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Abstract: A unified ranked set sampling scheme is proposed to estimate the population mean. In such
a scheme various existing ranked set sampling schemes are combined in order to minimizing the error of
ranking and cost of sampling. It is shown that the sample weighted mean of the proposed scheme is more
efficient than simple random sample mean. Also, assuming the underlying distribution is normal, the existence
and uniqueness of maximum likelihood estimator of the location parameter are investigated. The pairwise
relative precisions of the derived estimators are compared using simulation and numerical computations. It
is concluded that a combination of existing sampling schemes may be considered as a good suggestion with
rather high efficiency. A cost analysis is also performed. Some conclusions are eventually stated.
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1. Introduction
A sampling method based on rankings is called ranked set sampling (RSS) which was introduced

by [9]. In this scheme, first of all, k independent sets each containing k samples are considered
from an infinity population. Each set is ranked by visual inspection or by some other relatively
inexpensive methods, without actual measurement of the variable of interest. Then, the jth (j =
1,2, ..., k) judged order statistic from the jth set is measured. If such process is repeated m times,
the following data set is obtained

X
(m)
RSS = {X1(1:k)1,X2(2:k)1, ...,Xk(k:k)1, ...,X1(1:k)m,X2(2:k)m, ...,Xk(k:k)m},

where for r = 1, ..., k and i= 1, ...,m, Xr(j:k)i stands for the recorded observation of the rth set in
the ith cycle and the expression within parenthesis represents the order of observation. That is, for
j = 1, ..., k, Xr(j:k)i means that in the rth set of the ith cycle, the jth order statistic in a random
sample of size k is recorded. We use this notation throughout the paper. For more details about
order statistics and their applications, one may refer to the books by [6] and [3].

[17] showed that the mean of RSS is unbiased for the population mean and it is more efficient than
that of simple random sample (SRS). This method can reduce cost of sampling and increase the
accuracy of results. Using concomitant variable, various estimators for estimating the population
mean are presented by [14], [8] and [16]. [7] investigated the group sequential comparison of two
binomial proportions under RSS. [12] studied the problem of prediction of order statistics and
record values based on ordered RSS.

Here, we recall some existing sampling based on the idea of RSS. These schemes can be used to
estimate various parameters of the underlying population such as mean, median and range.

[13] introduced extreme RSS (ERSS) scheme for estimating the mean of population. We explain
this scheme when k is even. Assume that there are k independent sets each involves k samples
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from the population of interest. We select visually the sample minimum from the first k/2 sets and
the sample maximum from the last k/2 sets. If k is odd, the scheme can be also illustrated. The
corresponding data set of ERSS with m cycles is given by

X
(m)
ERSS = {X1(1:k)1,X2(1:k)1, ...,X k

2 (1:k)1,X k+2
2 (k:k)1, ...,Xk(k:k)1, . . . ,

X1(1:k)m,X2(1:k)m, ...,X k
2 (1:k)m,X k+2

2 (k:k)m, ...,Xk(k:k)m}.

The moving extreme RSS (MERSS) was introduced by [1]. They consider k independent sets
for which the jth one includes j sample points (j = 1,2, ..., k). That is, the first set contains 1
observation, the second set has 2 sample points and so the kth set has k observations. If only
the largest or smallest judged order statistics from each set is measured, then MERSS Type-I or
MERSS Type-II schemes are obtained, respectively. These data sets with m cycles are given by

X
(m)
MERSS−I = {X1(1:1)1,X2(2:2)1, ...,Xk(k:k)1, ...,X1(1:1)m,X2(2:2)m, ...,Xk(k:k)m},

and

X
(m)
MERSS−II = {X1(1:1)1,X2(1:2)1, ...,Xk(1:k)1,X1(1:1)m,X2(1:2)m, ...,Xk(1:k)m},

respectively. The aforementioned data sets can be combined together which is known in general as
MERSS. This scheme has been considered by some authors, such as [5].

[10] proposed a new scheme for estimating the mean of population based on median of ranked sets
and called it as median RSS (MRSS). Assume that k (which is even) independent sets, each contains
k independent and identically distribution observations, are taken from an infinity population. In
an MRSS, the (k/2)th judged order statistic from the first k/2 sets and the (k/2 + 1)th judged
order statistic from the last k/2 sets are measured. If such scheme is repeated m times, the data
set

X
(m)
MRSS =

{
{Xj(k/2:k)i}k/2j=1 ∪{Xj(k/2+1:k)i}kj=k/2+1, i= 1,2, ...,m

}
,

is obtained, where A ∪ B stands for the union of the sets A = {Xj(k/2:k)i}k/2j=1 and B =
{Xj(k/2+1:k)i}kj=k/2+1. [2] used the auxiliary information in MRSS scheme to derive the ratio esti-
mator of the population mean.

