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Abstract: The prediction of a regression model can be adversely affected by multicollinearity. Although
biased estimation procedures have been proposed as an alternative to least squares, there has been little anal-
ysis of the predictive performance of the resulting equations. Therefore, we discuss the predictive performance
of the Two Parameter Ridge (2PR) estimator compared to ordinary least squares, principal components and
ridge regression estimators. Also, the theoretical results are illustrated by a numerical example and a region
is established where the 2PR estimator is uniformly superior to the other estimators.
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1. Introduction
The multiple linear regression model is

y=Xβ+ ε, (1.1)

where y is an n×1 vector of responses, X is an n×p full column rank matrix of non-stochastic
predetermined regressors, β is a p× 1 vector of unknown parameters, and ε is an n× 1 vector of
i.i.d. (0, σ2) random errors.

The Ordinary Least Squares (OLS) estimator of β in model (1.1) is

β̂ = (X
′
X)−1X

′
y. (1.2)

This estimator is widely used technique for estimating the linear regression models. The main
reason for focusing on the OLS estimator is because it is unbiased and has the minimum variance
among all linear unbiased estimators.

One of the oldest technique used to combat collinearity between regressors is the principal
components regression (PCR) (Massy [7]) which is given by

β̂r =Ur(U
′

rX
′
XUr)

−1U
′

rX
′
y=UrΛ

−1U
′

rX
′
y, (1.3)

where U = [u1, u2, ..., up] is an orthogonal matrix such that U
′
X

′
XU = Λ (i.e., U is the

p× p matrix of eigenvectors of X
′
X ). Λ = diag (λ1, λ2, ..., λp) is the matrix of eigenvalues of

X
′
X and the eigenvalues are in descending order. Ur contains the remaining r eigenvectors of after

deleting the last p− r columns of U and Λr = diag (λ1, λ2, ..., λr).
One of the most popular estimator dealing with multicollinearity is the ordinary ridge regression

(ORR) estimator proposed by Hoerl and Kennard [2] and is defined as

β̂k = (X
′
X + kI)−1X

′
y, (1.4)
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where k ≥ 0 is the biasing parameter. The purpose of adding the constant k to the diagonal
elements of the X

′
X matrix is the reduction of the sensitivity of the OLS estimator when X

′
X

is not close to the identity matrix.
The two parameter ridge (2PR) estimator of β (Lipovetsky and Conklin [3]) is given by

β̂2PR = β̂2PR(q, k) = q(X
′
X + kI)−1X

′
y, k≥ 0 (1.5)

where q and k are the biasing parameters. 2PR estimator differs from ORR estimator only in
the parameter q. Also, the value of q reaches its maximum when

q=
y
′
X

′
(X

′
X + kI)−1Xy

y′X ′(X ′X + kI)−1X ′X(X ′X + kI)−1Xy
. (1.6)

The 2PR estimator is a general estimator which includes the OLS estimator and ORR estimator
as special cases:

β̂2PR(1,0) = (X
′
X)−1X

′
y, is the OLS estimator, (1.7)

β̂2PR(1, k) = (X
′
X + kI)−1X

′
y, is the ORR estimator. (1.8)

Lipovetsky and Conklin [3] found that the 2PR estimator always outperforms the ORR estimator
by better approximation and has good properties of orthogonality between residuals and predicted
values of the dependent variable. The results that they found are very convenient for the analysis
and interpretation of the regression such that the numerical runs proved that this technique works
very well. Lipovetsky [4] improved the two parameter model and investigated various characteristics
of the 2PR estimator. Then, Toker and Kaçıranlar [9] compared the 2PR estimator to the OLS
and the ORR estimators according to the matrix mean square error (MMSE) criterion. Also, other
properties of the 2RP estimator have been discussed in the literature (see for instance, Lipovetsky
[5] and Li and Yang [6]).

Regression models are widely used in prediction. The predictive performance of a regression
model can be adversely affected by multicollinearity. Although biased estimation procedures have
been proposed as an alternative to least squares, there has been little analysis of the predictive
performance of the resulting equations. Friedman and Montgomery [1] focused on evaluating the
predictive performance at a particular observation of the ORR estimator compared to the OLS
and the PCR estimators in terms of the prediction mean square error (PMSE) criterion. Then,
Özbey and Kaçıranlar [8] adopted a similar approach for comparing Liu estimator with OLS, PCR
and ORR estimators.

