈N which forms a
complete orthonormal system in Hg and a base for Vg. Similarly, there exists a sequence
{θi}i∈N which forms a complete orthonormal system in L2(Ω, g) and a base for Wg.

Let m be an arbitrary but �xed positive integer. For each m we de�ne an approximate
solution {um(t), θm(t)} of (3.1)− (3.2) for 1 ≤ k ≤ m and t ∈ [0, T ] in the form,

(3.3) u(m)(t) =

m∑
j=1

f
(m)
j (t)uj , θ(m)(t) =

m∑
j=1

g
(m)
j (t)θj

d

dt
(u(m), uk)g + bg(u

(m), u(m), uk) + ν((u(m), uk))g(3.4)

+νbg(
∇g
g
, u(m), uk) = (ξθ(m), uk)g + (f1, uk)g

d

dt
(θ(m), θk)g + b̃g(u

(m), θ(m), θk) + κ((θ(m), θk))g(3.5)

+κb̃g(
∇g
g
, θk, θ

(m)) = (f2, θk)g

(3.6) u(m)(0) = um0 =

m∑
j=1

(a0, uj)uj , θ(m)(0) = θm0 =

m∑
j=1

(τ0, θj)θj .

This system forms a nonlinear �rst order system of ordinary di�erential equations for

the functions f
(m)
j (t) and g

(m)
j (t) and has a maximal solution on some interval [0, T ](cf.

[22]).

We multiply (3.4) and (3.5) by f
(m)
j (t) and g

(m)
j (t) respectively, and add these equa-

tions for k = 1, ...,m. Taking into account bg(u
(m), u(m), u(m)) = 0 and b̃g(u

(m), θ(m), θ(m)) =
0 we get;

(u′(m)(t), u(m)(t))g + ν‖u(m)(t)‖2g + νbg(
∇g
g
, u(m)(t), u(m)(t))(3.7)

= (ξθ(m), u(m)(t))g + (f1, u
(m)(t))

(θ′(m)(t), θ(m)(t))g + κ‖θ(m)(t)‖2g + κb̃g(
∇g
g
, θ(m)(t), θ(m)(t))(3.8)

= (f2, θ
(m)(t))g.

Using Schwarz and Young inequalities in (3.7) and (3.8)

d

dt
|u(m)(t)|2g + ν‖u(m)(t)‖2g ≤ M0|ξ|2∞

π2m0ν
|θ(m)(t)|2g +

4

ν
‖f1(t)‖2V ′

g
+

2ν|∇g|2∞
m2

0

|u(m)(t)|2g

d

dt
|θ(m)(t)|2g + κ‖θ(m)(t)‖2g ≤ 2

κ
‖f2(t)‖2W ′

g
+

2κ|∇g|2∞
m2

0

|θ(m)(t)|2g

so that for |∇g|2∞ <
π2m3

0
M0

and for

ν′ = ν(1− M0|∇g|2∞
2π2m3

0

), κ′ = κ(1− M0|∇g|2∞
2π2m3

0

), c′ =
M2

0 ‖ξ‖2∞
4π4m2

0

we get the inequalities

d

dt
|u(m)(t)|2g + ν′‖u(m)(t)‖2g ≤ c′

ν
‖θ(m)(t)‖2g +

4

ν
‖f1‖2V ′

g
(3.9)

d

dt
|θ(m)(t)|2g + κ′‖θ(m)(t)‖2g ≤ 2

κ
‖f2‖2W ′

g
.(3.10)
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Integrating (3.9) and (3.10) from 0 to t we obtain

sup
t∈[0,T ]

|u(m)(t)|2g ≤ |u0|2g +
c′

νκ′
|θ0|2g +

4

ν

∫ T

0

‖f1(s)‖2V ′
g
ds(3.11)

+
2c′

νκκ′

∫ T

0

‖f2(s)‖2W ′
g
ds

sup
t∈[0,T ]

|θ(m)(t)|2g ≤ |θ0|2g +
2

κ

∫ T

0

‖f2(s)‖2W ′
g
ds(3.12)

which imply that the sequences {u(m)}m and {θ(m)}m remain in a bounded set of
L∞(0, T ;Hg) and L

∞(0, T ;L2(Ω, g)) respectively.
We then integrate (3.9) and (3.10) from 0 to T to get

|u(m)(T )|2g + ν′
∫ T

0

‖u(m)(t)‖2gdt ≤
2c′

νκκ′

∫ T

0

‖f2(t)‖2W ′
g
dt(3.13)