Note that when the ranking error is occurred in each of the above mentioned schemes, the validity
of the results is reduced. On the other hand, the error of ranking in the ERSS, MERSS Type-I
and MERSS Type-II, in which only the extreme order statistics (maximum or minimum) in each
set are measured, is less than other schemes. However, the ordinary RSS and MRSS schemes are
more appropriate to inference about the population mean. Hence, this question arises: Does there
exist any sampling scheme containing all aforementioned schemes such that in spite of reducing the
ranking error leads to rather high efficiency for estimating the population mean? Toward this end,
we consider m1,m2,m3,m4 and m5 cycles of RSS, ERSS, MERSS Type-I, MERSS Type-II and
MRSS schemes, respectively. We call this procedure unified RSS (URSS) scheme with the following
data set

XURSS =
{
X

(m1)
RSS ∪X

(m2)
ERSS ∪X

(m3)
MERSS−I ∪X

(m4)
MERSS−II ∪X

(m5)
MRSS

}
,

such that M =
∑5

i=1mi. This scheme may be used to minimize the error of ranking and cost of
sampling. Any permutation of m=(m1,m2,m3,m4,m5) may be suggested to use in practice, if
its efficiency is a little less than the most efficient permutation, but its ranking error or cost of
sampling is less than it. It is clear that the URSS may reduce to the existing schemes if all of
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mi’s (i= 1, ...,5) equal to zero except one. For example, when m1 =m2 =m3 =m4 = 0, the URSS
reduces to MRSS scheme with M =m5 cycles. [15] obtained an estimator for distribution function
via combining the ERSS and MRSS schemes, i.e., when m1 =m3 =m4 = 0 while m2,m5 6= 0.

The rest of the paper is as follows. In Section 2, the weighted mean of XURSS is considered as an
estimator of the population mean. It is shown that the proposed estimator is unbiased and it is more
efficient than the mean of an SRS. In Section 3, we focus on the normal distribution. The sample
mean and maximum likelihood estimator (MLE) are derived for the location parameter based on
URSS and their properties are investigated. It is shown that the MLE exists and it is unique. In
Section 4, the relative precisions (RPs) of the proposed estimators in Section 3 are compared via
simulation and numerical computations. It is concluded that a combination of existing sampling
schemes may be suggested as a good choice in practice with rather high precision. Cost analysis
based on the relative efficiency (RE) is presented in Section 5. In Section 6, some conclusions are
stated.

2. Estimation of the population mean
Let µ and σ2 be the mean and variance of the underlying population, respectively. Here, we focus

on estimating µ based on URSS scheme. First of all, note that the the population mean may be
estimated using the sample mean of the RSS, ERSS, MERSS Type-I, MERSS Type-II and MRSS
data sets separately as

X̄
(m)
RSS =

1

mk

m∑
i=1

k∑
j=1

Xj(j:k)i,

X̄
(m)
ERSS =

1

mk

m∑
i=1

{ k
2∑
j=1

Xj(1:k)i +

k∑
j= k

2 +1

Xj(k:k)i

}
,

X̄
(m)
MERSS−I =

1

mk

m∑
i=1

k∑
j=1

Xj(j:j)i,

X̄
(m)
MERSS−II =

1

mk

m∑
i=1

k∑
j=1

Xj(1:j)i,

and

X̄
(m)
MRSS =

1

mk

m∑
i=1

{ k
2∑
j=1

Xj( k
2 :k)i +

k∑
j= k

2 +1

Xj( k
2 +1:k)i

}
,

respectively. Therefore, by averaging all of the above statistics, a reasonable estimator for the
population mean based on URSS scheme can be introduced as follows

X̄URSS =
m1

M
X̄

(m1)
RSS +

m2

M
X̄

(m2)
ERSS +

m3

M
X̄

(m3)
MERSS−I +

m4

M
X̄

(m4)
MERSS−II +

m5

M
X̄

(m5)
MRSS. (2.1)

The proposed estimator can be interpreted as both weighted mean of all means of different
schemes and arithmetic mean from URSS data set. Therefore, the X̄URSS is a moment estimator
for the population mean.

In the following theorem, we prove analytically that under some conditions, the statistic X̄URSS

is an unbiased estimator for µ. Then its efficiency is compared with the mean of an SRS data set,
denoted by X̄SRS.
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Theorem 1. Suppose thatm3 =m4 and the underlying distribution is symmetric. Then, X̄URSS

is unbiased for µ with variance

V ar(X̄URSS) =
1

M 2k

{
m1

(
σ2− 1

k

k∑
j=1

(µj:k−µ)2

)
+m2σ

2
1:k +

2m3

k

k∑
j=1

σ2
1:j +m5σ

2
k
2 :k

}
, (2.2)

where µj:k and σ2
j:k are the mean and variance of the jth order statistic in a random sample of size

k, respectively.

