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Abstract

In this paper, using the power series method we obtain an abstract
Korovkin type approximation theorem for a sequence of positive linear
operators de�ned on modular spaces.
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1. Introduction

The classical Korovkin theorem states the uniform convergence in C[a, b], the space
of all continuous real valued functions de�ned on [a, b] of a sequence of positive linear
operators by proving the convergence only on three test functions {1, x, x2}. This result
lets us to say the convergence with minimum calculations. In fact the key moment
of Korovkin's theorem is the proof of Weierstrass's theorem given by Bernstein with
the use of Bernstein polynomials [11]. There are also trigonometric versions of this
theorem with the test functions {1, cosx, sinx} and abstract Korovkin type results have
also been studied [14, 18]. Later on Korovkin type theorems have been extended in various
directions with di�erent aims such as �nding other subsets satisfying the same property
{1, x, x2}, establishing the same results in other function spaces, abstract Banach spaces
[1, 2, 3]. Recently some versions of Korovkin type theorems have been proved in modular
spaces which include as particular cases Lp, Orlicz and Musielak-Orlicz spaces [9, 21].
Also more general convergences, for example convergences generated by summability
methods, statistical, �lter convergence, have also been used for the sequence of operators
in order to correct the lack of convergence since it is well known that they provide a
nonconvergent sequence to converge [6, 10, 12, 15, 16, 17, 22, 23].

In this paper, we give abstract Korovkin theorem in modular spaces in the sense of
power series method which includes both Abel and Borel methods. We also give an
example which satis�es our theorems.
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2. Notation and de�nitions

Let us begin with recalling some basic de�nitions and notation used in the paper.
Let (pj) be real sequence with p0 > 0 and p1, p2, p3, ... ≥ 0, and such that the corre-

sponding power series p(t) :=
∞∑
j=0

pjt
j has radius of convergence R with 0 < R ≤ ∞. If,

for all t ∈ (0, R),

lim
t→R−

1

p(t)

∞∑
j=0

xjpjt
j = L

then we say that x = (xj) is convergent in the sense of power series method [19, 24].
Note that the power series method is regular if and only if

lim
t→R−

pjt
j

p(t)
= 0, for each j ∈ N

holds [13]. Throughout the paper we assume that power series method is regular.
Let G be a locally compact Hausdor� topological space, endowed with a uniform

structure U ⊂ 2G×G which generates the topology of G, see [20]. Let B be the σ-algebra
of all Borel subsets of G, and µ : B→ R be a positive σ-�nite regular measure. We denote
by L0(G) the space of all real-valued µ-measurable functions on G with identi�cation up
to sets of measure µ zero, by Cb(G) the space of all continuous real valued and bounded
functions on G, and by Cc(G) the subspace of Cb(G) of all functions with compact
support on G. A functional % : L0(G)→ [0,∞] is a modular on L0(G) provided that the
following conditions hold:
(i) %[f ] = 0 if and only if f = 0 µ-a.e on G,
(ii) %[−f ] = %[f ] for every f ∈ L0(G),
(iii) %[αf + βg] ≤ %[f ] + %[g] for every f, g ∈ L0(G) and for any α, β ≥ 0 with α+ β = 1.

A modular % is said to be Q-quasi convex if there exists a constant Q ≥ 1 such that
the inequality

%[αf + βg] ≤ Qα%[Qf ] +Qβ%[Qg]

holds for every f, g ∈ L0(G), α, β ≥ 0 with α + β = 1. In particular if Q = 1, then % is
called convex.

A modular % is said to be Q-quasi semiconvex if there exists a constant Q ≥ 1 such
that the inequality

%[af ] ≤ Qa%[Qf ]

holds for every f ∈ L0(G), f ≥ 0 and a ∈ (0, 1]. It is clear that every Q-quasi convex
modular is Q-quasi semiconvex. A modular % is said to be monotone if %[f ] ≤ %[g] for all
f, g ∈ L0(G) with |f | ≤ |g|.

We now consider some subspaces of L0(G) by means of a modular % as follows

L%(G) := {f ∈ L0(G) : lim
λ→0+

%[λf ] = 0}

and

E%(G) := {f ∈ L%(G) : %[λf ] <∞ for all λ > 0}
are called the modular space generated by % and the space of the �nite elements of L%(G),
respectively. Observe that if % is Q-quasi semiconvex then the space

{f ∈ L0(G) : %[λf ] <∞ for some λ > 0}

coincides with L%(G). The notions about modulars have been introduced and widely
discussed in [4, 5, 7, 8, 9].
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Now we de�ne the convergences in the sense of power series method in modular spaces.
Let {fj} be a function sequence whose terms belong to L%(G). Then, {fj} is modularly
convergent to a function f ∈ L%(G) in the sense of power series method if and only if

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ0(fj − f)] = 0 for some λ0 > 0.

