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A note on the stability of a neural �eld model

Berrak Özgür∗†, Ali Demir‡ and Sertaç Erman�

Abstract

In this paper we consider the neural �eld model for two neural pop-
ulations. We investigate the properties of D-curves and we give some
conditions for asymptotic stability. The asymptotic stability region is
determined by using the Stépán's formula. Taking various delay terms
into account, the e�ect of delay on the stability is investigated. More-
over we study on the stability cases by considering the real roots of the
characteristic equation.
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1. Introduction

The neural �eld models are one of the very interesting topics in neuroscience. The
studies made by Wilson and Cowan, Amari [12],[1] are very important in this area.
According to the study [9] by Veltz, neural �eld equations describe the activity of neural
populations at a mesoscopic level. These models are made to describe the mean activity
of neural populations. In these models, integro di�erential equations are used. For some
biological cases the time is needed, hence the delay terms are added in these models.
The propagation delay terms in [4],[9]-[10] are added to describe the time for a signal to
travel a distance. The delay terms may be constant or space dependent.

The scientists are very interested in neural �eld theory. The stability of this model is
considered in many papers. A center manifold result is given by Veltz and Faugeras in
[11]. The existence and uniqueness of the solution is studied in [4] by Faye and Faugeras.
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The e�ect of the delay on the stability is studied by Faye, Faugeras and Veltz in [4],[9]-
[10].

The main aim of this study is to investigate the asymptotic stability conditions for
a neural �eld system. In [9], the stability analysis of a linearized neural �eld equation
for one neural population is made. The main focus of this study is to make the stability
analysis of the model for two neuron populations. The di�erence of this work is that
the neurons in the �rst population are in a relation among themselves and also the
e�ect of the neurons in the second population on the ones in the �rst population is
considered. To make the stability analysis we use the D-subdivision method for which
we need the characteristic equation of the linearized system. The process of this method
is to separate the parameter space in subspaces after �nding the D-curves on which pure
imaginary roots locate. This method is also used to make the stability analysis of the
Hayes equation, the Cushing equation, the delayed Mathieu equation [6]. The stability
analysis of a di�erential equation including a state dependent delay is made by using this
method [2]. In this research, we study on the number of characteristic roots with positive
real parts in the subspaces of parameter space. We �nd the asymptotic stability region
by using the Stépán's formula in the subsection 2.1. For a special case, by considering
the roots of characteristic equation as real roots, we investigate the conditions for the
asymptotic stability and we give a theorem in the subsection 2.2.

2. Stability analysis via D-subdivision method and Stépán's for-

mula

Consider the neural �eld model for p neural population on the space Ω ⊂ Rd which
presents the dynamics of mean membran potential with periodic boundary conditions

(2.1)

( d
dt

+ li)Vi(t, r) =
∑p
j=1

∫
Ω
Jij(r, r)S[σj(Vj(t− τij(r, r), r)− hj)]dr + Iexti (r, t)

t ≥ 0, 1 ≤ i ≤ p
Vi(t, r) = φi(t, r) t ∈ [−T, 0]

given in [10, 11].

In this model, S is the sigmoid function. The functions φi(t, r) are the initial condi-
tions. The external currents from other cortical areas are indicated by Iexti (r, t). The
threshold activity for each population are indicated by hi. Positive real values σi repre-
sent the slope of the sigmoids at the origin. Positive real values li represent the speed of
decrease of the membrane potential toward its rest value.

In this study we consider a special case for the linear neural �eld model for two
neural populations. We consider that neurons in the �rst neuron population excite each
other and also the neurons in the second neuron population excite the ones in the �rst
population. But neurons in the second population inhibit each other and the neurons in
the �rst population inhibit the ones in the second population. In a mathematical way
we consider the case J21(x, y) = J22(x, y) = 0.

