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On the weak solutions and determining modes of
the g-Bénard problem
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Abstract

In this paper we study the existence and uniqueness of weak solutions of
the g-Bénard problem. Then, we investigate the long-term dynamics;
specifically, we derive upper bounds for the number of determining
modes for this system.
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1. Introduction

In the field of the fluid dynamics the Boussinesq equations is studied and since the
fluid on the earth is laid in a layer we consider the Boussinesq equations in bounded
domains.

Let Q4 be a bounded domain defined by

Q= {(y1,y2,y3) ER®: (y1,92) € 22,0 < y3 < g}

where 25 is a bounded region in the plane and g = g(y1,y2) is a smooth function defined
on . The governing equations for the fluid are of the form

(1.1) %—?Jr(UAV)UquUJrVP = O+ FR(1)
(1.2) V.U = 0

96
(1.3) St (U-VIe—rre = Fyl)
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where U = (U1, Uz, Us) is the fluid velocity, P is the pressure, © is the temperature, F;
is the external force function, F» is the heat source function, £ € R® is a constant vector,
v kinematic viscosity and  thermal diffusivity are positive constants.

The system of equations (1.1) — (1.3) describes the large scale motion of the fluids [7].
The existence and uniqueness of the weak solution of the Boussinesq equations has been
studied for arbitrary dimension, (see [30, 21]). The Navier - Stokes equations on thin do-
mains studied by Hale and Raugel [9]-[11] concerning the reaction - diffusion and damped
wave equations on thin domains. Then, Raugel and Sell [33, 34| proved global existence
of strong solutions for large initial data and forcing terms in thin three-dimensional do-
mains for the purely periodic boundary conditions and the periodic-Dirichlet boundary
conditions. By averaging along the vertical direction and using the uniqueness of so-
lutions of two-dimensional Navier-Stokes equations, Temam and Ziane obtained limit
models, together with existence and global regularity results in [40, 41]. One can refer
[12]-[18],28],[29] for more on thin domain problems. The existence of weak solutions of
the g-Navier-Stokes equations established by Roh [35]-[37] for periodic boundary condi-
tions as well as Dirichlet boundary conditions on bounded domains. Kaya and Celebi [25]
discussed the existence and uniqueness of weak solutions of g-Kelvin - Voight equations
by the use of the well known Feado - Galerkin method. Also they established the global
existence and uniqueness of weak solutions of the regularized Bénard problem and give a
proof for the existence of global attractor in the three-dimensional case [26]. The asymp-
totic behaviour of weak solutions for the three-dimensional Bénard problem is studied
in [22] and they constructed a one parameter family of multivalued semiflows. Also, the
existence of global attractors in the weak topology for the 3D Bénard system in bounded
domains was proved in [24] and the existence of global p-attractor for a modified 3D
Bénard system on channel-like domains in [23].

The article is organized as follows. In Section 2, we introduce some notations and
the functional setting of the Bénard problem. In Section 3, we prove the existence and
uniqueness of weak solutions of the g-Bénard problem. In Section 4, we estimate upper
bounds for the number of determining modes for the g-Bénard problem.

2. Preliminaries

We introduce the usual notation used in the context of the mathematical theory of
Navier-Stokes equations [38, 39]. Let Q; = Q2 x (0,9) = (0,1) x (0,1) x (0,g) where
g = g(y1,y2) is a smooth function defined on Q. In addition we assume that
(21) 0 < mo < g(y1,y2) < M() for all (yl,yg) c Qo

Vloo = sup|Vg| <00, g € Cper(€2a).
2

We consider the three-dimensional Bénard convection model under Boussinesq approxi-
mation for incompressible fluids on €2, with periodic boundary conditions

%-F(U-V)U—VAU—FVP = 0+ Fi(t), Qg x [0,T]
v-Uu = 0, Qg x [0,T]
00
EJ’_(UV)@_K/A@ = Fz(t), Qg X [07T]
We assume that U and © satisfy the boundary conditions
(2.2) U-n=0, VO-n = 0 on 't UT,
00
(2.3) Olys=g =0, Z—|yz=g = 0