+
4

ν

∫ T

0

‖f1(t)‖2V ′
g
dt

|θ(m)(T )|2g + κ′
∫ T

0

‖θ(m)(t)‖2gdt ≤
2

κ

∫ T

0

‖f2(t)‖2W ′
g
dt(3.14)

which imply that the sequences {u(m)}m and {θ(m)}m remain in a bounded set of
L2(0, T ;Vg) and L2(0, T ;Wg) respectively. Due to the estimates (3.11)-(3.14) we as-
sert the existence of elements u ∈ L2(0, T ;Vg) ∩ L∞(0, T ;Hg) and θ ∈ L2(0, T ;Wg) ∩
L∞(0, T ;L2(Ω, g)) and the subsequences {u(m)}m and {θ(m)}m such that u(m) → u ∈
L2(0, T ;Vg) and θ(m) → θ ∈ L2(0, T ;Wg) weakly and u(m) → u ∈ L∞(0, T ;Hg) and

θ(m) → θ ∈ L∞(0, T ;L2(Ω, g)) weak-star convergent as m→∞.

Let ũ(m) : R→ Vg and θ̃
(m) : R→Wg de�ned as

ũ(m)(t) =

{
u(m) ; 0 ≤ t ≤ T

0 ; otherwise
ve θ̃(m)(t) =

{
θ(m) ; 0 ≤ t ≤ T

0 ; otherwise

and their Fourier transforms denoted by û(m) ve θ̂(m).
We observe that

d

dt
ũ(m) = ũ′

(m)
+ u(m)(0)δ0 − u(m)(T )δT

d

dt
θ̃(m) = θ̃′

(m)
+ θ(m)(0)δ0 − θ(m)(T )δT

where δ0 and δT are Dirac distributions at 0 and T . Therefore, by Fourier transform we
get

2iπτ〈û(m), uk〉g = 〈F̂1, uk〉g + (um0, uk)g − (u(m)(T ), uk)ge
−2iπTτ(3.15)

2iπτ〈θ̂(m), θk〉g = 〈F̂2, θk〉g + (θm0, θk)g − (θ(m)(T ), θk)ge
−2iπTτ(3.16)

where

F1 = ξθ(m) + f1 −Bg(u(m), u(m))− νAgu(m) − νCgu(m)

F2 = f2 − B̃g(u(m), θ(m))− κÃgθ(m) + κC̃gθ
(m) + κD̃gθ

(m)

for k = 1, ...,m. We multiply (3.15) and (3.16) by f̂
(m)
j ve ĝ

(m)
j respectively and add

these equations for k = 1, ...,m to get

2iπτ |û(m)(τ)|2g = 〈F̂1(τ), û(m)(τ)〉g + (um0, û
(m)(τ))g − (u(m)(T ), û(m)(τ))ge

−2iπTτ

2iπτ |θ̂(m)(τ)|2g = 〈F̂2, θ̂
(m)(τ)〉g + (θm0, θ̂

(m)(τ))g − (θ(m)(T ), θ̂(m).(τ))ge
−2iπTτ
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Since the integrals on the right hand side of the inequalities∫ T

0

‖F1(t)‖V ′
g
dt ≤

∫ T

0

c(|ξ|∞‖θ(m)(t)‖g + ‖f1(t)‖V ′
g

+ |u(m)(t)|g‖u(m)‖g +

‖u(m)(t)‖g + |∇g|∞‖u(m)(t)‖g)dt,∫ T

0

‖F2(t)‖W ′
g
dt ≤

∫ T

0

c̀(‖f2(t)‖W ′
g

+ |u(m)(T )|g‖θ(m)(t)‖g + ‖θ(m)(t)‖g

+|∇g|∞‖θ(m)(t)‖g + |∆g|∞‖θ(m)(t)‖g)dt

remains bounded, ‖F1(t)‖V ′
g
and ‖F2(t)‖W ′

g
are bounded in L1(0, T ;V ′g ) and L1(0, T ;W ′g)

respectively. Therefore, ∀m

sup
τ∈R
‖F̂1(τ)‖V ′

g
≤ c1 and sup

τ∈R
‖F̂2(τ)‖W ′

g
≤ c2.