Proof. First of all, note that X̄RSS is an unbiased estimator of µ [17]. Next, using the symmetric
property of the underlying distribution around µ, we have (see, for example, [3, p.26])

Xj:k
d
= 2µ−Xk−j+1:k. (2.3)

Therefore,

E(X̄
(m2)
ERSS) =

1

m2k
E

{ m2∑
i=1

( k
2∑
j=1

Xj(1:k)i +
k∑

j= k
2 +1

Xj(k:k)i

)}

=
1

k
E

{ k
2∑
j=1

Xj(1:k)1 +

k∑
j= k

2 +1

Xj(k:k)1

}
=

1

2
E(X1:k +Xk:k)

= µ. (2.4)

By considering m3 =m4 and using (2.3) we can write

E
{
X̄

(m3)
MERSS−I + X̄

(m4)
MERSS−II

}
=

1

m3k

m3∑
i=1

E

{
k∑
j=1

Xj(j:j)i +

k∑
j=1

Xj(1:j)i

}

=
1

m3k

m3∑
i=1

E

{
k∑
j=1

[
2µ−Xj(1:j)i

]
+

k∑
j=1

Xj(1:j)i

}
= 2µ. (2.5)

Similarly,

E
{
X̄

(m5)
MRSS

}
=

1

mk

m∑
i=1

E


k
2∑
j=1

Xj( k
2 :k)i +

k∑
j= k

2 +1

Xj( k
2 +1:k)i


=

1

2
E
{
X k

2 :k +X k
2 +1:k

}
=

1

2
E
{
X k

2 :k + 2µ−X k
2 :k

}
= µ. (2.6)

Therefore, using (2.1), (2.4), (2.5) and (2.6) we have

E
{
X̄URSS

}
=
m1

M
µ+

m2

M
µ+ 2

m3

M
µ+

m5

M
µ= µ.

On the other hand, the variance of the X̄
(m1)
RSS is [17]

V ar(X̄
(m1)
RSS ) =

1

m1k

{
σ2− 1

k

k∑
j=1

(µj:k−µ)2

}
.
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Also, using (2.3), for ERSS scheme we get

V ar(X̄
(m2)
ERSS) =

1

(m2k)2

m2∑
i=1

{ k
2∑
j=1

V ar(Xj(1:k)i) +
k∑

j= k
2 +1

V ar(Xj(k:k)i)

}
=

1

m2k
σ2

1:k.

Similarly, it can be shown that

V ar(X̄
(m3)
MERSS−I + X̄

(m4)
MERSS−II) =

2

m3k2

k∑
j=1

σ2
1:j,

and

V ar(X̄
(m5)
MRSS) =

1

m5k
σ2

k
2 :k
.

Now, since the different sampling schemes are independent, the proof is complete. �
Remark 1. If remove the condition m3 =m4 in the Theorem 1, then the X̄URSS will not be

unbiased and it can be easily shown that

E
{
X̄URSS

}
=
m1 +m2 + 2m3 +m5

M
µ+

m4−m3

Mk

k∑
j=1

µ1:j.

Note that the mean of an SRS data set of size Mk is an unbiased estimator of µ with variance
σ2/(Mk). Hence, under the assumptions of Theorem 1, X̄URSS is more efficient than X̄SRS, provided
that

−m1

k

k∑
j=1

(µj:k−µ)
2

+m2

(
σ2

1:k−σ2
)

+ 2m3

(
1

k

k∑
j=1

σ2
1:j −σ2

)
+m5

(
σ2

k
2
−σ2

)
≤ 0. (2.7)

In the next section, we show that the condition (2.7) holds for the normal distribution. Moreover,
the MLE of the location parameter is investigated.

3. Normal distribution
In this section, the normal distribution with the location and scale parameters µ and σ, respec-

tively, denoted by N(µ,σ2), is considered. It is assumed that σ is known and so without loss of
generality, we take σ = 1. The estimator X̄URSS in (2.1) and also the MLE of µ are investigated
based on URSS scheme.

From Theorem 4.9.1 of [3, p.91], for the N(µ,1) distribution, we have

k∑
j=1

σi,j:k = 1, i= 1,2, ..., k,

where σi,j:k stands for the covariance between the ith and jth order statistics. Moreover, assuming
E(X2

i:k)+E(X2
j:k)<∞, [4] showed that σi,j:k ≥ 0. Therefore, for i= 1,2, ..., k, we get σ2

i:k = σi,i:k ≤ 1.
That is, the variances of the order statistics in a random sample from N(µ,σ2) distribution is less
than σ2. Hence, the inequality in (2.7) holds and so we get

V ar(X̄URSS)≤ V ar(X̄SRS). (3.1)
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On the other hand, according to Theorem 1, X̄URSS is unbiased for µ, when m3 =m4. Therefore,
in this case, X̄URSS is more efficient than X̄SRS. Other cases are studied in Section 4.

In what follows, the MLE of µ is investigated. Let us denote the cumulative distribution function
(cdf) and probability density function (pdf) of underlying population by F (x;θ) and f(x;θ),
respectively, where θ is a vector of parameters. Then, the likelihood functions of θ based on the
data sets X

(m)
RSS,X

(m)
ERSS,X

(m)
MERSS−I ,X

(m)
MERSS−II and X

(m)
MRSS are given by

L
(m)
RSS(θ) =

{
k!

k∏
j=1

(
k

j

)}m m∏
i=1

k∏
j=1

f(xj(j:k)i;θ)
(
F (xj(j:k)i;θ)

)j−1(
F̄ (xj(j:k)i;θ)

)k−j
,

L
(m)
ERSS(θ) =

m∏
i=1

{ k
2∏
j=1

kf(xj(1:k)i;θ)
(
F̄ (xj(1:k)i;θ)

)k−1
k∏

j= k
2 +1

kf(xj(k:k)i;θ)
(
F (xj(k:k)i;θ)

)k−1
}
,

L
(m)
MERSS−I(θ) =

m∏
i=1

k∏
j=1

jf(xj(j:j)i;θ)
(
F (xj(j:j)i;θ)

)j−1
,

L
(m)
MERSS−II(θ) =

m∏
i=1

k∏
j=1

jf(xj(1:j)i;θ)
(
F̄ (xj(1:j)i;θ)

)j−1
,

and

L
(m)
MRSS(θ) =

{
k!