Also, {fj} is strongly convergent to a function f ∈ L%(G) in the sense of power series
method if and only if

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(fj − f)] = 0 for every λ > 0.

Recall that {fj} is modularly convergent to a function f ∈ L%(G) if and only if

lim
j→∞

%[λ0(fj − f)] = 0 for some λ0 > 0,

also {fj} is strongly convergent to a function f ∈ L%(G) if and only if

lim
j→∞

%[λ(fj − f)] = 0 for every λ > 0.

If there exists a constant M > 0 such that

%[2u] ≤M%[u]

holds for all u ≥ 0 then it is said to be that % satis�es the ∆2-condition.
Now we can give the following:

2.1. Theorem. Let L%(G) be a modular space. ∆2-condition is su�cient in order that
strong convergence in the sense of power series method and modular convergence in the
sense of power series method be equivalent in L%(G).

Proof. Obviously, strong convergence in the sense of power series method of {fj} to f is

equivalent to the condition lim
t→R−

1
p(t)

∞∑
j=0

pjt
j%[2Nλ(fj − f)] = 0, for some λ > 0 and all

N = 1, 2, .... Let {fj} be modularly convergent to f in the sense of power series method.

Then there exists a λ > 0 such that lim
t→R−

1
p(t)

∞∑
j=0

pjt
j%[λ(fj − f)] = 0. ∆2-condition

implies by induction that %[2Nλ(fj − f)] ≤MN%[λ(fj − f)]. Therefore we get

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[2Nλ(fj − f)] = 0.

This completes the proof. �

A modular % is said to be �nite if χA, the characteristic function associated with A,
belongs to L%(G) whenever A ∈ B with µ(A) < ∞. A modular % is said to be strongly
�nite if χA belongs to E%(G) for all A ∈ B with µ(A) < ∞ and a modular % is said
to be absolutely continuous if there is a positive constant a with the property: for all
f ∈ L0(G) with %[f ] <∞,

• for each ε > 0 there exists a set A ∈ B with µ(A) <∞ and %[afχG\A] ≤ ε,
• for every ε > 0 there is a δ > 0 with %[afχB ] for every B ∈ B with µ(B) < δ.

Recall that if a modular % is monotone and �nite, then we have C(G) ⊂ L%(G) [7]. In a
similar manner, if % is monotone and strongly �nite, then C(G) ⊂ E%(G).
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3. Modular Korovkin theorem by power series method

Let % be monotone and �nite modular on L0(G). Assume that D is a set satisfying
Cb(G) ⊂ D ⊂ L0(G). Assume further that T := {Tj} is a sequence of positive linear
operators from D into L0(G) for which there exists a subset XT ⊂ D

⋂
L%(G) with

Cb(G) ⊂ XT such that the inequality

(3.1) lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjh)] ≤ P%(λh)

holds for every h ∈ XT , λ > 0 and for an absolute positive constant P . Then it is said
that % satis�es the property modi�ed (%)− (∗).

Set e0(t) ≡ 1 for all t ∈ G, let ei, i = 1, 2, 3, ...,m, and ai, i = 0, 1, 2, 3, ...,m, be
functions in Cb(G). Put

Ps(t) =
m∑
i=0

ai(s)ei(t), s, t ∈ G,(3.2)

and suppose that Ps(t), s, t ∈ G satis�es the following properties:

• (P1) Ps(s) = 0, for all s ∈ G,
• (P2) for every neighbourhood U ∈ U there is a positive real number η
with Ps(t) ≥ η whenever s, t ∈ G, (s, t) /∈ U.

Some examples of Ps for which (P1) and (P2) are satis�ed have been given in [6].
To give our main theorem, we �rst give the following result.

3.1. Theorem. Let % be a strongly �nite, monotone and Q-quasi semiconvex modular.
Assume that ei and ai, i = 0, 1, ...,m satisfy properties (P1) and (P2). Let Tj, j ∈ N, be
a sequence of positive linear operators satisfying property modi�ed (%)− (∗). If

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0,

for some λ > 0 and i = 0, 1, ...,m, then for every f ∈ Cc(G)

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0,

for some γ > 0. Moreover if

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0,

for every λ > 0 and i = 0, 1, ...,m, then for every f ∈ Cc(G)

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjf − f)] = 0

for every λ > 0.