Moreover, since u(m)(0), u(m)(T ), θ(m)(0) and θ(m)(T ) are bounded by the inequalities
(3.11) and (3.12),

|τ ||ũ(m)(τ)|2g ≤ c1‖u(m)‖Vg + c2|u(m)|g ≤ c3‖u(m)‖Vg

|τ ||θ̃(m)(τ)|2g ≤ c̀1‖θ(m)‖Wg + c̀2|θ(m)|g ≤ c̀3‖θ(m)‖Wg

and for γ < 1
4
�xed we observe that

|τ |2γ ≤ c(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R

then we can write∫ ∞
−∞
|τ |2γ |û(m)(τ)|2gdτ ≤ c(γ)

∫ ∞
−∞

1 + |τ |
1 + |τ |1−2γ

|û(m)(τ)|2gdτ

≤ c4

∫ ∞
−∞

1

1 + |τ |1−2γ
‖û(m)(τ)‖2Vg

dτ + c5

∫ ∞
−∞
‖û(m)(τ)‖2Vg

dτ∫ ∞
−∞
|τ |2γ |θ̂(m)(τ)|2gdτ ≤ c̀4

∫ ∞
−∞

1

1 + |τ |1−2γ
‖θ̂(m)(τ)‖2Wg

dτ + c̀5

∫ ∞
−∞
‖θ̂(m)(τ)‖2Wg

dτ.

Since the integrals on the right hand side are bounded we see that u(m) ∈ Hγ(R;Vg, Hg)

and θ(m) ∈ Hγ(R;Wg, L
2(Ω, g)). For the de�nitions ofHγ(R;Vg, Hg) andH

γ(R;Wg, L
2(Ω, g))

we refer to [39]. Therefore, there exist subsequences {u(m)}m and {θ(m)}m which are
strongly convergent in L2(0, T ;Hg) and L

2(0, T ;L2(Ω, g)) respectively.
In order to pass to the limit, we consider the scalar functions Ψ1(t) and Ψ2(t) contin-

uously di�erentiable on [0, T ] and such that Ψ1(T ) = 0 ve Ψ2(T ) = 0. We multiply (3.4)
and (3.5) by Ψ1(t) ve Ψ2(t) respectively and then integrate by parts.

−
∫ T

0

(u(m),Ψ′1uk)gdt+

∫ T

0

bg(u
(m), u(m),Ψ1uk)dt+ ν

∫ T

0

((u(m),Ψ1uk))gdt

+ν

∫ T

0

bg(
∇g
g
, u(m),Ψ1uk)dt = (um0, uk)gΨ1(0) +

∫ T

0

(ξθ(m),Ψ1uk)gdt+

∫ T

0

(f1, uk)gdt,

−
∫ T

0

(θ(m),Ψ′2θk)gdt+

∫ T

0

b̃g(u
(m), θ(m),Ψ2θk)dt+ κ

∫ T

0

((θ(m),Ψ2θk))gdt

+κ

∫ T

0

b̃g(
∇g
g
, θk,Ψ2θ

(m))dt = (θm0, θk)gΨ2(0) +

∫ T

0

(f2,Ψ2θk)gdt.
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Following the technique given in [39, 3], as m→∞ we obtain

−
∫ T

0

(u,Ψ′1v)gdt+

∫ T

0

bg(u, u,Ψ1v)dt+ ν

∫ T

0

((u,Ψ1v))gdt(3.17)

+ν

∫ T

0

bg(
1

g
∇g, u,Ψ1v)dt = (u0, v)gΨ1(0) +

∫ T

0

(ξθ,Ψ1v)gdt+

∫ T

0

(f1, v)gdt

−
∫ T

0

(θ,Ψ′2τ)gdt+

∫ T

0

b̃g(u, θ,Ψ2τ)dt+ κ

∫ T

0

((θ,Ψ2τ))gdt(3.18)

+κ

∫ T

0

b̃g(
∇g
g
, τ,Ψ2θ)dt = (θ0, τ)gΨ2(0) +

∫ T

0

(f2,Ψ2τ)gdt.

The equations (3.17) and (3.18) hold for v and τ which are �nite linear combinations of
the uk and θk for k = 1, ...,m and by continuity (3.17) and (3.18) hold for v ∈ Vg and
τ ∈ Hg respectively. Rewriting (3.17) and (3.18) for Ψ1(t),Ψ2(t) ∈ C∞0 (0, T ) we see that
{u, θ} satisfy (3.1) and (3.2). Furthermore, applying similar techniques given in [39, 1]
it is easy to show that {u, θ} satisfy the initial conditions u(0) = u0 and θ(0) = θ0.