83/3
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where n is the outward unit normal vector and

' = {(w1,v2,93) € Qg :ys =0}
Fo = {(y1,92,93) € Q1 y3 = g(y1,92) }-

For the initial conditions we consider U(y,0) = Up(y) and O(y,0) = Op(y) defined in Q4
and for the external functions F} and Fs, we will require that

Us(y)dy =0, | ©oly)dy =0, / Fudy =0, / Fady = 0.
Qg Q_q Qg Qg

The approach we use is an adaptation of the theory presented in [33, 34, 35]. The
change of variables,

o
9(y1,y2)

maps €3 onto 4 where Q3 = Q2% (0, 1). Then for U = (U1 (y1,y2), U2(y1,92), Us(y1, Y2, y3)) =
u(z1, T2, x3) similarly in [35] we obtain from the boundary conditions of the problem that

1 =y1,T2 = y2 and x3 = Y3

0 0
U3 pry _ng(ﬂ‘F u2

0, T 0wy

The orthogonal average operators M and M in the thin direction are in the following;

1 g
(M) (y1,y2) = 5/ o(y1,y2,y3)dys, ¢ € L*(Q,9)
0
Mu = (Mui, Mus,0), u € (L*(Q,9))°.

Let v = (v1,v2) defined by v; = Mu; = fol ui(z1, 2, x3)drs, i = 1,2. Then we have
v1 = u1, v2 = uz and from the incompressibility condition (1.2) we have V - (gv) = 0.
Therefore, (see,[35, 1])

0 0
U3(331,I2,I3) = 1‘3(791}1 + 75]1}2)'
2

The application of the averaging operators to the system (1.1) — (1.3) results in an
involving system of equations. In order to simplify this system we impose the boundary
conditions (2.2) — (2.3). Therefore we arrive at the system

(2.4) %+(U-V)U7VA’U+MVP:€¢+M]¢1, Q2 x [0,T]

(2.5) V.-(gv) =0, Q2 x][0,T]
1J0) 2K KAg

(2.6) §+(U'V)¢*I€A¢*;(VQ'V)¢*T¢:MJ‘2, Q2 x [0,T]

where ¢ = M6.

L*(9, g) denotes the Hilbert space with the inner product (u,v)y = [,(u - v)gdz, the
norm |ul? = (u,u)y. Similarly H'(f,g) is the space with the norm

) "\ Ou Ou
‘“|H1(Q,g) = (u, u)g + iz:;ami’ 8$i>g.
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We define
Vi = {u€(Cper(Q)":V-(gu) = 0,/ udz =0 on Q}
Q
H, = the closure of V; in L*(Q, g)
V, = the closure of V; in H'(Q,g)

V, = the dual space of V

Vo = {p€Crr(): / wdr = 0}
Q
W, = the closure of V in H'(Q,9)
W; = the dual space of W,
Q = the closure of {Vy: ¢ € Cp..(Q,R)} in L*(Q).

where H, is endowed with the inner product and the norm in L?(Q,g) and V,, W, are
endowed with the inner product and the norm in H'(Q, g). The inclusions
2
Vg CHy=H, CV,, W,CL*(Q,9) CW,
are valid where each space is dense in the following one and the injections are continuous
[30, 35]. By the Riesz representation theorem, it is possible to write
<f7u>9:(f7u)97 VfEHg,quVg.
Also, we define the orthogonal projection Py as Py : L2.,.(2, g) — Hy and we have that
Q C Hj-. Similarly, we define P, as P, : L2.,.(Q, g) — W,. By taking into account the
following equality,

1 1
_§<V -gVu) = —Au — E(Vg -V)u
we define the g-Laplace operator and g-Stokes operator as —Agu = —%(V - gVu) and
Agu = Py[—Agu] respectively.
2.1. Proposition. [35, 1] For the g-Stokes operator Ay, the followings hold:
(1) The g-Stokes operator Ay is a positive, self-adjoint operator with compact in-
verse, where the domain of Ay is D(A,) =V, N H*(Q, g).
(2) There exist countable eigenvalues of Ay satisfying
47T2m0
0< —— <A1 < <A<
< My = 1S A2S A3 S
where \1 is the smallest eigenvalue of Ay. In addition, there exist the corre-
sponding collection of eigenfunctions {w;}ien forms an orthonormal basis for
H,.