(k
2
)!(k

2
− 1)!

}mk m∏
i=1

{ k
2∏
j=1

f(xj( k
2 :k)i;θ)(F (xj( k

2 :k)i;θ))
k
2−1(F̄ (xj( k

2 :k)i;θ))
k
2

×
k∏

j= k
2 +1

f(xj( k
2 +1:k)i;θ)(F (xj( k

2 +1:k)i;θ))
k
2 (F̄ (xj( k

2 +1:k)i;θ))
k
2−1

}
,

respectively, where F̄ (·) = 1−F (·) stands for the survival function. Therefore, likelihood function
of θ based on XURSS is as follows

LURSS(θ) = {L(m1)
RSS (θ)}δ1{L(m2)

ERSS(θ)}δ2{L(m3)
MERSS−I(θ)}δ3{L(m4)

MERSS−II(θ)}δ4{L(m5)
MRSS(θ)}δ5 , (3.2)

where, for i= 1, ...,5,

δi =

{
1, mi > 0,
0, mi = 0.

[5] obtained the MLE of the scale parameter of normal distribution based on MERSS scheme.
Here, we show that the MLE of the location parameter of normal distribution based on a URSS
data set exists and it is unique. Let us denote the pdf and cdf of the standard normal distribution
by φ(·) and Φ(·), respectively. Using (3.2) and doing some algebraic calculations, the likelihood
equation of µ in N(µ,1) distribution, on the basis of URSS, is obtained as

∂l(µ)

∂µ
=−Mkµ+

m1∑
i=1

k∑
j=1

{
xj(j:k)i− (j− 1)

φ(xj(j:k)i−µ)

Φ(xj(j:k)i−µ)
+ (k− j)

φ(xj(j:k)i−µ)

Φ(µ−xj(j:k)i)

}
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+

m2∑
i=1

{ k
2∑
j=1

(
xj(1:k)i + (k− 1)

φ(xj(1:k)i−µ)

Φ(µ−xj(1:k)i)

)
+

k∑
j= k

2 +1

(
xj(k:k)i− (k− 1)

φ(xj(k:k)i−µ)

Φ(xj(k:k)i−µ)

)}

+

m3∑
i=1

k∑
j=1

{
xj(j:j)i− (j− 1)

φ(xj(j:j)i−µ)

Φ(xj(j:j)i−µ)

}
+

m4∑
i=1

k∑
j=1

{
xj(1:j)i + (j− 1)

φ(xj(1:j)i−µ)

Φ(µ−xj(1:j)i)

}

+

m5∑
i=1

{ k
2∑
j=1

(
xj( k

2 :k)i− (
k

2
− 1)

φ(xj( k
2 :k)i−µ)

Φ(xj( k
2 :k)i−µ)

+
k

2

φ(xj( k
2 :k)i−µ)

Φ(µ−xj( k
2 :k)i)

)
+

k∑
j= k

2 +1

(
xj( k

2 +1:k)i−
k

2

φ(xj( k
2 +1:k)i−µ)

Φ(xj( k
2 +1:k)i−µ)

+ (
k

2
− 1)

φ(xj( k
2 +1:k)i−µ)

Φ(µ−xj( k
2 +1:k)i)

)}
= 0, (3.3)

where l(µ) stands for the log-likelihood function of µ. It is clear that the left hand side of equation
(3.3) is a continuous function of µ and it converges to +∞ and −∞ when µ tends to −∞ and +∞,
respectively. It means that there is at least one root and so the MLE of µ, denoted by µ̂, exists.
Now, we will show that the MLE of µ is unique. To prove the uniqueness of µ̂, it is enough to show

that ∂2l(µ)

∂µ2
is negative. By performing some calculations, it is not hard to show that

∂2l(µ)

∂µ2
=−Mk− η1 + η2

where

η1 =

m1∑
i=1

k∑
j=1

(j− 1)
φ(yj(j:k)i)

Φ(yj(j:k)i)

(
yj(j:k)i +

φ(yj(j:k)i)

Φ(yj(j:k)i)

)
+ (k− 1)

m2∑
i=1

k∑
j= k

2 +1

φ(yj(k:k)i)

Φ(yj(k:k)i)

×
(
yj(k:k)i +

φ(yj(k:k)i)

Φ(yj(k:k)i)

)
+

m3∑
i=1

k∑
j=1

(j− 1)
φ(yj(j:j)i)