For the uniqueness of the weak solutions let (u1, θ1) and (u2, θ2) be two weak solutions
with the same initial condition. Let w = u1 − u2 and w̃ = θ1 − θ2. Then we have

d

dt
(w, v)g + bg(u1, u1, v)− bg(u2, u2, v) + ν(∇w,∇v)g + ν(Cgw, v)g = (ξw̃, v)g

d

dt
(w̃, τ)g + b̃g(u1, θ1, τ)− b̃g(u2, θ2, τ) + κ(∇w̃,∇τ)g + κb̃g(

∇g
g
, τ, w̃) = 0.

Taking v = w(t) and τ = w̃(t) one obtains,

1

2

d

dt
|w|2g + bg(w, u2, w) + ν|A1/2

g w|2g + ν(Cgw,w)g = (ξw̃, w)g

1

2

d

dt
|w̃|2g + b̃g(u1, θ1, w̃)− b̃g(u2, θ2, w̃) + κ|Ã1/2

g w̃|2g + κb̃g(
∇g
g
, w̃, w̃) = 0.

By applying the bounds on the terms bg, b̃g it then follows by Cauchy-Schwarz inequality
and Gronwall inequality that w(t) = 0 and w̃(t) = 0 for all t ≥ 0 since we have w(0) = 0
and w̃(0) = 0. Thus Theorem 3.2 is proved.

4. Determining modes

In the 1960s the theory of determining modes was introduced by Foias and Prodi [8].
Jones and Titi, presented improved upper bounds on the number of determining Fourier
modes, determining nodes and volume elements for the Navier - Stokes equations in [20].
The dependence of the number of numerically determining modes in the Navier - Stokes
equations on the Grashof number is examined in [32]. In [31] the connection between
continuous data assimilation and the theory of determining modes was made clear. Foias
et.al [5], presented a uni�ed approach based on interpolant operators constructed from
various determining parameters for the Navier-Stokes equations. Boland and Layton[2],
analyze the error in �nite element methods in approximating natural convection prob-
lems. They show that the steady state Boussinesq equations have at least one solution
and it is unique for either small data or for restricted Rayleigh and Prandtl numbers.
Also, they give an abstract formulation of a determining modes result which gives more
structure to the uniqueness problem for large Rayleigh and Prandtl values. Quite re-
cently, an algorithm for continuous data assimilation for the two dimensional Bénard
convection problem is introduced and analyzed in [4].

Following [6] we �rst give a generalization of the classical Gronwall lemma.
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4.1. Lemma. [19] Let α = α(t) and β = β(t) be locally integrable real-valued functions
on [0,∞) that satisfy the following conditions for some T > 0:

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0(4.1)

lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ <∞(4.2)

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0(4.3)

where α−(t) = max{−α(t), 0} and β+(t) = max{β(t), 0}. Suppose that ξ = ξ(t) is an
absolutely continuous nonnegative function on [0,∞) that satis�es the following inequality
almost everywhere [0,∞):

(4.4)
dξ

dt
+ αξ ≤ β

Then ξ(t)→ 0 as t→∞.

Now with the use of Lemma 4.1 we give a proof for upper bounds for the determining
modes to the system of equations under consideration.

Let (u, θ) and (u, θ) satisy

ut + νAgu+Bg(u, u) + νCgu = ξθ + f1(4.5)

θt + κÃgθ + B̃g(u, θ)− κC̃gθ − κD̃gθ = f2(4.6)

ut + νAgu+Bg(u, u) + νCgu = ξθ + f1(4.7)

θt + κÃgθ + B̃g(u, θ)− κC̃gθ − κD̃gθ = f2(4.8)

the system of equations (4.5-4.6) and (4.7-4.8) respectively under periodic boundary

conditions and corresponding to two possibly di�erent forcing pairs {f1 = f1(x, t), f1 =

f1(x, t)} and {f2 = f2(x, t), f2 = f2(x, t)}. We can expand each solution pair in the form
with the Galerkin projections correspond to the �rst m modes:

u =

∞∑
j=1

ŭj(t)uj(x), θ =

∞∑
j=1

θ̆j(t)θj(x)

Pmu =

m∑
j=1

ŭj(t)uj(x), P̃mθ =

m∑
j=1

θ̆j(t)θj(x)

where ŭj and θ̆j are eigenfunctions of the g-Stokes operator. It is assumed that the

forcing pairs {f1, f1} and {f2, f2} have the same asymptotic behavior for large time,
that is, as t→∞ we have∫