Since the operators A, and P, are self-adjoint, using integration by parts we have

(Agu,u)g == (Py[—=(V - gV)u],u)y = /Q(Vu -Vu)gdzr = (Vu, Vu)g.

1

g
Therefore,for u € V, we can write |Aé/2u|g = |Vulg = |Jullg-

Next, since the functional
TEW, = (VO,Vr), €R
is a continuous linear mapping on W, we can define a continuous linear mapping flg on
W, such that
Ve Wy, (Ag0,7)g=(VO,VT),4

for all 0 € W,,.
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We denote the bilinear operator By (u,v) = Py[(u- V)v] and the trilinear form

by (u, v, w) = Z /Qui%wjgdw

3,j=1

where u,v,w lie in appropriate subspaces of L2.,.(%, g). Then, one obtains by (u, v, w) =

—bg(u, w,v) which implies that by(u,v,v) = 0. Also b, satisfies the inequality (see
[391,[42]),
(27) by (v, w)lg < cluly|fully* vlgwly [wlly?, Yu, v,w € V.

Similarly, for u € V; and 0,7 € W, we define By(u,0) = P,[(u - V)] and

by(u,0,7) = Z /Quz(a:)agif)r(x)gdm

4,j=1

We denote the operators Cyu = Pg[é(Vg -V)u] and Cyf = I:’g[é(Vg - V)] such that
(Cytt, v}y = bg(%,u,v), (Cyb,7), = 59(%,0,7).
Finally, let Dy = ]39[%9] such that
(Dyb,7)y = —59(%,9,7) - BQ(%,T, 0).

We now rewrite the system of equations (2.4) —(2.6) as abstract evolutionary equations

d
(2.8) d;ltl + By(u,u) + vAgu + vCou = 0+ f1
(2.9) % + By(u,0) + kAy0 — kCy0 — kD0 = fo
(2.10) u(z,0) = uo(z), 0(z,0) = 6bo(x).

We give the following two lemmas and for the proofs of these lemmas we refer to
27, 1].

2.2. Lemma. For n = 2 there exists a positive constant c such that
JulLaga,g < cluly*|Vuly®, Yu € H'(2, 9).
2.3. Lemma. Foru € L*(0,T;V,), By(u,u)(t) € L'(0,T;V,) and Cyu(t) € L*(0,T; Hy).
Lemma 2.2 is used in the proof of Lemma 2.3 and Lemma 2.3 is used when we are to

show that the solution of the system is almost everywhere equal to a continuous function
from [0,T] to V, so that the solution satisfy the initial conditions.

3. Existence and uniqueness of weak solutions

3.1. Definition. A pair of functions {u, 6} is called a weak solution of (2.4) — (2.6) if
w € L*(0,T;V,) and 0 € L?(0,T; W,) satisfy the following equations

i(% v)g + bg(u, u,v) +v(Vu, Vo)g + v(Cou,v)g = (£0,v)4 + (f1,v)g

@1 &

3.2 —
(32) €
for all v € Vg and 7 € W.

3.2. Theorem. If fi, f2 € L?(0,T;L*(Q, g)), uo € Hy, 6o € L*(R,g) and g is a smooth

function satisfying the conditions given in (2.1) defined on Qg then, there exist a unique
weak solution {u, 0} of the system (2.8)—(2.10) satifying the periodic boundary conditions.

d . _
0,7)g +bg(u,0,7) + Kk(VO, VT)g + ﬁbg(%,n 0) = (f2,v)g4
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For the proof of the theorem, we shall use the standard Feado - Galerkin method.
Since Vj is seperable and V; is dense in V, there exists a sequence {u;};en which forms a
complete orthonormal system in H, and a base for V. Similarly, there exists a sequence
{6;}ien which forms a complete orthonormal system in L?((, g) and a base for W,.

