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Abstract: The distributions from proportional reversed hazard rate models have been extensively studied
in literature because of their wide applicability in the modelling and analysis of lifetime data. Moreover,
record values and their properties have also been examined by many authors. In this study, we consider the
distributions from the two-parameter proportional reversed hazard rate models. The maximum likelihood
and Bayes estimates are obtained for the unknown parameters based on upper record values with the number
of trials following the record values (inter-record times). These estimates are compared in terms of the
estimated risk by the Monte Carlo simulations for the generalized Rayleigh (Burr Type X) distribution.
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1. Introduction
Let X1,X2, ... be a sequence of independent and identically distributed (iid) random variables

with cumulative distribution function (cdf) F (x;θ) and probability density function (pdf) f(x;θ).
The observation Xj is an upper record value of {Xm, m≥ 1} if it is greater than all the preceding
observations in other words, if we define Ym = max(X1, ...,Xm), m≥ 1 then, Xj is an upper record
value if Yj >Yj−1, j > 1. The record times are the indices at which upper record values occur. The
record time sequence for upper record values {U(m), m≥ 1} is defined in the following manner:
U(1) = 1 with probability 1 and mth record time, for m> 1

U(m) = min
{
j : j > U(m− 1), Xj >XU(m−1)

}
.

Then, the sequence
{
XU(m), m≥ 1

}
and {U(m), m≥ 1} represent an upper record values and

corresponding record times, respectively. By definition, X1 is an upper record value. An analogous
definition can be provided for the lower record values. Inter-record times Ki is defined by Ki =
U(i+ 1)−U(i), i= 1,2, .... In another words, Ki is the number of trials following the observation
of XU(i) that are needed to obtain a new record value, say XU(i+1). It corresponds roughly to the
number of non-record observations between record values.

Record values and the associated statistics are of interest in many real life problems involving
weather, sports, economics, life-tests and so on. In recent years there has been a growing interest in
the study of inference problems associated with record values. For example, the Bayesian estimation
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for the two parameters of some life distributions, including exponential, Weibull, Pareto and Burr

Type XII, based on upper record values were considered by Ahmadi and Doostparast [1]. The

different point estimates and prediction of future record values for the unknown parameters of

exponentiated family of distributions based on lower record values were derived by Asgharzadeh

and Fallah [2]. The Bayesian and non-Bayesian estimations of the parameters as well as survival

and hazard functions for a class of an exponential family based on upper record values presented by

Wang and Shi [3]. When the underlying distribution is generalized exponential distribution, non-

Bayesian and Bayesian point estimates as well as confidence intervals for the unknown parameters

based on upper record values with their inter-record times were constructed by Kızılaslan and

Nadar [4]. For more detailed references about the record values see Arnold et al. [5].
Let the continuous random variable X have the cdf in the form of F (x;θ) = [F0(x)]

θ
where

F0(x) is the baseline cdf which is independent of the shape parameter θ and θ > 0. This family of

distributions is well known in the literature as proportional reversed hazard rate (PRHR) model

and is equivalent to say that rF (x;θ) = θrF0(x;θ) where rF is the corresponding reversed hazard

rate function of the cdf F with the pdf f which is defined as

rF (x;θ) =
d

dx
lnF (x;θ) =

f(x;θ)

F (x;θ)
.

In the literature, this family of distributions is also defined as F θ distribution. When θ is a

positive integer, F θ is also defined as Lehmann alternatives, see Lehmann [6]. Many researchers

and authors have developed various classes of F θ distributions. Some distributional properties of

order statistics and record values from F θ distributions were reviewed by Shakil and Ahsanullah [7].

The PRHR models consist of several well known distributions such as Burr Type III, generalized

Rayleigh (Burr Type X), Type I generalized logistic distribution, Fréchet, exponentiated Weibull,

generalized exponential, power function and so on.