As a consequence, it appears reasonable to evaluate the predictive performance of the 2PR esti-
mator in which the ORR estimator is a special case of it. In this paper, the predictive performance
of the 2PR estimator compared to OLS, PCR and ORR estimators will be discussed according to
the PMSE criterion. A numerical example will be given to demonstrate the theoretical results.

2. Evaluations of the prediction Mean Squared Errors
Following Özbey and Kaçıranlar [8], we will recall PMSEs developed by Friedman and

Montgomery [1] for OLS, PCR and ORR estimators and then obtain the PMSE of the 2PR
estimator.

The PMSE is a measure of the closeness of a predictor to the response being predicted

PMSE =E(y0− ŷ0)2. (2.1)
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Let J represents the PMSE. J is the sum of the variance (V ) and the squared bias(B) :

J = V +B. (2.2)

If y0 is the value to be predicted, and ŷ0 is the prediction of that value, then the variance and
the bias of the prediction error are

V (y0− ŷ0) = V (y0) +V (ŷ0) (2.3)

and

Bias=E(y0− ŷ0). (2.4)

For convenience, the orthogonal form of model (1.1)

y=Zα+ ε (2.5)

will be used. Here Z =XU and α=U
′
β. Then the OLS estimator of α in model (2.5) is

α̂= (Z
′
Z)−1Z

′
y= Λ−1Z

′
y. (2.6)

If z0 is the orthonormalized point at which the prediction y0 is made, the PMSE of the OLS
estimator is

JOLS = σ2

(
1 +

p∑
i=1

z2oi
λi

)
(2.7)

Note that, since the OLS estimator is unbiased, its PMSE is equal to its prediction variance

JOLS = JOLS. (2.8)

The PCR estimator of α in model (2.5) is

α̂r = (Z
′

rZr)
−1Z

′

ry= Λ−1
r Z

′

ry, (2.9)

where Zr =XUr. The PMSE of the PCR estimator is

Jr = σ2

(
1 +

r∑
i=1

z2oi
λi

)
+

(
p∑

i=r+1

zoiα
2
i

)2

. (2.10)

The ORR estimator of α in model (2.5) is

α̂k = (Z
′
Z + kI)−1Z

′
y= (Λ + kI)−1Z

′
y, k≥ 0 (2.11)

and the PMSE of the ORR estimator is

Jk = σ2

(
1 +

p∑
i=1

z2oiλi
(λi + k)2

)
+ k2

(
p∑
i=1

zoiαi
λi + k

)2

(2.12)

(see also, Friedman and Montgomery [1]).

The 2PR estimator of α in model (2.5) is

α̂2PR = q (Z
′
Z + kI)−1Z

′
y= q (Λ + kI)−1Z

′
y, k≥ 0, q > 0. (2.13)
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The variance of the prediction error of the 2PR estimator is

V2PR(y0− ŷ0) = V (y0) +V2PR(ŷ0)

= σ2 +V (z
′

0α̂2PR)

= σ2

(
1 + q2

p∑
i=1

z2oiλi
(λi + k)2

)
. (2.14)

The bias of the prediction error of the 2PR estimator is

Bias2PR =E(y0− ŷ0) = z
′

0α− z
′

0E(α̂2PR)

=

p∑
i=1

zoiαi[(1− q)λi + k]

λi + k
(2.15)

so, the squared bias is

B2PR =Bias22PR =

(
p∑
i=1

zoiαi[(1− q)λi + k]

λi + k

)2

. (2.16)

By summing up the variance and the squared bias of the 2PR estimator we obtain

J2PR = V2PR +B2PR

= σ2

(
1 + q2

p∑
i=1

z2oiλi
(λi + k)2

)
+

(
p∑
i=1

zoiαi[(1− q)λi + k]

λi + k

)2

. (2.17)

Therefore, as a special case, if q= 1 in Equation (2.17), then J2PR = Jk.

3. Comparisons of the prediction Mean Squared Errors in two dimensional space
Following Friedman and Montgomery [1] and Özbey and Kaçıranlar [8], we will discuss the

predictive performance of the 2PR estimator such that our inferences will be based on the subspace

of the observation to be predicted (i.e., the ratio z202
z201

) and α2
1 will be set to zero because non-zero

values of α2
1 increase only the intercept values for Jk and J2PR but leave the curves for JOLS and

Jr unchanged. So, comparisons of J2PR with JOLS, Jr and Jk will be made and stated in the
following three theorems.