Ω

|f1 − f1|
2
V ′
g
dx→ 0,

∫
Ω

|f2 − f2|
2
W ′

g
dx→ 0.(4.9)

Then, the �rst m modes associated with Pm and P̃m are called determining modes if the
condition ∫

Ω

|Pmu− Pmu|2gdx→ 0,

∫
Ω

|P̃mθ − P̃mθ|2gdx→ 0.(4.10)

imply ∫
Ω

|u− u|2gdx→ 0,

∫
Ω

|θ − θ|2gdx→ 0(4.11)
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as t→∞. By subtraction, we �nd that

ωt + νAgω +Bg(u, u)−Bg(u, u) + νCgω = ξω̃ + f1 − f1(4.12)

ω̃t + κÃgω̃ + B̃g(u, θ)− B̃g(u, θ)− κC̃gω̃ − κD̃gω̃ = f2 − f2(4.13)

where ω = u− u and ω̃ = θ − θ. By using

Bg(u, u)−Bg(u, u) = Bg(ω, u) +Bg(u, ω)

B̃g(u, θ)− B̃g(u, θ) =
1

2
[B̃g(ω, θ) + B̃g(ω, θ) + B̃g(u, ω̃) + B̃g(u, ω̃)]

and taking the inner product of (4.12) and (4.13) with Qm = I − Pm and Q̃m = I − P̃m
which are the projections onto the modes higher than m respectively, yields

(ωt, Qmω)g + ν(Agω,Qmω)g + bg(ω, u,Qmω) + bg(u, ω,Qmω) + νbg(
∇g
g
, ω,Qmω)

= (ξω̃,Qmω)g + (f1 − f1, Qmω)g,

(ω̃t, Q̃mω̃)g + κ(Ãgω̃, Q̃mω̃)g +
1

2
[b̃g(ω, θ, Q̃mω̃) + b̃g(ω, θ, Q̃mω̃) + b̃g(u, ω̃, Q̃mω̃)

+b̃g(u, ω̃, Q̃mω̃)] + κb̃g(
∇g
g
, Q̃mω̃, ω̃) = (f2 − f2, Q̃mω̃)g.

Therefore,

1

2

d

dt
|Qmω|2g + ν‖Qmω‖2g + bg(ω, u,Qmω) + bg(u, ω,Qmω)(4.14)

+νbg(
∇g
g
, ω,Qmω) = (ξω̃,Qmω)g + (f1 − f1, Qmω)g

1

2

d

dt
|Q̃mω̃|2g + κ‖Q̃mω̃‖2g +

1

2
[b̃g(ω, θ, Q̃mω̃) + b̃g(ω, θ, Q̃mω̃)(4.15)

+b̃g(u, ω̃, Q̃mω̃) + b̃g(u, ω̃, Q̃mω̃)] + κb̃g(
∇g
g
, Q̃mω̃, ω̃) = (f2 − f2, Q̃mω̃)g.

By using the estimate (2.7), Cauchy - Schwarz inequality and Young's inequality we give
some bounds on the terms which occur in the equations (4.14) and (4.15).

bg(ω, u,Qmω) = bg(Pmω, u,Qmω) + bg(Qmω, u,Qmω)

≤ c1|Pmω|1/2g ‖Pmω‖1/2g ‖u‖g|Qmω|1/2g ‖Qmω‖1/2g +
5c22
2ν
|Qmω|2g‖u‖2g

+
ν

10
‖Qmω‖2g

νbg(
∇g
g
, ω,Qmω) ≤ c1ν|∇g|∞‖Pmω‖g|Qmω|g +

5c22ν

2
|∇g|2∞|Qmω|2g +

ν

10
‖Qmω‖2g

1

2
b̃g(ω, θ, Q̃mω̃) ≤ c1

2
|Pmω|1/2g ‖Pmω‖1/2g |θ|1/2g ‖θ‖1/2g ‖Q̃mω̃‖g +

c22
2
|Qmω|g‖Qmω‖g

+
1

8
‖θ‖2g|Q̃mω̃|g‖Q̃mω̃‖g

≤ c1
2
|Pmω|1/2g ‖Pmω‖1/2g |θ|1/2g ‖θ‖1/2g ‖Q̃mω̃‖g

+
5c42
8ν
|Qmω|2g +

ν

10
‖Qmω‖2g +

3

128κ
‖θ‖4g|Q̃mω̃|2g +

κ

6
‖Q̃mω̃‖2g
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Similarly we obtain bounds for the rest of the terms in the equations (4.14) and (4.15)
then taking these estimates into account and using the inequalities