The cdf and pdf of the two-parameter PRHR model is

FX(x;θ,σ) = [F0(x/σ)]
θ
, x∈B, θ > 0, σ > 0, (1.1)

fX(x;θ,σ) =
θ

σ
f0(x/σ) [F0(x/σ)]

θ−1
, x∈B, θ > 0, σ > 0, (1.2)

where F0(.) and f0(.) are a baseline cdf and pdf, B is the support of the continuous random

variable X, which is independent of the parameter θ, θ and σ are the shape and scale parameters,

respectively (see Asgharzadeh and Fallah [2]). The point estimates of θ and σ for the two-parameter

PRHR model based on lower records under the classical and Bayesian frameworks were obtained

by Asgharzadeh and Fallah [2], but the inter-record times was not taken into consideration. They

also derived the prediction of the future record values from Bayesian view point and a Monte

Carlo simulation is performed for the generalized exponential distribution. In this study, the point

estimates of θ and σ for the two-parameter PRHR model are obtained based on the upper record

values and their corresponding inter-record times under the classical and Bayesian frameworks. A

Monte Carlo simulation is performed for the generalized Rayleigh distribution.

The paper is organized as follows. In Section 2, we derive maximum likelihood estimation (MLE)

of the parameters under the inverse sampling scheme. In Section 3, we obtain the Bayes estimates

for the parameters under the symmetric and asymmetric loss functions. In Section 4, a computer

simulation study is performed to compare the different estimators for the generalized Rayleigh

distribution and the results are reported. Finally, we conclude the paper in Section 5.
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2. Non-Bayesian analysis
Under the inverse sampling scheme units are taken sequentially and the sampling is terminated

when the mth maximum observation is obtained. In this case, the total number of units sampled
is a random number, and Km is defined to be one for convenience.

In this section, we consider the parameter estimation for the two-parameter PRHR model distri-
butions based on upper record values with their corresponding inter-record times under the inverse
sampling scheme.

Let X1,X2, ... be iid random variables each drawn from a population with cdf F (.) and pdf f(.).
Then the likelihood function associated with the sequence (R1,K1,R2,K2, ...,Rm,Km) is given in
Hofmann and Nagaraja [8] as

L(r,k) =
m∏
i=1

f(ri){F (ri)}ki−1 I(ri−1,∞)(ri), (2.1)

where r0 ≡−∞, km ≡ 1 and IA(x) is the indicator function of the set A.
We assume that the sequence (R1,K1,R2,K2, ...,Rm,Km) is arising from the two-parameter

PRHR model with parameters θ and σ. Then, from the Equations (1.1)-(2.1), we have

L(θ,σ;r,k) =
θm

σm
exp

{
m∑
i=1

lnf0(ri/σ) +

m∑
i=1

(θki− 1) lnF0(ri/σ)

}
, r1 < ... < rm. (2.2)

Then, the MLEs of θ and σ are given by

θ̂=
m∑m

i=1 ki lnF0(ri/σ̂)
, (2.3)

and σ̂ is the solution of the following nonlinear equation

− m
σ̂
− 1

σ̂2

m∑
i=1

rif
′
0(ri/σ̂)

f0(ri/σ̂)
+

m

σ̂2
∑m

i=1 ki lnF0(ri/σ̂)

m∑
i=1

kirif0(ri/σ̂)

F0(ri/σ̂)
+

1

σ̂2

m∑
i=1

rif0(ri/σ̂)

F0(ri/σ̂)
= 0. (2.4)

For a special case, when the F0(x) = 1− e−x2 , x > 0, X has the generalized Rayleigh (Burr Type
X) distribution. Therefore, the MLE of θ is

θ̂=
m∑m

i=1 ki ln
(
1− e−(ri/σ̂)2

) , (2.5)

and the MLE of σ, σ̂ is the solution of

− m
σ̂

+
1

σ̂3

m∑
i=1

r2i +
m

σ̂3
∑m

i=1 ki ln
(
1− e−(ri/σ̂)2

) m∑
i=1

kir
2
i e
−(ri/σ̂)2

1− e−(ri/σ̂)2
+

1

σ̂3

m∑
i=1

r2i e
−(ri/σ̂)2

1− e−(ri/σ̂)2
= 0. (2.6)

It is clear that the nonlinear equation (2.6) can be solved by using numerical methods such as fixed
point iteration, Newton-Raphson.