Theorem 1. a. If α2
2 >

σ2((λ2+k)2−q2λ22)
λ2((1−q)λ2+k)2

, then

- J2PR <JOLS, for (λ1 + k)2 < q2λ2
1,

- J2PR <JOLS⇔ z202
z201

< f1(α
2
2), for (λ1 + k)2 > q2λ2

1.

b. If α2
2 <

σ2((λ2+k)2−q2λ22)
λ2((1−q)λ2+k)2

, then

- J2PR <JOLS, for (λ1 + k)2 > q2λ2
1,

- J2PR <JOLS⇔ z202
z201

< f1(α
2
2), for (λ1 + k)2 < q2λ2

1.

c. As a special case, if q = 1, we get the results of Friedman and Montgomery [1] which are
corrected by Özbey and Kaçıranlar [8].
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Where

f1(α
2
2) =

σ2
(

1
λ1
− q2λ21

(λ1+k)2

)
(
σ2q2λ2
(λ2+k)2

+
((1−q)λ2+k)2α2

2
(λ2+k)2

− σ2

λ2

) . (3.1)

Proof. See Appendix 1.

Theorem 2. a. If α2
2 <

σ2q2λ2
(λ2+k)2−((1−q)λ2+k)2

, then

- J2PR <Jr, for (λ1 + k)2 < q2λ2
1,

- J2PR <Jr⇔ z202
z201

< f2(α
2
2), for (λ1 + k)2 > q2λ2

1.

b. If α2
2 >

σ2q2λ2
(λ2+k)2−((1−q)λ2+k)2

, then

- J2PR <Jr, for (λ1 + k)2 > q2λ2
1,

- J2PR <Jr ⇔ z202
z201

< f2(α
2
2), for (λ1 + k)2 < q2λ2

1.

c. As a special case, if q= 1, we get the results of Friedman and Montgomery [1].
Where

f2(α
2
2) =

σ2
(

1
λ1
− q2λ1

(λ1+k)2

)
(
σ2q2λ2
(λ2+k)2

+
((1−q)λ2+k)2α2

2
(λ2+k)2

−α2
2

) . (3.2)

Proof. See Appendix 2.

Theorem 3. a. If α2
2 >

σ2λ2(1−q2)
((1−q)λ2+k)2−k2

, then

- J2PR <Jk, for q2 > 1,

- J2PR <Jk⇔ z202
z201

< f3(α
2
2), for q2 < 1.

b. If α2
2 <

σ2λ2(1−q2)
((1−q)λ2+k)2−k2

, then

- J2PR <Jk, for q2 < 1,

- J2PR <Jk ⇔ z202
z201

< f3(α
2
2), for q2 > 1.

Where

f3(α
2
2) =

σ2
(

λ1
(λ1+k)2

− q2λ1
(λ1+k)2

)
(
σ2q2λ2
(λ2+k)2

+
((1−q)λ2+k)2α2

2
(λ2+k)2

− σ2λ2
(λ2+k)2

− k2α2
2

(λ2+k)2

) . (3.3)

Proof. See Appendix 3.

4. Numerical examples
In this section, we will illustrate our theoretical results using the example given by Friedman

and Montgomery [1] (i.e., σ2 = 1, k = 0.1, and r12 = 0.95). Also, we choose the biasing parameter
q= 1.1 for the above mentioned estimator.

Firstly, let us consider the predictive performances of the 2PR and the OLS estimators. From
(3.1), we get

f1(α
2
2) =

0.04863

17.3111− 0.40111α2
2

, (4.1)
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which is a hyperbola with a vertical asymptote at

α2
2
∼= 43.15789. (4.2)

Figure 1 illustrates this situation. For values of α2
2 larger than 43.15789, the 2PR estimator is

uniformly superior to the OLS estimator. For smaller values of α2
2, there is a trade-off between

these two estimators. If the value of the ratio z202
z201

is smaller than the value of f1(α
2
2), then the 2PR

estimator is superior to the OLS estimator, otherwise the OLS estimator is superior to the 2PR
estimator.

