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ABSTRACT

The study field covering an area of about 1000 km?is located in Sorgun town of the city of Yozgat. In the
region Paleozoic, Campanian-Maastrichtian, Eocene, Miocene and Quaternary units are exposed. Among
these units, the lower Eocene Celtek formation hosts coal beds and oil shale. The Eocene epoch is important
for organic matter deposition regarding oil and gas productivity and anoxic depositional conditions. In
order to examine the paleo-sedimentary conditions of oil shales in the study area and their relation to Total
Organic Carbon (TOC) contents and major-trace element contents, a total of 29 samples were collected
from two boreholes and one Measured Stratigraphic Section (MSS). Samples have TOC contents varying
from 1.97 to 16.17 wt% (average 6.30 wt%). The V/Cr, V/(V+Ni), U/Th, 8U and Authigenic Uranium
(AU) values of the Celtek formation oil shales (CFOS) reveal that the oil shales have been deposited under
variable paleo-environmental conditions. For paleo-salinity the Sr/Ba ratios indicate mostly deposition in
a freshwater environment. Chemical Alteration Index (CIA) values and Sr/Cu ratios indicate that paleo-
climate conditions of CFOS were dry, hot and occasionally humid. The Fe/Ti and (Fe+Mn)/Ti ratios reveal
hydrothermal activity during sedimentation of oil shales. Zr/Rb ratios of samples are indicative of very
weak paleo-hydrodynamics during the deposition of oil shales. Such variable geochemical conditions in
the basin resulted in variable paleo-environmental conditions.

1. Introduction

Some trace elements behave in a sensitive manner

Robl and Barron, 1987; Ozliikk, 2010; Koca et al.,
2010; Sar1 et al., 2010; Koca, 2011; Yavuz Pehlivanli,
2011; Sar1 and Koca, 2012; Yavuz Pehlivanli et al.,

under variable redox conditions; thus, they are very
useful for the determination of the paleo-redox
conditions in depositional environments (Calvert and
Pedersen, 1993; Jones and Manning, 1994; Wignall,
1994; Crusius et al., 1996; Dean, 1993, 1997; Yarincik
et al., 2000; Morford et al., 2001; Pailler et al., 2002).
These trace elements are significantly accumulated in
laminated organic-rich facies deposited under euxinic
conditions. However, they are hardly ever found in
bio-turbation and organic-poor facies.

There are several studies regarding the redox
conditions during oil shale deposition and the relation
between TOC content and redox-sensitive trace
elements (Vine and Tourtelot, 1970; Holland, 1984;

2013; Koralay and Sar1, 2013; Sar1 et al., 2016).

US*soluble
under oxic-suboxic conditions and its enrichment is

For example, uranium exists as
restricted to oxic environments (Calvert and Pedersen,
1993). Under anoxic conditions uranium is reduced to
U*form. Under reducing conditions, uranium within
the sediments forms ligands in the presence of humic
acids and is enriched as uraninite (UO,) at sediment-
water interface (Klinkhammer and Palmer, 1991).
Although reducing of U%is believed to be controlled
by Fe redox reactions, the presence of H,S may
also give rise to sulfate reduction (Langmuir, 1978;
Klinkhammer and Palmer, 1991; Zheng et al., 2002).

* Corresponding author: Berna YAVUZ PEHLIVANLI, bernayavuz80@gmail.com
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Vanadium, nickel and cobalt are very important
for determining the redox conditions of depositional
environments. Under oxic conditions vanadium exists
as V' in vanadate ions (Wehrli and Stumm, 1989).
Humic and fulvic acids catalyze the reduction from
vanadate to vanadyl (Templeton and Chasteen, 1980).
Vanadium can be adsorbed as V* or transferred to
the sediment as organometallic ligands (Morford and
Emerson, 1999). Under extremely reducing conditions,
e.g. in the presence of free H,S, V is reduced to
V3*. Vanadium enters the medium in form of geo-
porphyrine, solid oxide (V,0,) or hydroxide (V(OH),)
(Breit and Wanty, 1991). Vanadium is reduced through
a two-stage process which results in the formation of
different V phases with different solubility under non-
sulfidic anoxic versus euxinic conditions (Calvert and
Pedersen, 1993).