3. Bayesian analysis
Bayesian approach has a number of advantages over the conventional frequentist approach. Bayes

theorem is the only consistent way to modify our beliefs about the parameters given the data
that actually occurred. In this section, we consider the Bayes estimates of the parameters for
two-parameter PRHR model distributions based on upper record values with their corresponding
inter-record times under different loss functions.
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In the Bayesian inference, the most commonly used loss function is the squared error loss (SEL),
L(θ∗, θ) = (θ∗− θ)2, where θ∗ is an estimate of θ. This loss function is symmetrical and gives equal
weight to overestimation as well as underestimation. It is well known that the use of symmetric loss
functions may be inappropriate in many circumstances, particularly when positive and negative
errors have different consequences. One of the most popular asymmetric loss function is the linear-
exponential (LINEX) loss, L(θ∗, θ) = ev(θ

∗−θ)−v(θ∗−θ)−1, v 6= 0, which was introduced by Varian
[9]. The sign and magnitude of v represents the direction and degree of asymmetry, respectively.
For v close to zero, the LINEX loss is approximately the SEL and therefore almost symmetric.

To use a general joint prior for θ and σ causes some computational complexities for the Bayes
estimates of the parameters based on the records with their corresponding inter-record times from
the PRHR models, when the parameters θ and σ are assumed to be unknown. To overcome the
computational obstacle, we use Soland’s method (see Soland [10]) in which he considered a family
of joint prior distributions that places continuous distributions on the scale parameter and discrete
distributions on the shape parameter.

In our case, for the scale parameter σ it is assumed that, as in Asgharzadeh and Fallah [2],
the parameter σ is restricted to a finite number of values σ1, ..., σk with the probabilities η1, ..., ηk,
respectively, where 0 ≤ ηj ≤ 1 and

∑k

j=1 ηj = 1, i.e. π(σj) = P (σ = σj) = ηj, j = 1, ..., k. Further,
suppose that conditional upon σ = σj, θ has a natural conjugate prior with distribution having
gamma (aj, bj) with density

π(θ|σj) =
b
aj
j θ

aj−1e−θbj

Γ(aj)
, aj, bj > 0. (3.1)

Combining the likelihood function in Equation (2.2) and the prior density function Equation (3.1),
we obtain the conditional posterior distribution of θ is given by

π∗(θ|σj;r,k) =
L(θ,σj;r,k)π(θ|σj)∫∞

0
L(θ,σj;r,k)π(θ|σj)dθ

=
B
Aj
j θAj−1e−θBj

Γ(Aj)
, (3.2)

where Aj = m + aj and Bj = bj −
∑m

i=1 ki lnF0(ri/σj), j = 1, ..., k. The joint posterior density
function of θ and σj is given by

π∗(θ,σj|r,k) =
L(θ,σj;r,k)π(θ|σj)π(σj)∑k

j=1

∫∞
0
L(θ,σj;r,k)π(θ|σj)π(σj)dθ

=
b
aj
j ujηjθ

Aj−1e−θBj

AΓ(aj)σmj
(3.3)

where uj =
∏m

i=1(f0(ri/σj)/F0(ri/σj)) and A is a normalized constant,

A=
k∑
j=1

(
b
aj
j ujηjΓ(Aj)/σ

m
j B

Aj
j Γ(aj)

)
.

Furthermore, the marginal posterior density function of σj is

Pj = P (σ= σj|r,k) =

∫ ∞
0

π∗(θ,σj|r,k)dθ=
b
aj
j ujηjΓ(Aj)

σmj B
Aj
j Γ(aj)A

, j = 1, ..., k. (3.4)

Then, the Bayes estimates of the parameters θ and σ under the SE loss function, say θ̂BS and σ̂BS,
are given by

θ̂BS =

∫ ∞
0

k∑
j=1

θPjπ
∗(θ|σj;r,k)dθ=

k∑
j=1

PjAj
Bj

, (3.5)
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and

σ̂BS =

∫ ∞
0

k∑
j=1

σjPjπ
∗(θ|σj;r,k)dθ=

k∑
j=1

σjPj. (3.6)

The Bayes estimates of the parameters θ and σ under the LINEX loss function, say θ̂BL and σ̂BL,
are given by

θ̂BL =−1

v
ln

[∫ ∞
0

k∑
j=1

e−vθPjπ
∗(θ|σj;r,k)dθ

]
=−1

v
ln

[
k∑
j=1

Pj

(
1 +

v

Bj

)−Aj]
, (3.7)

and

σ̂BL =−1

v
ln

[∫ ∞
0

k∑
j=1

e−vσjPjπ
∗(θ|σj;r,k)dθ

]
=−1

v
ln

[
k∑
j=1

Pje
−vσj

]
. (3.8)

To implement the calculations, it is first necessary to draw the values of (σj, ηj) and the hyper-
parameters (aj, bj) in the conjugate prior for j = 1, ..., k. The former pairs of values are fairly
straightforward to specify, but for (aj, bj) it is necessary to condition prior beliefs about θ on
each σj in turn, and this can be difficult in practice. One of the useful methods to estimate the
hyperparameters (aj, bj), j = 1, ..., k is the moment approach.