Let m be an arbitrary but fixed positive integer. For each m we define an approximate
solution {u™(t),0™(t)} of (3.1) — (3.2) for 1 <k <m and ¢ € [0,T] in the form,

(33) (m) Zf(m) , (m) Zg(m) 0;

(3.4) a(u“"),uk)g + b (u™ 0™ ug) 4+ (W™ ur)),
V m m
+ubg(7g,u< ) ur) = (€07 un)g + (fr,uk)g
(3.5) ww>6> by (u™, 0™ 0x) + k(0™ 61))
v m
+rby ( gg 0k, 0™) = (f2, Ok)g
(36)  u™(0) =umo = D (a0, uj)u; ;07 (0) =Omo = Y (70, 0;)0;.
j=1 j=1

This system forms a nonlinear first order system of ordinary differential equations for
the functions f;T")(t) and g;m)(t) and has a maximal solution on some interval [0, T](cf.
[22]).

We multiply (3.4) and (3.5) by f;m)( ) and g(m)( t) respectively, and add these equa-
tions for k = 1, ..., m. Taking into account bg(u <m), ul™), u(m)) = 0 and l;g (u<m), 6™, 9(’”)) =
0 we get;

3.7) (W™ (), ™ (8)g + v (D5 + vb (Vgg ut™ (1), ™ (2))
= (60", ™ (8)g + (f1,u"™ (2)
(3.8) O™ (1),6") (1))g + £[0T ()15 + ,J)g(%, 60" (1),6™ (1))

= (/2,6 (1)),
Using Schwarz and Young inequalities in (3.7) and (3.8)

d . (m)n2 (m) fa 112 Mol€%, jom) g2 4 2 20|V g2 (m) 2
2w Ol e Ol < W‘e (t)|g+;||f1(t)\|vg’+Tg|“ ®)lg
d om m 26|Vl | pom
Lo+ slo™ O < 2y + 21V g 2
0
so that for |[Vg|% < WM 76 and for
Mo|Vgl3 / MolVgls,  , _ Mgl
! = 1-— 0 >0 = 1—- = - >
v = 272m3 ), w= 2m2m} ) e Amim?
we get the inequalities
d m m C’ m 4
(39 @R+ @ < eI+ dial,
d m 2 m 2 2 2
(3.10) Lo + w1001 < 2lfali;,
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Integrating (3.9) and (3.10) from 0 to ¢ we obtain

(3.11) sup [ (8)[2 < Juol? + / ()% ds
te[0,T]
), ds
(3.12) sup 107 (1)2 < [6o2 / 1 2(s) oy ds
te[0,T)

which imply that the sequences {u(™},, and {#™},, remain in a bounded set of
L*>(0,T; Hy) and L>=(0,T; L*(Q, g)) respectively.
We then integrate (3.9) and (3.10) from 0 to T to get

T / T
m m 2c
(3.13) u™ (D)5 + v/ / ™ @)5de < —— / 172 v dt

4t |3 dt
+- | £ @),

(3.14) I R A R OTP = G PO
0 0

which imply that the sequences {u(™},, and {#™},, remain in a bounded set of
L?(0,T;Vy) and L*(0,T;W,) respectively. Due to the estimates (3.11)-(3.14) we as-
sert the existence of elements u € L2(0,T;V,) N L*(0,T; Hy) and 0 € L*(0,T;Wy) N
L>=(0,T; L*(€, g)) and the subsequences {u™},, and {™},, such that «(™ — u €
L*(0,T;V,) and 8™ — 6 € L*(0,T;W,) weakly and v'™ — u € L*>(0,T; H,) and
0™ — 0 € L>°(0,T; L*(%, g)) weak-star convergent as m — oo.