Nickel generally occurs as Ni-carbonate (NiCO,)
or dissolved species accompanied by humic and fulvic
acids (Achterberg et al., 1997). Under oxic conditions
it occurs as Ni"2or NiCl"ions (Calvert and Pedersen,
1993).The presence of organic compounds accelerates
the transfer of Ni to the sedimentary environment
and Ni is free in pore water at the sediment-water
interface. Under anoxic conditions it may also be hold
in pyrite as solid solution (Huerta-Diaz and Morse,
1992; Morse and Luther, 1999).

At oxic conditions cobalt may form compounds
of dissolved cations (Co™?) or humic and fulvic acids
(Achterberg et al., 1997) and may exist as insoluble
sulfide (CoS) at anoxic conditions (Huerta-Diaz and

Morse, 1992). Moreover, since Co is slowly absorbed
due to kinetic reasons, it is rarely found in authigenic
sulfides (Morse and Luther, 1999).

Based on Ni/Co, V/Cr and V/(V+Ni) ratios
the paleo-environmental conditions of organic-
rich sedimentary rocks can be assessed (Hatch and
Leventhal, 1992; Jones and Manning, 1994; Rimmer,
2004). Li et al. (2018) reconstructed the paleo-
environmental conditions through the V/Cr, V/(V+Ni),
U/Th, 8U and Authigenic Uranium (AU) values; the
Sr/Ba ratio was used for paleo-salinity; paleo-climate
data was used for Chemical Index of Alteration (CIA);
and Sr/Cu ratios, Fe/Ti and (Fe+Mn)/Ti ratios for
hydrothermal activity during sedimentation of oil
shales, and Zr/Rb ratios for paleo-hydrodynamics.

The aim of this study is to examine the organic
material abundance, the paleo-salinity, the paleo-
climate, the hydrothermal conditions during deposition
and the factors affecting the paleo-environmental
characteristics (e.g. paleo-hydrodynamics) of oil shale
samples obtained from Celtek formation in the vicinity
of Sorgun, Yozgat area, Central Turkey (Figure 1).

2. Geological Setting

The study area covering an area of about 1000 km?
is located close to Sorgun town of the city of Yozgat
(Figure 1). In the region Paleozoic, Campanian-
Maastrichtian, Eocene, Miocene and Quaternary
units crop out. The central Anatolian granitoids
(Erler and Bayhan, 1993; Dénmez et al., 2005) are
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Figure 1- Geological map of the study area (Cicioglu, 1995).
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the oldest rock units around the study area which
are unconformably overlain by the lower Eocene
Celtek formation composed of sandstone, coal, oil
shale, lenticular sandstone and mudstone alternations
(Cicioglu, 1995). This formation is unconformably
covered by the lower-middle Eocene Bogazkdy
formation starting with a basal conglomerate and
continuing to the top with volcanic-interbedded
sandstone, fossiliferous limestone, clay stone, clayey
limestone, marl and various volcanic rocks including
rhyolite, rhyolitic tuff, agglomerate, dacite, andesite
and basalt. At the end of Lutetian ophiolitic rocks
of the Izmir-Ankara-Erzincan suture zone were
thrusted over the Bogazkdy formation. All these
units are overlain by Neogene deposits (Figures 1
and 2) (Cicioglu, 1995; Beyazpiring et al., 2014). The
Kizilirmak formation, from bottom to the top consists
of terrestrial conglomerate, sandstone, siltstone,
claystone, mudstone and limestone (Beyazpiring et
al., 2014). It is covered by Anatolian granitoids and
Plio-Quaternary units.
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Figure 2- Generalized stratigraphic section of the study area of
Sorgun basin (Modified from Beyazpiring et al., 2014;

Cicioglu, 1995).

3. Material and Methods

Nineteen Celtek formation oil-shale (CFOS)
samples were collected from three different locations
in the coal field of the Yeni Celtek Coal Management
in Sorgun: nine surface samples from a Measured
Stratigraphic Section (MSS) (YC) and 10 samples
from two cores (SJ and (). The samples from the
MSS were taken systematically and the core samples
were collected at 10 cm intervals per meter (Figure
3). Major and trace element contents were determined
at the laboratories of the Bozok University. About
30 g of each sample was grinded to pass the 90 um
mesh. For trace and rare earth element contents 0.5 g
sample was analyzed through ICP-ES (ICP emission
spectrometry) and ICP-MS (ICP mass spectrometry)
techniques at the Acme Analytical Laboratories Ltd
(Canada). Moreover, the samples were analyzed using
a Rock-Eval VI pyrolysis device at the Laboratories of
the Turkish Petroleum Corporation (TPAO).
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Figure 3- The lithological columns of the SJ and C cores and the
YC Measured Stratigraphic Section (MSS) (not to scale).
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indicate that the organic material consists of Type-1
and Type-2 kerogen (Figure 4a and b). Considering
the T_  values (Table 2) and the kerogen types, the
samples are generally within the oil window and