λm+1|Qmω|2g ≤ ‖Qmω‖2g, λm+1|Q̃mω̃|2g ≤ ‖Q̃mω̃‖2g

we obtain a relation for ζ(t) = |Qmω|2 + |Q̃mω̃|2 of the form

d

dt
ζ(t) + α(t)ζ(t) ≤ β(t)

with

α(t) = min{α1(t), α2(t)}

β(t) = 2c|Pmω|1/2g ‖Pmω‖1/2g ‖u‖g|Qmω|1/2g ‖Qmω‖1/2g

+ c|Pmω|1/2g ‖Pmω‖1/2g ‖θ‖g|Q̃mω̃|1/2g ‖Q̃mω̃‖1/2g

+ c|Pmω|1/2g ‖Pmω‖1/2g ‖θ‖g|Q̃mω̃|1/2g ‖Q̃mω̃‖1/2g

+ 2c|u|1/2g ‖u‖1/2g |Pmω|1/2g ‖Pmω‖1/2g ‖Qmω‖g

+ c|u|1/2g ‖u‖1/2g |P̃mω̃|1/2g ‖P̃mω̃‖1/2g ‖Q̃mω̃‖g

+ c|u|1/2g ‖u‖1/2g |P̃mω̃|1/2g ‖P̃mω̃‖1/2g ‖Q̃mω̃‖g

+
2ν

m0
|∇g|∞‖Pmω‖g|Qmω|g +

2κ

m0
|∇g|∞‖Q̃mω̃‖g|P̃mω̃|g

+ 2|ξ|∞|P̃mω̃|g|Qmω|g + 2‖f1 − f1‖V ′
g
‖Qmω‖g + 2‖f2 − f2‖W ′

g
‖Q̃mω̃‖g

where

α1(t) = νλm+1 −
[

5c2

ν
‖∇u‖2g +

5ν

m2
0

‖∇g‖2∞ +
5c4

2ν

]
α2(t) = κλm+1 −

[
3

64κ
(‖∇θ‖4g + ‖∇θ‖4g) +

5M0

4π2νm0
‖ξ‖2∞ +

3κ

m2
0

‖∇g‖2∞
]

Since the solutions u, u, θ and θ are bounded uniformly for t bounded away from
zero in Hg, Vg and Wg respectively and by assumptions (4.9) and (4.10) it follows that
β(t) → 0 as t → ∞. One can deduce the following inequality from (3.9) and (3.10) for
su�ciently large T :

1

T

∫ t+T

t

‖u(τ)‖2gdτ ≤ 2M2
0 |ξ|2∞

ν′2κ′2π4m2
0

‖f2‖2L∞(t,t+T ;L2(Ω,g)) +
8

ν′2
‖f1‖2L∞(t,t+T ;Hg)

1

T

∫ t+T

t

‖θ(τ)‖2gdτ ≤ 4

κ′2
‖f2‖2L∞(t,t+T ;L2(Ω,g)).

Then we see that

lim sup
t→∞

1

T

∫ t+T

t

α−1 (τ)dτ =
5c2

ν

[
2M2

0 |ξ|2∞
ν′2κ′2π4m2

0

‖f2‖2L∞(t,t+T ;L2(Ω,g)) +
8

ν′2
‖f1‖2L∞(t,t+T ;Hg)

]
+

5ν

m2
0

|∇g|2∞ +
5c4

2ν
− νλm+1 <∞

lim sup
t→∞

1

T

∫ t+T

t

α−2 (τ)dτ =
3

4κκ′4
[
‖f2‖4L∞(t,t+T ;L2(Ω,g)) + ‖f2‖

4
L∞(t,t+T ;L2(Ω,g))

]
+

5M0

4π2νm0
|ξ|2∞ +

3κ

m2
0

|∇g|2∞ − κλm+1 <∞
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and the condition (4.2) of Gronwall lemma is satis�ed. Finally, we see that

lim inf
t→∞

1

T

∫ t+T

t

α1(τ)dτ ≥ νλm+1 −
5ν

m2
0

|∇g|2∞ −
5c4

2ν

−5c2

ν

[
2M2

0 |ξ|2∞
ν′2κ′2π4m2

0

‖f2‖2L∞(t,t+T ;L2(Ω,g)) +
8

ν′2
‖f1‖2L∞(t,t+T ;Hg)