Let @™ : R — V, and 8™ : R — W, defined as

(m) . - (m) .
S(m)y ) u ; 0<t<T (m);n ) 0 ; 0<t<T
w() = { 0 ; otherwise ve () = 0 ; otherwise

and their Fourier transforms denoted by 4™ ve §(™).
We observe that

jt i = "™ 4w (0) — u™ (T)or
#(m) = 0" 40" (0)60 — 0" (T)r

where §p and Jr are Dirac distributions at 0 and 7. Therefore, by Fourier transform we
get

(3.15) 2i7r7—<ﬂ(m)7uk>g = (Frur)g + (Umo, ur)g — (u(m) (T), ux)ge 2T
(3.16) 20, 0:)y = (F2,0k)g + (Bmo,0k)g — (0™ (T), 0k)ge ™17
where

o= g + f1 = By(u'™ ™) — v A u™ — vCyu™

Fy = fo— Byu™, 0" = kA0 + £C,0"™ + kD,6™

for k = 1,...,m. We multiply (3.15) and (3.16) by f;m) ve gj.m) respectively and add
these equations for kK = 1,...,m to get

2imrla™ (= (), (g + (o, 8 ()g — (@ (T), 6 (1) o7
2inr| 0 ()2 = (F2, 07 (7)) + (Bmo, 07 (1))g — (07(T),0 (7)) ge >



1460
Since the integrals on the right hand side of the inequalities
g g (m) (m) (m)
/ IF2(0)llvgdt < / (&l 6T Ol + 12 (1)l vy + 1™ (0)] 1™ 15 +
0 0
1™ (#)llg + [V gloo ™ (2)l4)dt,
T T
/ 1F(0)llwydt < / e F2(0)lwy, + [ (D10 Dl + 167 (1)
0 0
+Vgloo |67 (8)ll + | Agloc |67 (1)]]g)dt

remains bounded, ||F(t)||v; and || F2(t)|lw; are bounded in L'(0,T;V]) and L*(0,T; W)
respectively. Therefore, Vm

sup|[Fy(7)[lv; <er and  sup||Ea(r)|wy < co
TER TER
Moreover, since u™ (0),u™ (T),0™ (0) and 6™ (T) are bounded by the inequalities
(3.11) and (3.12),
rla™ @l < alld™ v, +ealu™lg < esllu™ |y,

[0 ()]s < allo™ lw, + 2107 g < esll07 |lw,

and for v < 1 fixed we observe that

then we can write

o om oo 1+ pa m
[ e ke < oo [T e
o0 1 . o0 .
< 04/ 714—|7-|172w”“(m)(T)H%/ng—F%/ ||u(m>(7)|\%,gdr
o 2y A(m) N2 . =~ 1 A(m) /8112 . = A(m) /8112
[ ek <o [T i ol [ 1 0l

Since the integrals on the right hand side are bounded we see that (™ € H”(R;V,, H,)
and 0™ € HY(R; Wy, L*(2, g)). For the definitions of H” (R; Vy, Hy) and H” (R; W,, L*(, g))
we refer to [39]. Therefore, there exist subsequences {u(™},, and {6™},, which are
strongly convergent in L?(0,T; H,) and L*(0,T; L?(£, g)) respectively.

In order to pass to the limit, we consider the scalar functions ¥4 (¢) and ¥2(¢) contin-
uously differentiable on [0, 7] and such that ¥1(T") = 0 ve U2(7T) = 0. We multiply (3.4)
and (3.5) by W1 (t) ve W2 (t) respectively and then integrate by parts.

T T T
—/ (u(m)7 Uiuy)gdt +/ bg(u(7"),u<m), Wyug)dt + 1// ((u(m), Wiug))gdt
0 0 0
Vg m) T epm) ’
+v bg(?ﬂl, 7\Illuk)dt: (Um07uk)9\111(0)+ (66 7\1111’“6)96”+ (fhuk)gdt:
0 0 0

T T T
—/ (G(m),\II'QQk)gdt—i-/ bg(u(m),H(m),\Ilgé’k)dt—i-n/ (6™, Waby))dt
0 0 0

T T
. v .
+I£/ bg(—gg,9k7\1126< ))dt = (Omo,ek)g\Pg(O) +/ (fg,‘l’g@k)gdt.
0 0
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Following the technique given in [39, 3], as m — oo we obtain
T T T
(3.17) —/ (u, Uv)gdt + / by (u,u, Uyv)dt + 1// ((u, ¥1v))gdt
0 0 0