4, Results and Discussion

4.1. Rock Eval Pyrolysis

a;

The TOC (Total Organic Carbon) contents of oil
shales range from 1.97 to 16.17 % with average of 6.30
%. The values show very good to prefect source rock
character (Table 1).The HI-OI and HI-T _ diagrams

depth-dependent variations of samples are indicative
of immature to early mature stages (Espitalie et al.,
1984).

Table 1- Source rock properties of CFOS based on Total Organic Carbon (TOC) content.

Peters and Cassa (1994) Tissot and Welte (1984) Jarvie (1991)
Corg . . TOC Source Rock | TOC Source Rock Source Rock
g | OMPoeMtRl T Quality | (%) Quality sample | TOC (%) | ™o ity
0-0.5 Weak 0.1-0.5 Weak 0-0.5 Insufficient
. . . 1.97- Good - Very
0.5-1 Middle 0.5-1 Middle 0.5-1 Middle C 16.17 Good
12 Good -2 Good >1 Enough e 1241;; Very Good
2-4 Very good 2-10 Rich SJ 2.48-3.13 Very Good
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Figure 4 a- Characterization of organic matter in HI vs. Ol diagram (Espitalie et al., 1977); b-Plot of Hydrogen Index (HI) vs. T of the CFOS
samples (Mukhopadhyay et al., 1995).

Table 2- T limit values of CFOS according to kerogen types (Espitalie et al., 1984).

Type | Type Il Type I11 Degree of Maturation Sample TMAX (°C)
<425 °C <435°C Immature-Early Mature C 418-436
440-448 °C 425-450 °C 435-465 °C Oil window YC 427-439
>450 °C >465 °C Gas window SJ 404-433
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4.2. Elemental Composition

The distribution of major (>0.1 %), minor (between
100 ppm and 0.1%) and trace elements (<100 ppm)
reflects the geochemical characteristics of the
sediments. Although the use of element abundances
is not the sole tool to determine the depositional
conditions (Degens et al., 1958), all factors which
are adsorbed from the water to organic and inorganic
substances, which control the element contribution to
the environment, are taken into consideration to figure
out the paleo-environmental conditions. The enriched
elements are retained within minerals or absorbed in
organic material that formed in water at the immediate
vicinity and are incorporated into authigenic minerals
during or after the sedimentation (Cody, 1971).

In this study, all the samples evaluated are organic-
rich oil shales. Major, trace elements and average
concentrations of CFOS samples were computed
(Tables 3 and 4).

4.3. Element Enrichments

Element enrichment of CFOS samples were
computed on the basis of average shale values
(Turekian and Wedepohl, 1961) using the equation:

[EF
2006).

X=(X/Al) / (X/Al) ] (Brumsack,

element sample standard

Values >1 represent element enrichment whilst
those <1 element depletion (Table 5). Results of
calculations reveal that Si, Pb, U and As elements
in almost all the samples show enrichment. It is
noticeable that uranium appears enriched in all the
elements with an enrichment factor varying from 1.19
to 153.7 (Table 5).

4.4. Paleo-environmental Conditions

The paleo-environmental conditions exert a great
control on the preservation of organic matter (Li et