Φ(yj(j:j)i)

(
yj(j:j)i +

φ(yj(j:j)i)

Φ(yj(j:j)i)

)

+ (
k

2
− 1)

m5∑
i=1

{ k
2∑
j=1

φ(yj( k
2 :k)i)

Φ(yj( k
2 :k)i)

(
yj( k

2 :k)i +
φ(yj( k

2 :k)i)

Φ(yj( k
2 :k)i)

)
+
k

2

k∑
j= k

2 +1

φ(yj( k
2 +1:k)i)

Φ(yj( k
2 +1:k)i)

×
(
yj( k

2 +1:k)i +
φ(yj( k

2 +1:k)i)

Φ(yj( k
2 +1:k)i)

)}
,

and

η2 =

m1∑
i=1

k∑
j=1

(k− j)
φ(yj(j:k)i)

Φ(−yj(j:k)i)

(
yj(j:k)i−

φ(yj(j:k)i)

Φ(−yj(j:k)i)

)
+ (k− 1)

m2∑
i=1

k
2∑
j=1

φ(yj(1:k)i)

Φ(−yj(1:k)i)

×
(
yj(1:k)i−

φ(yj(1:k)i)

Φ(−yj(1:k)i)

)
+

m4∑
i=1

k∑
j=1

(j− 1)
φ(yj(1:j)i)

Φ(−yj(1:j)i)

(
yj(1:j)i−

φ(yj(1:j)i)

Φ(−yj(1:j)i)

)

+
k

2

m5∑
i=1

{ k
2∑
j=1

φ(yj( k
2 :k)i)

Φ(−yj( k
2 :k)i)

(
yj( k

2 :k)i−
φ(yj( k

2 :k)i)

Φ(−yj( k
2 :k)i)

)
+ (

k

2
− 1)

k∑
j= k

2 +1

φ(yj( k
2 +1:k)i)

Φ(−yj( k
2 +1:k)i)

×
(
yj( k

2 +1:k)i−
φ(yj( k

2 +1:k)i)

Φ(−yj( k
2 +1:k)i)

)}
,

such that yr(j:k)i = xr(j:k)i−µ, for each r, j, k and i. Since
(
x+ φ(x)

Φ(x)

)
> 0 and

(
x− φ(x)

Φ(−x)

)
< 0 for all

x (see, [5]), so it is clear that η1 > 0 and η2 < 0 and therefore ∂2l(µ)

∂µ2
is always negative. Hence, the

MLE of µ is unique. But, since there is no any closed form for µ̂, it can be obtained numerically.
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4. Simulation and numerical computations

In the previous section, we proposed two different estimators for the location parameter of

the normal distribution based on the URSS scheme. Further, it was deduced that in the case of

m3 =m4, X̄URSS is more efficient than X̄SRS. In this case, we now compute the relative precision

(RP) of the MLE based on URSS scheme, µ̂, with respect to X̄URSS. Such a comparison helps us

to determine the best choice of m in practice. The RP of the estimator T1 with respect to T2 is

generally defined as

RP(T1,T2) =
MSE(T2)

MSE(T1)
,

where MSE(T) stands for the mean squared error of T . To compute RP(µ̂, X̄URSS), we obtain

MSE(X̄URSS) from (2.2) using numerical computations. The MLE of µ though has not any closed

form, but we can obtain it by simulating the equation (3.3). To this purpose, we are used uniroot

command to find the root of the equation (3.3) using simulation in R software. The simulation

algorithm is repeated 105 for all permutations of m = (m1,m2,m3,m4,m5) that m3 =m4 and then

the MSE(µ̂) is computed. The results are presented in Table 1 for M = 5 and k= 4,6. In this case,

there are 34 permutations for m which are sorted in descending order of RPs.

From Table 1, in the problem of estimation the mean of normal distribution, for all permutations

of m with m3 =m4, it is deduced that

• The RP of the estimator µ̂ is more than X̄URSS.

• By increasing k, the RPs increase, which is trivial.

• Combining some of various existing sampling schemes leads to the most RP for MLE; they are

(0,0,2,2,1) for k = 4 and (0,0,1,1,3) for k = 6. Nevertheless, there are some other permutations of

m for which the RP(µ̂, X̄URSS) is at least 98 percent of the highest RP. So, with a little connivance,

there are more than one choice for the permutations of m in practice. Among these choices, one

may select the one with the minimum ranking error and cost of sampling.
Table 1. Values of RP(µ̂, X̄URSS) for all permutations of m with m3 =m4, when k= 4,6 and M = 5.