Secondly, let us consider the predictive performances of the 2PR and the PCR estimators. From
(3.2), we get

f2(α
2
2) =

0.04863

0.59889α2
2− 2.6889

, (4.3)

which is a hyperbola with a vertical asymptote at

α2
2
∼= 4.489796. (4.4)

Figure 2 illustrates this situation. For values of α2
2 smaller than 4.489796, the 2PR estimator

is uniformly superior to the PCR estimator. For larger values of α2
2 there is a trade-off between

these two estimators. If the value of the ratio z202
z201

is smaller than the value of f2(α
2
2), then the 2PR

estimator is superior to the PCR estimator, otherwise the PCR estimator is superior to the 2PR
estimator.

Therefore, for the previous parts of this example we get the same results of Friedman and
Montgomery [1] if q= 1. That means, the ORR estimator is just a special case of the 2PR estimator.

Finally, let us consider the predictive performances of the 2PR and the ORR estimators. From
(3.3), we get

f3(α
2
2) =

0.09744

0.04333α2
2− 0.4667

, (4.5)

which is a hyperbola with a vertical asymptote at

α2
2
∼= 10.71429. (4.6)

Figure 3 illustrates this situation. For values of α2
2 smaller than 10.71429, the 2PR estimator

is uniformly superior to the ORR estimator. For larger values of α2
2 there is a trade-off between

these two estimators. If the value of the ratio z202
z201

is smaller than the value of f3(α
2
2), then the 2PR

estimator is superior to the ORR estimator, otherwise the ORR estimator is superior to the 2PR
estimator.

5. Conclusions
We investigate the predictive performance of the 2PR estimator compared to the OLS, the PCR

and the ORR estimators. The comparisons of these estimators are in terms of the PMSE criterion at
a specific point in two-dimensional regressor variable spaces. In this context, the PMSE of the 2PR
estimator is developed and three theorems are given. The theoretical consequences are illustrated
by a numerical example, and regions are assigned for the superiority of the given estimators. For
some values of α2

2 , there are trade-offs between the relative effectiveness of the estimators. The
OLS estimator is effective only when the value of α2

2 is small compared to the 2PR estimator. The
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effectiveness of these techniques is also affected by the location of the prediction point. Hence, the
choice of the estimator may depend on the location of the point to be predicted. In the numerical
example, a region was established where the 2PR estimator is uniformly superior to the mentioned
estimators above. This implies that it is theoretically possible to determine such a region. Finally,
we get the theoretical and empirical results of Friedman and Montgomery [1] if q= 1, as a special
case.
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[9] Toker, S. and Kaçıranlar S. (2013). On the performance of two parameter ridge estimator under the mean
square error criterion. Applied Mathematics and Computation, 219, 4718–4728.

Appendix 1
If the 2PR estimator is superior to the OLS estimator in terms of the PMSE criterion, we have J2PR <

JOLS . That is,

σ2 +σ2q2
[

z201λ1

(λ1 + k)2
+

z202λ2

(λ2 + k)2

]
+

((1− q)λ2 + k)2z202α
2
2

(λ2 + k)2
<

σ2 +σ2

(
z201
λ1

+
z202
λ2

)
(5.1)

Rearranging this inequality we will obtain

z202

(
σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
− σ

2

λ2

)
<

z201σ
2

(
1

λ1

− q2λ1

(λ1 + k)2

)
. (5.2)

If both

σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
− σ

2

λ2

(5.3)

and
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σ2

(
1

λ1

− q2λ1

(λ1 + k)2

)
(5.4)

have the same signs, the condition for the superiority of the 2PR estimator over the OLS esti-
mator is

z202
z201

< f1(α
2
2). (5.5)

If (5.3) and (5.4) have opposite signs, the condition for the superiority of the 2PR estimator over
the OLS estimator is

z202
z201

> f1(α
2
2). (5.6)

It is obvious that if (5.3) and (5.4) have opposite signs, the right hand side of (5.6) is negative,
thus (5.6) always holds. Consequently, at that region the 2PR estimator is uniformly superior to
the OLS estimator. The condition for the positiveness of (5.3) can be written as

α2
2 >

σ2 ((λ2 + k)2− q2λ2
2)

λ2((1− q)λ2 + k)2
(5.7)

and the condition for the positiveness of (5.4) can be written as

(λ1 + k)2 > q2λ2
1. (5.8)

Of course, the opposite conditions are needed for the negativeness of (5.3) and (5.4). The vertical
asymptote of the hyperbola is at the point

α2
2 =

σ2 ((λ2 + k)2− q2λ2
2)

λ2((1− q)λ2 + k)2
. (5.9)

Therefore, we get the results of Friedman and Montgomery [1] which are corrected by Özbey
and Kaçıranlar [8] if q= 1.