al., 2018). Some redox-sensitive elements are used
for determining the paleo-environmental conditions.
In this study, some element ratios such as V/Cr, V/
(V+Ni), U/Th, dU[dU=2U/(U+Th/3)] and authigenic
uranium (AU=U-Th/3) were used to investigate the
paleo-environmental conditions. V/Cr ratios > 4.25 are
indicative of strong reducing conditions, those between
2 and 4.25 depict moderate reducing conditions and
V/Cr ratios < 2 show oxidative conditions (Teng et
al., 2004). V/(V+Ni) ratios > 0.5 are indicative of
reducing conditions but ratios lower than this value
depict oxidative conditions (Tribovillard et al., 2006).
U/Th ratios > 1.25 are indicative of strong reducing
conditions, those between 0.75 and 1.25 depict
moderate reducing but ratios lower than this value
represent oxidation (Ernst, 1970; Jones and Manning,
1994). 6U values < 1 indicate oxidation and those >
1 depict reducing conditions (Zhao et al., 2016). AU
values > 12 ppm are indicative of strong reducing
conditions, those between 5-12 ppm moderate
reducing conditions and values < 5 ppm represent
oxidation (Deng and Qian, 1993; Teng et al., 2005).

Paleo-environmental assessment for CFOS
samples based on these parameters are listed in table
6. The average V/Cr, V/(V+ Ni), U/Th, 6U and AU
values of CFOS samples are 3.32, 0.89, 0.61, 1.10 and
34.86, respectively (Table 6). Results of assessments
and depth-dependent changes of V/Cr and U/Th reveal
variable sedimentation processes and strong reducing
to oxidative conditions (Figures 5 and 6).

4.5. Paleo-salinity

The St/Ba ratio is used to assess the paleo-salinity
in the depositional environment. According to Wang
and Wu (1983), Sr/Baratio> 1 is indicative of seawater
influence, those between 1 and 0.6 depict brackish
water and ratios < 0.6 represent freshwater conditions.
The Sr/Ba ratios of CFOS samples are between 0.05
and 1.27 with a basin average of 0.57. These values
indicate that the basin was mostly supplied with
freshwater which was occasionally replaced by saline
and brackish water (Table 6).

Table 3- Average main element contents (in %) of the CFOS samples from Sorgun Basin.

Sample SiO, AlLO, Fe,O, MgO CaO Na,0 K,0 TiO, P,0, MnO Cr,0,

C avr (n=10) 42.06 20.42 4.18 0.46 1.13 0.17 2.02 0.51 0.06 0.06 0.003

YC avr (n=9) 46.38 22.23 6.25 0.93 0.66 0.19 2.42 0.48 0.10 0.12 0.005

SJ avr (n=10) 59.94 13.72 4.63 1.28 4.73 1.14 391 0.52 0.10 0.06 0.005

CFOS Average 49.46 18.79 5.02 0.89 2.17 0.50 2.78 0.50 0.08 0.08 0.004
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Figure 5- According to V / Cr ratios, Depth-dependent redox changes of CFOS.
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Table 6- The parameters characterizing the paleo-depositional environment of the CFOS samples.