]

lim inf
t→∞

1

T

∫ t+T

t

α2(τ)dτ ≥ κλm+1 −
5M0

4π2νm0
|ξ|2∞ −

3κ

m2
0

|∇g|2∞

− 3

4κκ′4
[
‖f2‖4L∞(t,t+T ;L2(Ω,g)) + ‖f2‖

4
L∞(t,t+T ;L2(Ω,g))

]
and if m is su�ciently large that the inequalities

λm+1 ≥
5c2

ν2

[
2M2

0 |ξ|2∞
ν′2κ′2π4m2

0

‖f2‖2L∞(t,t+T ;L2(Ω,g)) +
8

ν′2
‖f1‖2L∞(t,t+T ;Hg)

]
− 5

m2
0

|∇g|2∞ −
5c4

2ν2

λm+1 ≥
3

4κ2κ′4
[
‖f2‖4L∞(t,t+T ;L2(Ω,g)) + ‖f2‖

4
L∞(t,t+T ;L2(Ω,g))

]
− 5M0|ξ|2∞

4π2νκm0
− 3

m2
0

|∇g|2∞
are satis�ed then we can apply Gronwall lemma to deduce that
ζ(t) = |Qmω|2 + |Q̃mω̃|2 goes to zero as t goes to in�nity.

References

[1] Bae, H., Roh, J., Existence of Solutions of the g-Navier-Stokes Equations, Taiwanese J.
Math., 8, No. 1, 85-102, 2004.

[2] Boland, J. and Layton, W., Error analysis for �nite element methods for steady nat-
ural convection problems, Numer. Funct. Anal. Optim., 11:5-6, 449-483, 1990, DOI:
10.1080/01630569008816383.

[3] Galdi,G.P., Lectures in Mathematical Fluid Dynamics, Birkhäuser-Verlag, 2000.
[4] Farhat, A., Jolly, M.S., and Titi, E.S., Continuous Data Assimilation for the 2D Bénard

Convection Through Velocity Measurements Alone, Physica D, 303, 59-66, 2015.
[5] Foias, C., Jolly, M.S., Kravchenko, R., and Titi, E.S., A uni�ed approach to determining

forms for the 2D Navier-Stokes equations � the general interpolants case, Russ. Math.
Surv.,69, No. 2, 359-381, 2014.

[6] Foias, C., Manley, O., Rosa, R. and Temam, R., Navier - Stokes Equations and Turbulence,
Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press,
2004.

[7] Foias, C., Manley, O., Temam, R., Attractors for the Bénard problem: Existence and phys-
ical bounds on their fractal dimension, Nonlinear Anal. Theory, Methods & Applications,
11, 939-967, 1987.

[8] Foias, C., Prodi, G., Sur le comportement global des solutions non stationnaires des équa-
tions de Navier-Stokes en dimension two, Rend. Sem. Mat. Univ., Padova, 39, 1-34, 1967.

[9] Hale, J.K., Raugel, G., A damped hyperbolic equation on thin domains, Trans. Amer. Math.
Soc., 329, 185-219, 1992.

[10] Hale, J.K., Raugel, G., Partial di�erential equations on thin domains, Di�er. Eq. Math.
Phys., Birmingham, AL, 1990, Academic Press, Boston, 63-97, 1992.

[11] Hale, J. K., Raugel, G., Reaction - Di�usion equation on thin domains, J. Math. Pures
Appl., 71, 33-95, 1992.

[12] Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction Boundary Con-
ditions (I), J. Math. Fluid Mech., 12, No. 3, 435-472, 2010.

[13] Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction Boundary Con-
ditions (II), J. Math. Fluid Mech., 15, 361-395, 2013.

[14] Hu, C., Navier-Stokes equations in 3D thin domains with Navier friction boundary condi-
tion, J. Di�er. Equ., 236, No. 1, 133-163, 2007.

[15] Hu, C., Global strong solutions of Navier-Stokes equations with interface boundary in three-
dimensional thin domains, Nonlinear Anal. 74, No. 12, 3964-3997, 2011.



1466

[16] Iftimie, D., The 3D Navier - Stokes equations seen as a perturbation of the 2D Navier -
Stokes equations, Bull. Soc. Math., France, 127, 473-517, 1999.