Appendix 2
If the 2PR estimator is superior to the PCR estimator in terms of the PMSE criterion, we have
J2PR <Jr . That is,

σ2 +σ2q2
[

z201λ1

(λ1 + k)2
+

z202λ2

(λ2 + k)2

]
+

((1− q)λ2 + k)2z202α
2
2

(λ2 + k)2
<

σ2 +
σ2z201
λ1

+ z202α
2
2. (5.10)

Rearranging this inequality we will obtain

z202

(
σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
−α2

2

)
<

z201σ
2

(
1

λ1

− q2λ1

(λ1 + k)2

)
. (5.11)

If both

σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
−α2

2 (5.12)
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and

σ2

(
1

λ1

− q2λ1

(λ1 + k)2

)
(5.13)

have the same signs, the condition for the superiority of the 2PR estimator over the PCR
estimator is

z202
z201

< f2(α
2
2). (5.14)

If (5.12) and (5.13) have opposite signs, the condition for the superiority of the 2PR estimator
over the PCR estimator is

z202
z201

> f2(α
2
2). (5.15)

It is obvious that if (5.12) and (5.13) have opposite signs, the right hand side of (5.15) is negative,
thus (5.15) always holds. Consequently, at that region the 2PR estimator is uniformly superior to
the PCR estimator. The condition for the positiveness of (5.12) can be written as

α2
2 <

σ2q2λ2

(λ2 + k)2− ((1− q)λ2 + k)2
(5.16)

and the condition for the positiveness of (5.13) can be written as

(λ1 + k)2 > q2λ2
1. (5.17)

Of course, the opposite conditions are needed for the negativeness of (5.12) and (5.13). The
vertical asymptote of the hyperbola f2(α

2
2) is at the point

α2
2 =

σ2q2λ2

(λ2 + k)2− ((1− q)λ2 + k)2
. (5.18)

Therefore, we get the results of Friedman and Montgomery [1] if q= 1.

Appendix 3
If the 2PR estimator is superior to the ORR estimator in terms of the PMSE criterion, we have
J2PR <Jk . That is,

σ2 +σ2q2
[

z201λ1

(λ1 + k)2
+

z202λ2

(λ2 + k)2

]
+

((1− q)λ2 + k)2z202α
2
2

(λ2 + k)2
<

σ2 +σ2

[
z201λ1

(λ1 + k)2
+

z202λ2

(λ2 + k)2

]
+

k2z202α
2
2

(λ2 + k)2
. (5.19)

Rearranging this inequality we will obtain

z202

(
σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
− σ2λ2

(λ2 + k)2
− k2α2

2

(λ2 + k)2

)
<

z201σ
2

(
λ1

(λ1 + k)2
− q2λ1

(λ1 + k)2

)
. (5.20)

If both

σ2q2λ2

(λ2 + k)2
+

((1− q)λ2 + k)2α2
2

(λ2 + k)2
− σ2λ2

(λ2 + k)2
− k2α2

2

(λ2 + k)2
(5.21)
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and

σ2

(
λ1

(λ1 + k)2
− q2λ1

(λ1 + k)2

)
(5.22)

have the same signs, the condition for the superiority of the 2PR estimator over the ORR
estimator is

z202
z201

< f3(α
2
2). (5.23)

If (5.21) and (5.22) have opposite signs, the condition for the superiority of the 2PR estimator
over the ORR estimator is

z202
z201

> f3(α
2
2). (5.24)

It is obvious that if (5.21) and (5.22) have opposite signs, the right hand side of (5.24) is negative,
thus (5.24) always holds. Consequently, at that region the 2PR estimator is uniformly superior to
the ORR estimator. The condition for the positiveness of (5.21) can be written as

α2
2 >

σ2λ2(1− q2)
((1− q)λ2 + k)2− k2

(5.25)

and the condition for the positiveness of (5.22) can be written as

q2 < 1. (5.26)

Of course, the opposite conditions are needed for the negativeness of (5.21) and (5.22). The
vertical asymptote of the hyperbola is at the point

α2
2 =

σ2λ2(1− q2)
((1− q)λ2 + k)2− k2

. (5.27)

Figure 1. The PMSE comparison of the 2PR and the OLS estimators
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Figure 2. The PMSE comparison of the 2PR and the PCR estimators

Figure 3. The PMSE comparison of the 2PR and the ORR estimators
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