k= 4 k= 4 k= 6 k= 6
m RP m RP m RP m RP

(0,0,2,2,1) 1.13778 (2,3,0,0,0) 1.04158 (0,0,1,1,3) 1.24255 (3,2,0,0,0) 1.08563
(0,0,1,1,3) 1.12709 (3,1,0,0,1) 1.04121 (0,1,1,1,2) 1.22414 (0,2,0,0,3) 1.08198
(1,0,1,1,2) 1.12296 (5,0,0,0,0) 1.03989 (1,0,1,1,2) 1.22371 (4,1,0,0,0) 1.08159
(2,0,1,1,1) 1.12237 (2,2,0,0,1) 1.03876 (0,0,2,2,1) 1.22062 (1,3,0,0,1) 1.08051
(0,1,1,1,2) 1.11842 (0,2,0,0,3) 1.03667 (2,0,1,1,1) 1.21281 (2,3,0,0,0) 1.07995
(1,0,2,2,0) 1.11624 (1,2,0,0,2) 1.03479 (1,1,1,1,1) 1.19851 (3,1,0,0,1) 1.07909
(3,0,1,1,0) 1.11264 (3,2,0,0,0) 1.03391 (3,0,1,1,0) 1.19668 (2,1,0,0,2) 1.07406
(0,2,1,1,1) 1.11217 (0,4,0,0,1) 1.03305 (1,0,2,2,0) 1.18392 (1,4,0,0,0) 1.06957
(1,1,1,1,1) 1.11003 (2,1,0,0,2) 1.02989 (2,1,1,1,0) 1.17284 (1,1,0,0,3) 1.06422
(0,1,2,2,0) 1.10630 (3,0,0,0,2) 1.02985 (0,2,1,1,1) 1.16993 (4,0,0,0,1) 1.06103
(2,1,1,1,0) 1.09863 (1,1,0,0,3) 1.02978 (1,2,1,1,0) 1.14771 (5,0,0,0,0) 1.05807
(1,2,1,1,0) 1.08123 (1,4,0,0,0) 1.02943 (0,1,2,2,0) 1.12564 (3,0,0,0,2) 1.05257
(0,3,1,1,0) 1.07445 (0,5,0,0,0) 1.02567 (0,3,1,1,0) 1.10036 (0,1,0,0,4) 1.05154
(1,3,0,0,1) 1.04491 (2,0,0,0,3) 1.02274 (1,2,0,0,2) 1.09473 (0,5,0,0,0) 1.04334
(4,1,0,0,0) 1.04449 (0,1,0,0,4) 1.01981 (0,3,0,0,2) 1.09010 (2,0,0,0,3) 1.03457
(4,0,0,0,1) 1.04196 (1,0,0,0,4) 1.01473 (2,2,0,0,1) 1.08979 (1,0,0,0,4) 1.02077
(0,3,0,0,2) 1.04162 (0,0,0,0,5) 1.00367 (0,4,0,0,1) 1.08592 (0,0,0,0,5) 1.00510

When the condition m3 =m4 is omitted, the values of RP(µ̂, X̄URSS) and RP(X̄URSS, X̄SRS) should

be computed. For M = 5, the number of all permutations of m is equal to 126. Table 2 shows the

RPs for k= 4 and 6. The RPs in this table are computed as illustrated in Table 1. To summarize

the results of these tables, only the first ten highest and the last ten lowest RPs are reported.
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Table 2. The RPs for some permutations of m, when k= 4,6 and M = 5.
k= 4 k= 6

RP(µ̂, X̄URSS) RP(X̄URSS, X̄SRS) RP(µ̂, X̄URSS) RP(X̄URSS, X̄SRS)
m RP m RP m RP m RP

(0,0,0,3,2) 1.16215 (0,0,0,0,5) 2.77426 (0,0,2,1,2) 1.26525 (0,0,0,0,5) 4.06153
(0,0,2,1,2) 1.15203 (1,0,0,0,4) 2.67679 (0,0,0,3,2) 1.26458 (1,0,0,0,4) 3.84983
(0,0,3,0,2) 1.14670 (2,0,0,0,3) 2.58593 (0,0,1,2,2) 1.26112 (2,0,0,0,3) 3.65911
(0,0,1,2,2) 1.14204 (0,1,0,0,4) 2.58593 (0,0,3,0,2) 1.25591 (0,1,0,0,4) 3.56944
(0,0,1,3,1) 1.14111 (3,0,0,0,2) 2.50104 (1,0,1,2,1) 1.24331 (3,0,0,0,2) 3.48640
(0,0,0,2,3) 1.13986 (1,1,0,0,3) 2.50104 (0,0,1,1,3) 1.24255 (1,1,0,0,3) 3.40490
(0,0,0,4,1) 1.13941 (4,0,0,0,1) 2.42154 (0,0,2,0,3) 1.24185 (4,0,0,0,1) 3.32925
(1,0,1,2,1) 1.13892 (2,1,0,0,2) 2.42154 (1,0,0,3,1) 1.23798 (2,1,0,0,2) 3.25486
(1,0,0,3,1) 1.13871 (0,2,0,0,3) 2.42154 (0,0,0,2,3) 1.23758 (5,0,0,0,0) 3.18566
(0,0,2,2,1) 1.13778 (0,0,0,1,4) 2.35289 (1,0,2,1,1) 1.23396 (0,2,0,0,3) 3.18371