Sample V/Cr V/(V +Ni) U/Th SU AU Sr/Ba CIA Sr/Cu Fe/Ti (Fet+ Mn)/Ti Zr/Rb
C5 2.30 0.90 0.38 1.07 2.07 0.42 75.66 18.44 6.43 6.65 1.85
C8 4.46 0.87 0.54 1.23 6.07 0.63 58.84 22.34 24.97 25.82 1.54
C10 2.92 0.84 0.41 1.10 3.53 0.59 88.06 8.52 14.94 15.05 1.08
Cl12 3.25 0.89 0.28 | 091 -2.73 0.48 87.88 11.87 11.58 12.08 1.11
C19 2.75 0.89 0.24 | 0.83 -5.53 0.45 87.99 11.80 7.96 8.09 1.28
C22 2.25 0.88 0.28 | 0.92 -2.53 0.32 84.30 14.76 5.52 5.54 2.53
C28 4.46 0.97 0.65 1.32 35.00 0.87 94.70 6.96 3.43 3.45 0.72
C29 6.92 0.94 3.69 1.83 | 224.23 0.05 96.55 15.45 48.32 48.42 1.00
C32 3.62 0.95 0.41 1.10 4.40 0.97 93.34 18.29 9.36 9.39 1.05
C33b 6.31 0.95 0.18 | 0.69 -18.47 1.00 95.28 8.81 4.76 4.78 0.63
YC2 6.54 0.95 029 | 0.92 -4.17 0.69 94.88 5.04 12.92 12.94 0.65
YCS 2.96 0.91 0.22 | 0.80 -5.47 0.47 86.07 12.94 22.84 2391 1.37
YC6 3.47 0.88 0.31 0.96 -1.47 0.45 88.79 9.83 7.75 7.94 1.18
YC7 4.19 0.89 0.31 0.96 -1.27 0.48 87.73 8.86 10.68 10.75 1.21
YCI10 2.80 0.87 0.25 | 0.86 -2.90 0.46 88.61 3.46 14.00 14.19 0.61
YC12 4.28 0.90 025 | 0.85 -3.27 0.54 87.34 8.30 21.19 21.52 0.65
YCI13 3.36 0.91 0.27 | 0.89 -3.07 0.53 88.46 5.62 18.15 18.63 0.61
YCl4 3.05 0.91 0.26 | 0.88 -2.63 0.52 85.97 5.49 12.53 12.82 0.65
YCI15 2.59 0.87 0.91 1.46 19.67 0.54 87.33 4.84 17.73 17.81 0.58
SJ2 1.15 0.76 0.23 0.82 -2.27 0.45 49.55 35.32 8.60 8.77 1.34
SJ4 2.83 0.87 0.97 1.49 35.33 0.96 32.98 37.38 20.16 21.18 1.64
SJ6 1.71 0.84 2.67 1.78 72.30 0.47 56.88 22.33 9.79 9.96 1.10
SJ8 1.19 0.89 0.30 | 0.95 -0.83 1.27 34.98 114.04 9.68 10.01 1.75
SJ10 2.48 0.81 1.33 1.60 28.57 0.68 80.30 9.71 16.67 16.72 0.76
SJ12 2.53 0.89 1.97 | 634.80 0.63 80.35 9.10 8.41 8.43 1.06
SJ14 3.14 0.92 0.90 1.46 10.07 0.42 70.16 66.42 4.97 5.00 1.08
SJ16 2.63 0.94 0.18 | 0.69 -3.70 0.51 74.64 24.02 12.62 12.66 1.40
SJ19 2.57 0.89 0.29 | 0.93 -1.37 0.38 70.51 33.06 7.38 7.43 1.06
SJ22 3.62 0.92 0.18 | 0.71 -3.50 0.40 67.92 52.12 8.58 8.63 1.15
CFOS 3.32 0.89 0.61 1.10 34.86 0.57 78.48 20.87 13.17 13.40 1.13
Average

4.6. Paleo-climate

The climate generally affects mineral alteration,
transport and source rock chemistry (Zhang et al.,
2011).Thus, the Chemical Index of Alteration (CIA)
may be modified by paleo-climate conditions (Bai et
al., 2015). The CIA is computed from the equation
CIA=100x[AL0,/(Al,0,+Ca0*+Na,0+K,0)] (Cox
et al., 1995).

CIA values between 50 and 65 reflect cold and
dry climate conditions during sedimentation. The
values between 65 and 85 are indicative of a warm
and humid climate regime. If CIA is in the range of
85 to 100, the climate is hot and humid. CIA values of
CFOS samples vary from 32.98 to 96.55 and the basin
average is 78.48 (Table 6). These values show that
the paleo-climatic conditions change from cold to dry
and hot to humid conditions from time to time, but the
environment may have been generally hot and humid.
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The Sr/Cu ratios are also informative for paleo-
climate conditions. St/Cu ratios of 1.3 to 5.0 reflect
hot and humid climate regime whilst ratios >5 are
indicative of dry and hot conditions (Liang et al., 2015).
The Sr/Cu values of CFOS samples vary from 3.46
to 114.04 and basin average is 20.87. These findings
imply paleo-climate conditions show dry and hot and
occasionally hot-humid environment (Table 6).

4.7. Hydrothermal Depositional Conditions

Sediments associated with hydrothermal fluids
are called hydrothermal deposits (Zhong et al.,
2015). Hydrothermal fluids exert a great control on
trace element concentrations and the abundance of
organic material accumulated in sedimentary rocks
(Chu et al., 2016). The Fe/Ti and (Fe+Mn)/Ti ratios
reflect a hydrothermal contribution to the sediments
(Li et al., 2018). Fe/Ti ratios >20 and (Fe+Mn)/Ti
ratios of 20+5 show hydrothermal interaction with
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the sediments (Bostrom,1983). Fe/Ti and (Fe+Mn)/
Ti ratios of CFOS samplesreveal that hydrothermal
fluids occasionally contributed to element enrichment
during sedimentation (Table 6).