Proof. Let f ∈ Cc(G). Thenf is uniformly continuous and bounded on G since G is
endowed with U uniformity. Let ε > 0. Without losing anything from generality we can
choose 0 < ε ≤ 1. From the uniform continuity of f , there exists a set U ∈ U such that

|f(s)− f(t)| ≤ ε, s, t ∈ G, (s, t) ∈ U.
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For every s, t ∈ G let Ps(t) be as in (3.2) and let η > 0 satisfy condition (P2). If
M = sup

t∈G
|f(t)|, for s, t ∈ G, (s, t) /∈ U we have

|f(s)− f(t)| ≤ 2M ≤ 2M

η
Ps(t).

For every s, t ∈ G, we obtain

|f(s)− f(t)| ≤ 2M ≤ ε+
2M

η
Ps(t).

Therefore for every s, t ∈ G, we get

(3.3) −ε− 2M

η
Ps(t) ≤ f(s)− f(t) ≤ ε+

2M

η
Ps(t).

Since Tj is a linear positive operator, using (3.3) for each j ∈ N and every s ∈ G we have

−ε(Tje0)(s)− 2M

η
(TjPs)(s) ≤ f(s)(Tje0)(s)− (Tjf)(s)

≤ ε(Tje0)(s) +
2M

η
(TjPs)(s)

and hence

(3.4)

|(Tjf)(s)− f(s)| ≤ |(Tjf)(s)− f(s)(Tje0)(s)|+ |f(s)(Tje0)(s)− f(s)|

≤ ε(Tje0)(s) +
2M

η
(TjPs)(s) +M |(Tje0)(s)− e0(s)|.

Let γ > 0. By applying the modular %, from the above inequality, we have

(3.5)
%[γ(Tjf − f)] ≤ %[3γε(Tje0)] + %[3γM(Tje0 − e0)] + %[6γ

M

η
(TjP(.))(.)]

= J1 + J2 + J3, for each j ∈ N.

So to prove the theorem it is su�cient to show that there exists a positive real number γ

such that lim
t→R−

1
p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0. From hypothesis there exists a λ > 0 such

that for each i = 0, 1, ...,m

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0.

For each i = 0, 1, ...,m and s ∈ G, choose N > 0 and γ > 0 such that |ai(s)| ≤ N and
max{3γM, 6γM

η
(m + 1)N} ≤ λ. By considering the property (P1), for each j ∈ N we

get

(3.6)

J3 = %[6γ
M

η
(TjP(.))(.)] = %[6γ

M

η
(TjP(.))(.)− P(.)(.)]

≤
m∑
i=0

%[6γ
M

η
(m+ 1)N(Tjei − ei)]

≤
m∑
i=0

%[λ(Tjei − ei)].

Hence we obtain

lim
t→R−

1

p(t)

∞∑
j=0

pjt
jJ3 = 0.
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Moreover from choosing λ and γ, it is clear that lim
t→R−

1
p(t)

∞∑
j=0

pjt
jJ2 = 0. Since % is

Q-quasi semiconvex and 0 < ε ≤ 1, we have

(3.7) %[3γεe0] ≤ Qε%[3γQe0].

If the property modi�ed (%)− (∗) is considered in (3.5), (3.7), we get

(3.8)
0 ≤ lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] ≤ lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
j%[3γε(Tje0)]

≤ P%[3γεe0] ≤ PQε%[3γQe0]

by applying the limit superior. Since ε is arbitrary positive real number and % is strongly
�nite from (3.8) we have

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0,

and hence {Tjf} is modularly convergent to f in the sense of power series method in
L%(G) by using the properties of limit in the sense of power series method and limit
superior. The second part can be proved similarly to the �rst one. �

Now we can give our main theorem.

3.2. Theorem. Let % be a strongly �nite, monotone, absolutely continuous and Q-quasi
semiconvex modular on L0(G). Let Tj, j ∈ N, be a sequence of positive linear operators
satisfying property modi�ed (%)− (∗). If

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjei − ei)] = 0

for every λ > 0 and i = 0, 1, ...,m, then for every f ∈ L%(G) ∩D with f − Cb(G) ⊂ XT ,

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[γ(Tjf − f)] = 0,

for some γ > 0 where XT and D are as before.

Proof. Let f ∈ L%(G) ∩D such that f −Cb(G) ⊂ XT . From Proposition 3.2 of [6] there
exist a λ > 0 and a sequence {fm} in Cc(G) such that %[3λf ] <∞ and lim

m
%[3λ(fm−f)] =

0. Take arbitrary �xed ε > 0 and choose a positive integer m such that

(3.9) %[3λ(fm − f)] ≤ ε.