Ty T T
—l—y/ bg(EVg,u,\I/w)dt = (uo,v)g¥1(0) +/ ({0,\11111)gdt+/ (f1,v)qdt
0 0 0

T T T
(3.18) —/ (0, U5T) dt +/ bg(u, 0, Uor)dt + K}/ ((0,WaT))qdt
0 0

(0]
T~ vg T
. bg(?,f,xpge)dt:(eO,T)g%(O)Jr/ (fa, War) .
(0] 0

The equations (3.17) and (3.18) hold for v and 7 which are finite linear combinations of
the ux and 0y for k = 1,...,m and by continuity (3.17) and (3.18) hold for v € V; and
T € H, respectively. Rewriting (3.17) and (3.18) for Wy(t), ¥2(t) € C§°(0,T) we see that
{u, 0} satisfy (3.1) and (3.2). Furthermore, applying similar techniques given in [39, 1]
it is easy to show that {u, 0} satisfy the initial conditions u(0) = uo and 6(0) = 6o.

For the uniqueness of the weak solutions let (u1,61) and (u2,02) be two weak solutions
with the same initial condition. Let w = u; — u2 and @ = 6; — 2. Then we have

d .
—(w,v)g + bg(u1,u1,v) — bg(uz,uz,v) + v(Vw, Vv) g + v(Cow,v)g = ({,v)4

dt
d, . ~ ~ - ~ Vg 5
(w77—)9+bg(u176177)_bg(u270277—)+“€(vw7v7-)g+“</bg( g ,T,’U)):O.

dt
Taking v = w(t) and 7 = w(t) one obtains,
1d .
§a|w|§ + bg(w, uz, w) + 1/|A!1/2w|§ + v(Cqw,w)g = (W, w)q

l1d,
2 dt
By applying the bounds on the terms b, IN)g it then follows by Cauchy-Schwarz inequality

and Gronwall inequality that w(t) = 0 and @(¢) = 0 for all ¢ > 0 since we have w(0) =0
and w(0) = 0. Thus Theorem 3.2 is proved.

4. Determining modes

In the 1960s the theory of determining modes was introduced by Foias and Prodi [8].
Jones and Titi, presented improved upper bounds on the number of determining Fourier
modes, determining nodes and volume elements for the Navier - Stokes equations in [20].
The dependence of the number of numerically determining modes in the Navier - Stokes
equations on the Grashof number is examined in [32]. In [31] the connection between
continuous data assimilation and the theory of determining modes was made clear. Foias
et.al [5], presented a unified approach based on interpolant operators constructed from
various determining parameters for the Navier-Stokes equations. Boland and Layton[2],
analyze the error in finite element methods in approximating natural convection prob-
lems. They show that the steady state Boussinesq equations have at least one solution
and it is unique for either small data or for restricted Rayleigh and Prandtl numbers.
Also, they give an abstract formulation of a determining modes result which gives more
structure to the uniqueness problem for large Rayleigh and Prandtl values. Quite re-
cently, an algorithm for continuous data assimilation for the two dimensional Bénard
convection problem is introduced and analyzed in [4].

Following [6] we first give a generalization of the classical Gronwall lemma.
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4.1. Lemma. [19] Let o = «(t) and 8 = B(t) be locally integrable real-valued functions
on [0,00) that satisfy the following conditions for some T > 0:

1 [T
(4.1) lim inf — / a(r)dr >0
t—o0 ¢
1 [T
(4.2) lim sup T/ o (T)dT < 00
t— o0 t
1 [T
(4.3) Jim T/ BT (r)dr =0
t

where a” (t) = max{—a(t),0} and BT (t) = max{B(t),0}. Suppose that £ = £(t) is an
absolutely continuous nonnegative function on [0, 00) that satisfies the following inequality
almost everywhere [0, 00):

dg

(4.4) s +af<pB

Then £(t) — 0 as t — oo.
Now with the use of Lemma 4.1 we give a proof for upper bounds for the determining

modes to the system of equations under consideration.
Let (u,0) and (u, 0) satisy