(0,4,0,0,1) 1.03305 (0,1,1,3,0) 1.55058 (1,4,0,0,0) 1.06957 (0,1,1,3,0) 1.77715
(2,1,0,0,2) 1.02989 (0,1,2,2,0) 1.55058 (1,1,0,0,3) 1.06422 (0,1,2,2,0) 1.77715
(3,0,0,0,2) 1.02985 (0,1,3,1,0) 1.55058 (4,0,0,0,1) 1.06103 (0,1,3,1,0) 1.77715
(1,1,0,0,3) 1.02978 (0,1,4,0,0) 1.55058 (5,0,0,0,0) 1.05807 (0,1,4,0,0) 1.77715
(1,4,0,0,0) 1.02943 (0,0,0,5,0) 1.46366 (3,0,0,0,2) 1.05257 (0,0,0,5,0) 1.66836
(0,5,0,0,0) 1.02567 (0,0,1,4,0) 1.46366 (0,1,0,0,4) 1.05154 (0,0,1,4,0) 1.66836
(2,0,0,0,3) 1.02274 (0,0,2,3,0) 1.46366 (0,5,0,0,0) 1.04334 (0,0,2,3,0) 1.66836
(0,1,0,0,4) 1.01981 (0,0,3,2,0) 1.46366 (2,0,0,0,3) 1.03457 (0,0,3,2,0) 1.66836
(1,0,0,0,4) 1.01473 (0,0,4,1,0) 1.46366 (1,0,0,0,4) 1.02077 (0,0,4,1,0) 1.66836
(0,0,0,0,5) 1.00367 (0,0,5,0,0) 1.46366 (0,0,0,0,5) 1.00510 (0,0,5,0,0) 1.66836

From Table 2, the additional results are deduced as follows
• The RP of X̄URSS is more than X̄SRS, for all permutations of m not only when m3 =m4.
• For k= 4, using the permutation (0,0,0,3,2) leads to the most precise URSS scheme. However,

if one of (0,0,2,1,2), (0,0,3,0,2), (0,0,1,2,2), (0,0,1,3,1), (0,0,0,2,3), (0,0,0,4,1) or (1,0,1,2,1) has less
ranking error or cost of sampling than the most efficient permutation, it may be used in practice.
Note that the precisions of the later 7 permutations are at least 97 percent of (0,0,0,3,2).
• For k = 6, the most precise permutation is (0,0,2,1,2), whereas one of (0,0,0,3,2), (0,0,1,2,2),

(0,0,3,0,2), (1,0,1,2,1), (0,0,1,1,3) or (0,0,2,0,3) may also be recommended with the precision at
least 98 percent of (0,0,2,1,2), if their ranking error or cost of sampling is less than (0,0,2,1,2).
If only minimizing the ranking error is of interest, then it is better to use the permutations with
smaller values of m1 and m5. This issue should be considered for choosing the best URSS scheme.

In Tables 1 and 2, the results are presented for k= 4,6 and M = 5. For other values of k and M ,
the results may be derived to determine the best choice of m.

5. Cost analysis
It is obvious that sampling, ranking and specially measuring the units in each scheme are costly.

This issue is studied by some authors in the field of RSS scheme. [11] investigated the optimal set
size based on the RSS procedure with cost considerations. They considered the relative efficiency
(RE) of RSS with respect to SRS method as a function of the associated RP and required costs.
An extension to these results had been done by [18] to show that taking two or more observations
from each ranked set is beneficial. In this context, we investigate the cost of URSS in comparison
with SRS scheme for estimating the mean of normal distribution when the sample sizes are the
same, i.e., the sample size of the SRS scheme is also equal to N=Mk. First of all, let us introduce
the following notations:

[11] showed that the needed number of pairwise comparisons for visual ranking in a set of size
k is approximately f(k)≈ (k+2)(k−1)

2
. On the other hand, the number of pairwise comparisons for

RSS and MRSS schemes are the same, which are equal to f(k), while it is easy to see that the
needed number of pairwise comparisons for visual ranking in ERSS, MERSS-I and MERSS-II is
g(k)≈ k−1. It is important to highlight that the cost of ranking in each set using RSS and MRSS is
more than cost of ranking in ERSS. Also, the cost of ranking based on the MERSS-I and MERSS-II
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CERSS total cost of ERSS scheme,
CMERSS−I total cost of MERSS-I scheme,
CMERSS−II total cost of MERSS-II scheme,
CMRSS total cost of MRSS scheme,
CURSS total cost of URSS scheme,
ci cost for sampling one unit,
cq cost of quantification of the interested variable for one unit,
cr1 cost of one pairwise comparison in RSS and MRSS schemes,
cr2 cost of one pairwise comparison for ERSS scheme,
cr3 cost of one pairwise comparison using MERSS-I and MERSS-II schemes.

is less than the cost of ranking using ERSS. In other words, cr3 ≤ cr2 ≤ cr1. Hence, the cost of
sampling for various scheme may be given by

CSRS =N (ci + cq),
CRSS =m1k (kci + f(k)cr1 + cq),
CERSS =m2k (kci + g(k)cr2 + cq),
CMERSS−I =m3k

[
k+1

2
ci + g(k)cr3 + cq

]
,

CMERSS−II =m4k
[
k+1

2
ci + g(k)cr3 + cq

]
,

CMRSS =m5k (kci + f(k)cr1 + cq).
Since, for any k≥ 1, k+1

2
≤ k and g(k)≤ f(k), it is obvious that the costs of sampling of ERSS,

MERSS-I and MERSS-II schemes are less than the cost of RSS and MRSS schemes. In addition,
it is clear that the total cost of URSS scheme is obtained via

CURSS =CRSS +CERSS +CMERSS−I +CMERSS−II +CMRSS

= k (m1 +m5) [kci + f(k)cr1 + cq] +m2k(kci + g(k)cr2 + cq)

+ (m3 +m4)

[
k(k+ 1)

2
ci + k(g(k)cr3 + cq)

]
.