For each j ∈ N, we have

(3.10) %[λ(Tjf − f)] ≤ %[3λ(Tjf − Tjfm)] + %[3λ(Tjfm − Tjfm)] + %[3λ(fm − f)].

Using the similar technique in the previous theorem, we obtain

0 = lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ(Tjfm − fm)] = lim sup

t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ(Tjfm − fm)].

From the property modi�ed (%)− (∗), there exists an P > 0 such that

(3.11) lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[3λ(Tjf − Tjfm)] ≤ P%[3λ(f − fm)] ≤ Pε.
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From (3.9)-(3.11) and subadditivity of the operator lim sup we have

(3.12) 0 ≤ lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjf − f)] ≤ ε(P + 1).

From (3.12) and arbitrariness of ε we get

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjf − f)] = 0.

Thus one can get

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%[λ(Tjf − f)] = 0

and this completes the proof. �

4. Concluding remarks

Take G = [0, 1] and let ϕ : [0,∞) → [0,∞) be a continuous function for which the
following conditions hold:

• ϕ is convex,
• ϕ(0) = 0, ϕ(u) > 0 for u > 0 and lim

u→+∞
ϕ(u) =∞.

Here, consider the functional %ϕ on L0(G) de�ned by

%ϕ[f ] :=

1∫
0

ϕ(|f(x)|)dx, for f ∈ L0(G).

In this case, %ϕ is a convex modular on L0(G) (see [7]). Consider the Orlicz space
generated by ϕ as follows

L%ϕ(G) := {f ∈ L0(G) : %ϕ[λf ] <∞ for some λ > 0}.

Then, consider the following classical Bernstein-Kantorovich operator U := {Uj} on the
space L%ϕ(G) (see [7]) which is de�ned by

Uj(f ;x) :=

j∑
k=0

(
j

k

)
xk(1− x)j−k(j + 1)

k+1
j+1∫
k

j+1

f(t)dt; x ∈ G.

Observe that the operators Uj map the Orlicz space L%ϕ(G) into itself. Moreover, it is
also known that the property lim sup

j→∞
%[λ(Ujh)] ≤ M%[λh] is satis�ed with the choice

of XU := L%ϕ(G) and for every function f ∈ L%ϕ(G) such that f − g ∈ XU for every
g ∈ Cb(G), {Ujf} is modularly convergent to f . Using the operators {Ujf} de�ne the
sequence of positive linear operators V := Vj on L

%
ϕ(G) as follows:

(4.1) Vj(f ;x) = (1 + sj)Uj(f ;x), for f ∈ L%ϕ(G), x ∈ [0, 1] and j ∈ N,

where sj = 1, j is square and 0 otherwise. Also let R = 1, p (t) =
1

1− t and for j ∈ N0,

pj = 1. In this case the power series method coincides with Abel method. Note that
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{sj} is convergent to 0 in the sense of power series method. By Lemma 5.1 of [7], for
every h ∈ XV := L%ϕ(G), all λ > 0 and for an absolute positive constant P , we get

%ϕ[λVjh] = %ϕ[λ(1 + sj)Ujh] ≤ %ϕ[2λUjh] + %ϕ[2λsjUjh]

= %ϕ[2λUjh] + sj%
ϕ[2λUjh]

= (1 + sj)%
ϕ[2λUjh] ≤ (1 + sj)P%

ϕ[2λh].

Then, we get

lim sup
t→R−

1

p(t)

∞∑
j=0

pjt
j%ϕ[λVjh] ≤ P%ϕ[2λh].

Now, we show that conditions in the Theorem 3.2 holds. First note that

Vj(e0;x) = 1 + sj

Vj(e1;x) = (1 + sj){
jx

j + 1
+

1

2(j + 1)
}

Vj(e2;x) = (1 + sj){
j(j − 1)x2

(j + 1)2
+

2jx

(j + 1)2
+

1

3(j + 1)2
}

where ei(t) = ti. So for any λ > 0, we can see, that

λ|Vj(e0;x)− e0(x)| = λ|1 + sj − 1| = λsj ,

which implies

%ϕ[λ(Vj(e0)− e0)] = %ϕ[λsj ] =

1∫
0

ϕ(λsj)dx = ϕ(λsj) = sjϕ(λ)

because of the de�nition of {sj}. Since {sj} is convergent to 0 in the sense of power series
method

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%ϕ[λVj(e0)− e0] = lim

t→R−

1

p(t)