(4.5) u + vAgu + Bg(u,u) + vCou = 0 + f1
(4.6) 0; + kAy0 + By(u,0) — kCyb — KDyO = fo
(4.7) U 4+ vA I+ By(w, 1) + vCyu = €0 + f,
(4.8) 0: + kA,0 + By (1, 0) — kCyf — kD0 = [,

the system of equations (4.5-4.6) and (4.7-4.8) respectively under periodic boundary
conditions and corresponding to two possibly different forcing pairs {f1 = fi(z,t), f; =
fi(z, )} and {fo = fo(z,t), fy = fo(2,t)}. We can expand each solution pair in the form
with the Galerkin projections correspond to the first m modes:

w=">Y (), 6=">_0;(t);()
j=1

Jj=1

m

Phu= Zﬁj tuj(z), Pnb=
=1

-

Il
—

()0 ()

J

where 4; and éj are eigenfunctions of the g-Stokes operator. It is assumed that the
forcing pairs {fi, f;} and {f2, f5} have the same asymptotic behavior for large time,
that is, as ¢ — oo we have

(4.9) [ 15 =Tiltyda >0, [ 1= Fofiydz 0.
Q ) Q )

Then, the first m modes associated with P, and 15m are called determining modes if the
condition

(4.10) / |Pru — Pyalidz — 0, / | P — Prn8idz — 0.
Q Q
imply

(4.11) /Q\u—mf,dx—m, /Q|9—5|§dx—>0
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as t — 0o. By subtraction, we find that

(4.12) wi + vAgw + By(u,u) — By(u,u) + vCyw = £0 + f1 — f,
(4.13) @ + kAg® + By(u,0) — By(w,0) — kCy@ — KDy = fo — [

where w = u — 7 and & = 6 — 6. By using
By(u,u) — By(u,u) = Bg(w,u)~+ By(u,w)
- - _ 1.~ - _ - -
Bg(uae) _Bg(ﬂve) = E[Bg(wvg)+Bg(w76)+Bg(u7‘D)+B9(E7a))]

and taking the inner product of (4.12) and (4.13) with Q,, = I — Py, and Q,, = I — Py,
which are the projections onto the modes higher than m respectively, yields

(Wi, Qrmw)g + V(Agw, Qmw)g + by (w, u, Qmw) + by(T, w, Qmw) + vb (% w, Qmw)

= (6@, Quw)g + (f1 = f1, Qmw)g,
(@0 Gm@)g + $(Ag, Q@) + 5 59 (0,0, Q@) +B,(,0, Q) + By 1,3, Gm?)

+by (T, &, Q)] + 559(79, Qs @) = (fo — T Om®)g-

Therefore,

(4.14) Qo2 + Q2 by (0,1, Q) by (71,5, Q)
0L 0, Qo) = (63, Quus)y + (1 = Fry Q)

(4.15) ©1Qm 2 + K OmBIE + 5 alw,0, Q) + by (,, Gmd)

2 dt
by (11, 0, Q@) + by (1, &, Q)] + nég%, G5, 3) = (fo — For Om®)y.

By using the estimate (2.7), Cauchy - Schwarz inequality and Young’s inequality we give
some bounds on the terms which occur in the equations (4.14) and (4.15).

bg(w7 U, QmUJ) = bg (mev u, Qmw) + bg(Qmwv u, Qmw)
5¢3
< alPuwly? | Pnellg? |ullg|Qmwly | Qmwlls™ + S |Qmelgllulg
2
+ 2ol @mol
Vg 5021/

by (=7, Qmed) < x|V gloel| Py |Qmecla + =5 199 50| Qmecly + 15 1Qmecl

1- ~ . c ~ 2
300(@,0,Quid) < TPl | Prsoll3 21015216151 Qmidlly + 5| Qmevlg [ Queo |
1 ~ ~
+ S l6151Qma] [ Qmallg
C1 -
< S Pmwly Pl 61516115 | @mllg
502 2 A2
+ o |Qmul; + Onczmwug mmneu 1Qmal; + *HQmeg
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Similarly we obtain bounds for the rest of the terms in the equations (4.14) and (4.15)
then taking these estimates into account and using the inequalities