4.8. Paleo-hydrodynamics

Zircon is typically deposited in terrestrial and
shallow marine environments. Due to its active
chemical properties, Rb is likely transported and
accumulated in deep water (Teng et al., 2005).
Therefore, Zr/Rb can be used for the assessment of
changes in water depth. Lower Zr/Rb ratios are a result
of deeper sedimentary water circulation and weaker
hydrodynamic forces. It is suggested that Zr/Rb ratio
of around 0.92 represents weak hydrodynamic forces
whilst higher ratios from 1.25 to 4.76 are indicative

of an environment with strong paleo-hydrodynamic
forces (Teng, 2004; Zhao et al., 2016). The Zr/Rb
ratios of CFOS samples vary from 0.58 to 2.53 and
basin average is 1.13. These values imply that both
weak and strong hydrodynamic prevailed from time to
time during the sedimentation in the basin (Table 6).

4.9. Factors Controlling the Paleo-environmental
Conditions During the Total Organic Carbon
(TOC) in Oil Shales

Paleo-environmental data (V/Cr, V/(V+Ni), U/Th,
dU, authigenic uranium (AU), St/Ba, CIA, St/Cu, Fe/
Ti, (Fe+Mn)/Ti and Zr/Rb ratios) of the CFOS samples
were correlated on an individual basis with the total
organic carbon (TOC) contents of oil shales (Figure
7a-k). Samples collected from different locations and
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Figure 7- Correlation diagrams of TOC (%) versus parameters of the depositionalpaleo-environment: (a) V/Cr, b) V/(V + Ni), ¢) 6U, d)
U/Th, e) Authigenic Uranium (AU), f) Sr/Ba ratios, g) Chemical Index of Alteration (CIA), h) St/Cu, i) Fe/Ti, j) (Fe + Mn)/Ti

and, k) Zr/Rb of CFOS samples (Li et al., 2018).
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Figure 7- continued.

depths are differently correlated with TOC. Figure 7
reveals that V/Cr (a), CIA (g), St/Ba (f), Fe/Ti (i) and
(Fet+tMn)/Ti (j) ratios have positive correlation with
TOC. The data shows that element characteristics of
CFOS samples are consistent with the preservation of
organic material and high reducing conditions.

5. Conclusions

In this study the conditions dominating during
the formation of the oil shales hosted in the Celtek
formation (CFOS), are assessed. The samples have
TOC values varying from 1.97 to 16.17 wt% (average
6.30 wt%) revealing a very good source rock. The
T . values indicate that in respect of the oil window
the samples are at immature-early mature stage.
Considering the average values of the world shales

provided by Turekian and Wedepohl (1961), Si, Pb,
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U and As reveal enrichment at all sampling locations.
Under oxic-suboxic conditions uranium exists as
soluble U®" which necessitates the restriction of
uranium enrichment to oxic environments. However,
as shown from Figure 6, high uranium enrichment is
consistent with strong reducing conditions.

Geochemical data of the CFOS samples (e.g. V/Cr,
V/(V+Ni), U/Th, U and AU (authigenic uranium))
indicate that the oil shales were deposited under
variable paleo-environmental conditions. The Sr/Ba
ratios point to deposition in a freshwater environment.
The paleo-climatic data of CFOS samples show
that when the chemical change index (CIA) and Sr
/ Cu ratios are evaluated, there are sedimentation
environments ranging from dry-hot climate to hot-
humid climate. Chemical weathering typically
increases as temperatures rise and rain falls, which
means rocks in hot and wet climates experience faster
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rates of chemical weathering than do rocks in cold,
dry climates. The Fe/Ti and (Fe+Mn)/Ti ratios reflect
hydrothermal contribution during the sedimentation
of oil shales. According to the Zr/Rb ratios, weak
paleo-hydrodynamics prevailed during deposition.
The relations between TOC and redox element ratios
indicate that the paleo-environmental conditions
exerted a great control on the deposition of organic
matter. The studied oil shale samples point to variable
redox conditions and therefore, water chemistry,
environment-climate  conditions and  organic
productivity on the lake surface must have also varied.

The paleo-climatic data of CFOS samples show
that when the chemical change index (CIA) and Sr
/ Cu ratios are evaluated, there is precipitation from
dry-hot environments to hot-humid environments.
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