∞∑
j=0

pjt
jsjϕ(λ) = 0,

for every λ > 0. Also

λ|Vj(e1;x)− e1(x)| = λ
∣∣x(

j

j + 1
+

jsj
j + 1

− 1) +
1

2(j + 1)
+

sj
2(j + 1)

∣∣
≤ λ{ 3

2(j + 1)
+ sj(

2j + 1

2(j + 1)
)},

we may write that

%ϕ[λ(Vj(e1)− e1)] ≤ %ϕ
[
λ{sj(

2j + 1

2(j + 1)
) +

3

2(j + 1)
}
]

≤ sj%ϕ[λ(
2j + 1

j + 1
)] + %ϕ[

3λ

j + 1
]

by the de�nitions of {sj} and %ϕ. Since { 2j+1
j+1
} is convergent, there exists a constant

M > 0 such that { 2j+1
j+1

≤ M}, for every j ∈ N. Then using the monotonicity of %ϕ, we

have

%ϕ[λ
2j + 1

j + 1
] ≤ %ϕ[λM ]
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for any λ > 0, which implies

%ϕ[λ(Vj(e1)− e1)] ≤ sj%ϕ[λM ] + %ϕ[
3λ

j + 1
] = sjϕ(λM) + ϕ(

3λ

j + 1
).

Since ϕ is continuous, we have lim
j
ϕ( 3λ

j+1
) = ϕ(lim

j

3λ
j+1

) = ϕ(0) = 0. So we get ϕ( 3λ
j+1

) is

convergent to 0 in the sense of power series method. Using this and by the de�nition of
{sj}, we obtain

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%ϕ[λVj(e1)− e1] ≤ lim

t→R−

1

p(t)

∞∑
j=0

pjt
j [sjϕ(λM) + ϕ(

3λ

j + 1
)]

= ϕ(λM) lim
t→R−

1

p(t)

∞∑
j=0

pjt
jsj

+ lim
t→R−

1

p(t)

∞∑
j=0

pjt
jϕ(

3λ

j + 1
)

= 0

Finally, since

λ|Vj(e2;x)− e2(x)|

= λ
∣∣x2 j(j − 1)

(j + 1)2
+

2jx

(j + 1)2
+

1

3(j + 1)2
+ sj

j(j − 1)x2

(j + 1)2
+ sj

2jx

(j + 1)2

+ sj
1

3(j + 1)2
− x2

∣∣
≤ λ{ 15j + 4

3(j + 1)2
+ sj(

3j2 + 3j + 1

3(j + 1)2
)}.

Since { 3j
2+3j+1

3(j+1)2
} is convergent, there exists a constant K > 0 such that | 3j

2+3j+1
3(j+1)2

| ≤ K,

for every j ∈ N. Then using the monotonicity of %ϕ and the de�nition of {sj}, we have

%ϕ[λ(Vj(e2)− e2)] ≤ %ϕ
[
2λ(

15j + 4

3(j + 1)2
)] + %ϕ[2λsj(

3j2 + 3j + 1

3(j + 1)2
)
]

≤ %ϕ[λ(
30j + 8

3(j + 1)2
)] + %ϕ[2λsjK],

which yields

%ϕ[λ(Vj(e2)− e2)] ≤ ϕ[λ(
30j + 8

3(j + 1)2
)] + sjϕ(2λK).

Since ϕ is continuous, we have lim
j
ϕ(λ 30j+8

3(j+1)2
) = ϕ(λ lim

j

30j+8
3(j+1)2

) = ϕ(0) = 0. So we get

ϕ(λ 30j+8
3(j+1)2

) is convergent to 0 in the sense of power series method. Using this and by

the de�nition of {sj}, we obtain

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%ϕ[λVj(e2)− e2] = 0, for every λ > 0.

So we can say that our sequence V := {Vj} satis�es all assumptions of Theorem 3.2.
Therefore we conclude that

lim
t→R−

1

p(t)

∞∑
j=0

pjt
j%ϕ[λ0Vj(f)− f ] = 0, for some λ0 > 0
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holds for every f ∈ L%ϕ(G) such that f − g ∈ XV for every g ∈ Cb(G). However since
{sj} is not convergent to zero, it is clear that {Vj(f)} is not modularly convergent to f .

Note that

• in the case of R = 1, p (t) = 1
1−t and for j ∈ N0, pj = 1 the power series method

coincides with Abel method which is a sequence-to-function transformation,
• in the case of R =∞, p (t) = et and for j ∈ N0, pj = 1

j!
the power series method

coincides with Borel method.

We can therefore give all of the theorems of this paper for Abel and Borel convergences.
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