Therefore, considering the cost of sampling for each method, the RE of X̄URSS with respect to
X̄SRS may be defined as

RE(X̄URSS, X̄SRS) =
CSRS
CURSS

RP(X̄URSS, X̄SRS). (5.1)

Based on the philosophy of the RSS method, it should be noted that cost of sampling one unit
(ci) is low, while the cost of quantification of the interested variable for one unit is high. Here,
we consider the costs of sampling, quantifications and pairwise comparisons to be cr1 = 4, cr2 =
1.25, cr3 = 1, cq = 31 and ci = 1. Using (5.1), for a given permutation of m, the RE of X̄URSS with
respect to X̄SRS is presented in Table 3 for k = 4,6 and M = 5. In this table, only ten lowest and
ten highest REs are exhibited.

Table 3. Values of RE(X̄URSS , X̄SRS) for some permutations of m, when k= 4,6 and M = 5.
k= 4 k= 6

m RE m RE m RE m RE
(0,2,3,0,0) 1.67944 (5,0,0,0,0) 1.28321 (0,4,0,1,0) 1.77888 (1,2,1,1,0) 1.24487
(0,0,0,0,5) 1.67503 (1,3,1,0,0) 1.27929 (0,0,0,0,5) 1.68790 (0,1,1,3,0) 1.24104
(0,1,2,0,2) 1.65261 (1,4,0,0,0) 1.27929 (0,1,3,1,0) 1.67546 (0,1,2,0,2) 1.24104
(0,0,0,3,2) 1.65004 (2,0,0,0,3) 1.27929 (1,0,4,0,0) 1.66351 (1,2,2,0,0) 1.21014
(0,0,4,0,1) 1.63909 (2,0,0,1,2) 1.27929 (1,1,0,0,3) 1.66351 (1,3,0,0,1) 1.21014
(0,0,1,2,2) 1.63825 (2,3,0,0,0) 1.27260 (0,0,0,3,2) 1.62594 (1,3,0,1,0) 1.21014
(0,0,0,1,4) 1.61617 (3,0,0,0,2) 1.27260 (0,0,5,0,0) 1.62014 (1,3,1,0,0) 1.21014
(0,2,0,1,2) 1.60728 (3,0,0,1,1) 1.27260 (0,2,1,2,0) 1.61811 (1,0,0,3,1) 1.20563
(0,0,0,5,0) 1.59587 (3,0,0,2,0) 1.27260 (0,0,1,3,1) 1.60439 (1,0,0,4,0) 1.20563
(0,1,0,3,1) 1.59153 (3,0,1,0,1) 1.27260 (0,0,0,1,4) 1.59993 (1,0,1,0,3) 1.20563
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From Table 3, it is deduced that the estimator X̄URSS has better performance than X̄SRS, for all
permutations of m, when k= 4,6. Moreover, ombining some of existing sampling schemes may lead
to the highest RE. For example, when k = 4 or k = 6, the permutations (0,2,3,0,0) or (0,4,0,1,0)
have the highest RE, respectively. Such a URSS scheme depends on the values of k, M and also
various sampling costs (ci, cq, cr1, cr2 and cr3), which must be examined in different real situations.

6. Conclusion
In this paper, a URSS scheme including ordinary RSS, ERSS, MERSS Type-I, MERSS Type-II

and MRSS was considered. Of course, more other sampling schemes may be included in a unified
sampling scheme. In the proposed scheme, it was tried to use the more common ranked set sampling
schemes and it was shown that combining some various schemes may lead to more efficiency.

Since, the sample mean is a well-defined estimator of the population mean, the weighted mean
of all mentioned sampling schemes, X̄URSS, was introduced as a reasonable estimator for the mean
of population. It was shown analytically that X̄URSS is unbiased, when the parent distribution is
symmetric and the number of cycles of MERSS Type-I and MERSS Type-II schemes are equal.
When the underlying distribution is normal, it was deduced that X̄URSS is more efficient than
X̄SRS, for all permutations of m. Moreover, the MLE of the location parameter of the normal
distribution, µ̂, based on XURSS was investigated and its existence and uniqueness were confirmed.
Using simulation and numerical computations, it was deduced that µ̂ is more efficient than X̄URSS.
Also, through a cost analysis, the most efficient choice of m was suggested to perform the URSS
scheme in practice for the case of normal distribution. This problem may also be studied for more
other distributions.
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