Let Ti =− lnF0(ri/σ) are the record values from exponential distribution with conditional density
fT (t;θ) = θe−θt, t > 0. Furthermore, for a given σj the marginal density function and cdf are given
by

fT (t) =

∫ ∞
0

π∗(θ|σj;r,k)fT (t;θ)dθ=
b
aj
j aj

(bj + t)aj+1
, t > 0,

and

FT (t) = 1−
b
aj
j

(bj + t)aj
, t > 0.

It can be easily obtained that E(T ) = bj/(aj − 1) and E(T 2) = 2b2j/(aj − 1)(aj − 2). Therefore, the
moment estimates of aj and bj, j = 1, ..., k are given by

aj =

(
T1

2T
2 − 1

)−1
+ 2, bj = (aj − 1)T , (3.9)

where T =−
∑m

i=1 (lnF0(ri/σj))/m and T1 =
∑m

i=1 (− lnF0(ri/σj))
2
/m.

For the generalized Rayleigh distribution, the Bayes estimates given in this section are obtained
by using F0(x) = 1− e−x2 , x > 0.

4. Simulation study
In this section, we present some numerical results to compare the performance of the different

methods for different sample sizes and different priors. The performance of the point estimators are
compared by using the estimated risks (ERs). The estimated risk (ER) of θ, when θ is estimated by
θ̂, under the SEL function is given by ER(θ) =

∑N

i=1(θ̂i−θi)/N and under the LINEX loss function

is given by ER(θ) =
∑N

i=1

(
ev(θ̂i−θi)− v(θ̂i− θi)− 1

)
/N , where N is the number of replication. All

of the computations are performed by using Matlab R2010a. All the results are based on 1000
replications.

In Table 1, the ML and Bayes estimates under the SE and the LINEX loss functions with their
corresponding ERs for the generalized Rayleigh distribution are listed when θ = 2 and σ = 3.5.
We assume that σj, j = 1, ...,10 takes the values: 3(0.1)3.9 with equal probability for σ= 3.5. It is
observed that as the sample size increases the estimated risk of the estimators generally decrease.
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The performance of the Bayes estimates under the SEL function is better than MLEs. Since the
performance of the Bayes estimates under the LINEX loss function depend on the asymmetry
parameter v, some of these estimates is better than that of other estimates.

In Table 2, to see the effect of the inter-record times in ML estimates, the ML estimates of
θ and σ with their corresponding ERs for the generalized Rayleigh distribution are listed when
(θ,σ) = (2,5) and (6,3). For the comparison purpose, we will generate the lower and the upper
record values by using the following procedure.

Step 1. Firstly, we generate a random sample from the generalized Rayleigh distribution with
sample size n.

Step 2. The lower record values and the upper record values with their corresponding inter-record
times are saved. Notice that the sample sizes of the lower and the upper record values can be
different.

Step 3. The ML estimates of θ and σ are computed based on lower record values.
Step 4. The ML estimates of θ and σ are computed based on upper record values and their

corresponding inter-record times.
Step 5. Repeat Steps 1-4, 2000 times and obtain the samples (θi, σi), i= 1, ...,N .
Since the data is generated from the generalized Rayleigh distribution with fixed parameters,

estimations should be obtained by using either lower or upper record values and these estimates
should be close to each other.

Then, the average estimates with their corresponding ERs are computed and listed in Table
2. It is observed that as the sample size increases the estimated risk of the estimators decrease.
The performance of the ML estimates based on the upper record values with their corresponding
inter-record times is better than the one based on only lower record values.

5. Conclusion
It was observed that using the record values with the corresponding inter-record times reduces

the estimated risk of the point estimates and the point predictors for the distributions considered
in Kızılaslan and Nadar [4] and Nadar and Kızılaslan [11].