A1 Qmewly < 1Qmwllg, Am+1|Qmaly < [Qmdllg
we obtain a relation for ¢(t) = |Qmw|? + |Qm®|? of the form

L) +at)e(t) < Bt)

dt
with
a(t) = min{an (t), a2 (t)}

B(t) = 2¢| Pnwly? | Prwly 2 ullg|@mwly | Q]
+ | Py | Pl 510111 Q] 2 | QoI
+ | Py | Pl 5 10]1 | Q] 2 | QoI
+ 2cfal* [[@llg*| Pmwl g | Pmwll 5 | QoI
+ cluly 2 ully? | Pl 2 | Pl * | @mll o

—11/21=nl/21 ~11/2n o ~1nl/21 A ~
+ claly 2 ally | Pmily | Pm g 2 |Qmll g
2v 2K =~ . ~
+ 7|v9|oo||PmW||g|Qmw|g + 7|V9‘00||Qmw||g|PmW|g
mo mo

+ 20 oo Prnlg| Qmwlg + 2011 = Fillvy 1Qmewlly + 21 f2 = Fallw; |@mllg

where
a1 (t) = VAmi1 — —5CQ\|W|\2+—5V Vg2 N
! mtt v 9 mi Glloo T 75
3 4 114 5M0 2 3K 2
@x(t) = Anss = | o 015 + I012) + o el + 251741

Since the solutions u, %, and 6 are bounded uniformly for ¢+ bounded away from
zero in Hy,V, and W, respectively and by assumptions (4.9) and (4.10) it follows that
B(t) — 0 ast — co. One can deduce the following inequality from (3.9) and (3.10) for
sufficiently large T":

(i > 2MF €)% 2 8 2
f/t HU(T)Hng < l/’2/<;’27'r4m3 Hf2||L°°(t,t+T;L2(Q,g)) + ﬁ”flnlzoo(t,ﬁ-T;Hg)
1 [T 4
f/ ||9(7')||3d7' < W||f2||ioc(t,t+T;L2(Q,g))'
t

Then we see that

. 1 o 5¢ 2M3|5|§o 2 8 2
hﬁi‘gp T/t ay (T)dr = - m||f2”m°(t,t+nw(ﬂ,g)) + ﬁ||f1”L°°(t,t+T;Hg)

et

— VAm41 < 0
2v

5v
+—|Vgl% +
my

. 1 t+T B 3 4 —
lim sup */ a; (T)dr = Arrlt [||f2||L°°(t,t+T;L2(Q,g)) + ||f2HL°°(t,t+T;L2(Q,g))]
t

t—o0
5M 3K
2 2 |£|io+ 2|vg‘iofﬁ)\m+1 < 00
4m2vmo mg
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and the condition (4.2) of Gronwall lemma is satisfied. Finally, we see that

T Y s 5Y% 2 5ct
llgloigf?l Oél(T)dT > l/Am+ - m—3|Vg\oo - E

5¢% [ 2MG|€|2% 2 8 2
- [ 2 | f2l 500 1,047 22(02,9)) + ﬁ”fl“mo(z,HT;Hg)

v | V2K2rim?
1 [T 5Mo .2 3k 2
lim inf — az(T)dT > KAmy1 — ———|€lae — —=1V9|5
mint 7 [ aa(m)dr 2 s = 0l =

3 4 - 14
P [”f?HLOO(t,tJrT;LQ(Q,g)) + ||f2HL°°(t,t+T;L2(Q,g))]

and if m is sufficiently large that the inequalities

5¢° 2M§|f|§c 2 3 2 5 2 5¢!

Am41 > T [mHfQHLOQ(t,tJrT;Lz(Q,g)) + ﬁ”leLoo(t,HT;Hg) - mi(g)‘v.ﬂoo ~ 9.2
3 4 < 4 5Mo¢[2 3 2
Amt1 > Yo 2l oo (b tamir2,g)) + 1 F2llLoo (b tmir2(.9))] — e —— m*g|Vg|oo

are satisfied then we can apply Gronwall lemma to deduce that
C(t) = |Qmw|* + |Qm®|* goes to zero as t goes to infinity.
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