[17] Iftimie, D. and Raugel, G., Some results on the Navier-Stokes equations in thin 3D domains,
J. Di�er. Equ., 169, 281-331, 2001.

[18] Iftimie, D., Raugel, G., Sell, G.R., Navier-Stokes equations in thin 3D domains with Navier
boundary conditions, Indiana Univ. Math. J., 56, No. 3, 1083-1156, 2007.

[19] Jones, D.A., and Titi, E.S., Determination of the solutions of the Navier - Stokes equations
by �nite volume elements, Phys. D, 60, 165-174, 1992.

[20] Jones, D., Titi, E.S., Upper bounds on the number of determining modes, nodes, and volume
elements for the Navier - Stokes equations, Indiana Univ. Math. J., 42, No. 3, 875-887, 1993.

[21] Kagei, Y., On weak solutions of nonstationary Boussinesq equations, Di�. Integral Equ., 6,
587-611, 1993.

[22] Kapustyan, O.V., Melnik, V.S., Valero, J., A weak attractor and properties of solutions for
the three-dimensional Bénard problem, Discr. Contin. Dyn. Syst. Ser. A, 18, 449-481, 2007.

[23] Kapustyan, O.V., Pankov, A.V., Global ϕ-attractor for a modi�ed 3D Bénard system on
channel-like domains, Nonauton. Dyn. Syst., 1, Issue 1, 1-9, 2014.

[24] Kapustyan, O.V., Pankov, A.V., Valero, J., On global attractors of multivalued semi�ows
generated by the 3D Bénard system, Set-Valued and Variat. Anal., 20, 445-465, 2012.

[25] Kaya, M. and Çelebi, A.O., Existence of weak solutions of the g-Kelvin-Voight equation,
Math. Comput. Modelling, 49, 497-504, 2009.

[26] Kaya, M. and Çelebi, A.O., Global attractor for the regularized Bénard problem, Appl. Anal.,
93, Issue 9, 1989-2001, 2014.

[27] Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, 2nd Edi-
tion, Gordon and Breach, New York, 1969.

[28] Moise, I., Temam, R., Ziane, M., Asymptotic analysis of the Navier - Stokes equations in
thin domains, Topol. Methods Nonlinear Anal., 10, 249-282, 1997.

[29] Montgomery, S., Global regularity of the Navier-Stokes equations on thin three-dimensional
domains with periodic boundary conditions, Electron. J. Di�er. Equ., 11, 1-19, 1999.

[30] Morimoto, H., Non-stationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math,
39, 61-75, 1992.

[31] Olson, E., Titi, E.S., Determining modes for continuous data assimilation in 2D turbulence,
J. Stat. Physics, 113, No.516, 799-840, 2003.

[32] Olson, E., Titi, E.S., Determining modes and Grashof number in 2D turbulence: a numerical
case study, Theor. Comput. Fluid Dyn., 22, Issue 5, 327-339, 2008.

[33] Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. I. Global attractors
and global regularity of solutions, J. Amer. Math. Soc., 6, 503-568, 1993.

[34] Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. II. Global regu-
larity of spatially periodic solutions, Nonlinear Partial Di�erential Equations and Their
Applications, Collège de France Seminar, vol. XI, Longman, Harlow, , 205-247, 1994.

[35] Roh, J., g-Navier-Stokes equations, Thesis, University of Minnesota, 2001.
[36] Roh, J., Dynamics of the g-Navier-Stokes equations, J. Di�er. Equ., 211, No. 2, 452-484,

2005.
[37] Roh, J., Geometry of L2(Ω, g), J. Chungcheong Math. Soc., 19, No.3, 283-289, 2006.
[38] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional

Conference Series, No. 41, SIAM, Philadelphia, 1983.
[39] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, vol. 2 of Studies

in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 3rd
edition, 1984.

[40] Temam, R. and Ziane, M., Navier-Stokes equations in three-dimensional thin domains with
various boundary conditions, Adv. Di�er. Equ., 1, 499-546, 1996.

[41] Temam, R. and Ziane, M., Navier-Stokes equations in thin spherical domains, Contemp.
Math., 209, 281-314, 1997.

[42] Wu, D., On the Dimension of the Pullback Attractors for g-Navier-Stokes Equations, Dis-
crete Dyn. Nature Soc., 2010, Article ID 893240, 16 pages.