Asgharzadeh and Fallah [2] considered estimations based on only lower record values for the
two-parameter proportional reversed hazard rate model distributions. However, if we want to use
both lower record value and their corresponding inter-record times, the structure of the likelihood
function yields a non-linear system of equations for the MLE of the parameters and the Bayesian
estimates have difficulties. On the other hand, if we use the upper record values and their corre-
sponding inter-record times, which is considered in this paper, then one of the MLE have a closed
form and other is a solution of a non-linear equation. It should be underlined that the structure of
the ML estimates for our case has much simpler than those obtained by using lower record values
and their corresponding inter record times. Moreover, the Bayesian estimates of the parameters
can be obtained easily than that of other case. Therefore, we suggest either to use the upper record
values with their inter-record times or lower record values without considering their inter-record
times for the proportional reversed hazard rate family distributions.

In the simulation part of this study, the different estimations for the shape and scale parameters
for the two-parameter proportional reversed hazard rate model distributions based on upper record
values with their corresponding inter-record times are obtained. Moreover, to see the effect of the
inter-record times, the ML estimates are also obtained based on only lower record values. These
estimates are compared by using estimated risks for the generalized Rayleigh distribution.

The simulation illustrates that the Bayesian estimates under the symmetric and asymmetric
loss (for v = −1,1) functions are preferable than others. Moreover, it is observed that using the
inter-record times in the MLE case decrease the estimated risk.
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Table 1. Estimates for θ and σ by using conjugate and discrete priors when the true values of θ = 2 and σ = 3.5.
The first and second rows represent the average estimates and the estimated risks, respectively.

Bayes Estimates
LINEX

MLE SEL v=−2 v=−1 v= 1 v= 2
m= 6

θ 2.8314 2.5768 6.7432 3.3904 2.1693 1.9036
69.1065 1.8188 8.7686 0.9493 1.2760 5.0158

σ 3.4859 3.3904 3.4408 3.4156 3.3656 3.3417
0.3118 0.0452 0.0952 0.0230 0.0224 0.0894

m= 8
θ 2.2861 2.6611 7.8222 3.6296 2.2037 1.9268

52.8758 1.7564 10.8369 1.0933 1.1237 5.0051
σ 3.5376 3.4071 3.4489 3.4280 3.3868 3.3670

0.1485 0.0409 0.0832 0.0206 0.0203 0.0810
m= 10

θ 1.9798 2.6898 8.9651 3.8111 2.2005 1.9155
42.5549 1.6600 13.0888 1.2347 1.7819 5.8867

σ 3.5443 3.4230 3.4564 3.4396 3.4068 3.3910
0.0776 0.0363 0.0741 0.0184 0.0180 0.0710

m= 12
θ 1.7534 2.5882 9.2086 3.6931 2.1241 1.8557

1.7658 1.3405 13.6102 1.1604 0.4546 1.2639
σ 3.5557 3.4503 3.4776 3.4638 3.4369 3.4238

0.0518 0.0290 0.0597 0.0147 0.0143 0.0561

Table 2. ML estimates of θ and σ for both cases based on only lower record values and upper record values with their
inter-record times. The first and second rows represent the average estimates and the estimated risks, respectively.

Based on only Based on upper Based on only Based on upper
lower records records and inter- lower records records and inter-

record times record times
MLE MLE MLE MLE

n= 1000
θ= 2 9.9 1012 1.9122 θ= 6 3.46 1011 8.2471

8.27 1028 17.0264 2.40 1026 369.4632
σ= 5 3.5836 5.1213 σ= 3 2.8148 3.0772

4.5218 0.5410 0.6871 0.1684
n= 5000

θ= 2 3.1924 1.9408 θ= 6 8.7099 5.1805
891.4567 8.1063 341.1306 99.0856

σ= 5 4.4878 5.0835 σ= 3 2.8346 3.0608
3.3562 0.2466 0.6313 0.0904

n= 10000
θ= 2 2.3113 1.7880 θ= 6 7.9900 5.7098

3.0018 2.7874 263.6595 26.2353
σ= 5 4.5651 5.0941 σ= 3 2.8905 3.0376

3.3246 0.1816 0.5967 0.0592
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62 İSTATİSTİK: Journal of the Turkish Statistical Association 7(2), pp. 55–62, c© 2014 İstatistik
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