For this study we consider x, y ∈ [−π
2
, π

2
]. Here we describe synaptic inputs for a

large group of neurons at position x and time t by the functions V1(x, t) and V2(x, t) and
their time derivatives by d

dt
V1(x, t) and d

dt
V2(x, t). The functions V1(y, t− τ(x− y)) and

V2(y, t − τ(x − y)) give the �ring rate of a large group of neurons with delay τ . The
synaptic connectivity is given by the function Jij(x, y) which is even and π periodic.
Here J11(x, y) describe how neurons in the �rst neural population at position y a�ects
the neurons in the same population at position x and J12(x, y) describe how neurons
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in the second neural population at position y a�ects the neurons in the �rst population
at position x. In [3], need for the linearization based on the study of McCormick [7]
is considered. According this, in order to examine the stability of the solutions of this
model, we use the linearization of (2.1) about (0, 0). We use U1(x, t) and U2(x, t) instead
of V1(x, t) and V2(x, t). For the delay term, we assume τ(x− y) = τ.

Hence the system for this study is the following:

d

dt
U1(x, t) + l1U1(x, t) = σ1s1

∫ π
2

−π
2

J11(x, y)U1(y, t− τ(x− y))dy(2.2)

+σ2s1

∫ π
2

−π
2

J12(x, y)U2(y, t− τ(x− y))dy

d

dt
U2(x, t) + l2U2(x, t) = 0

where s1 = S
′
0(0).

The asymptotic stability analysis of nonlinar system (2.1) is equivalent to that of
system (2.2) about (0, 0).

To determine the asymptotic stability region of the neural �eld model we make
use of the D-subdivision method. Hence we need the characteristic equation of the
liearized model. By using the exponential perturbation [9] we look for the solutions as
U(x, t) = U(x)eλt, hence we get

λeλtU1(x) + l1e
λtU1(x)− σ1s1e

−λτ eλt
∫ π

2
−π
2

J11(x, y) U1(y)dy − σ2s1e
−λτ eλt

∫ π
2
−π
2

J12(x, y) U2(y)dy = 0

λeλtU2(x) + l2e
λtU2(x) = 0

Hence

(2.3) λU1(x) + l1U1(x)− σ1s1e
−λτ

∫ π
2

−π
2

J11(x, y) U1(y)dy−

−σ2s1e
−λτ

∫ π
2

−π
2

J12(x, y) U2(y)dy = 0

λU2(x) + l2U2(x) = 0

Since the boundary conditions given in the model are periodic then the solutions of
this system are functions cos(2nx) and sin(2nx) [9]. In this model we consider F1 =∫ π

2
−π
2

J11(y) U1(y)dy and F2 =
∫ π

2
−π
2

J12(y) U2(y)dy.

Hence the equation for the characteristic values λ is

λ2 + λl1 + λl2 + l1l2 −Kλe−λτF1 −Kl2e−λτF1 = 0

or

(2.4) λ2 + λl2 + l1(λ+ l2)−K(λe−λτF1 + l2e
−λτF1) = 0
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2.1. General case : Complex roots. Writing λ = µ + iν and splitting the real and
imaginary parts of (2.4) we have

(2.5) Re : µ2 − ν2 + µl2 + µl1 + l1l2 −Kµe−µτ cos(τν)F1 −Kνe−µτ sin(τν)F1

−Kl2e−µτ cos(τν)F1 = 0

(2.6) Im : 2µν + νl2 + νl1 −Kνe−µτ cos(τν)F1 +Kµe−µτ sin(τν)F1

+Kl2e
−µτ sin(τν)F1 = 0

To determine the D-curves we take µ = 0 and then we have

(2.7) P (ν, l1,K) = −ν2 + l1l2 −Kν sin(τν)F1 −Kl2 cos(τν)F1 = 0

(2.8) R(ν, l1,K) = νl2 + νl1 −Kν cos(τν)F1 +Kl2 sin(τν)F1 = 0

We take the parameter space (l1,K) and for τν 6= nπ and F1 6= 0 we have

(2.9) l1 =
−ν cos(τν)

sin(τν)
and K =

−ν
sin(τν) F1

as the boundaries of D-subdivision. Moreover the line l1l2 −Kl2F1 = 0 for ν = 0 is
also a boundary of D-subdivision. We call this singular line as C∗(F1, l2).

Now we investigate some properties of D-curves as in [5]. Assuming Jn = (nπ, (n +
1)π), for �xed values of l2 and F1, we show the D-curves by Cn(F1, l2) in the parameter
space (l1,K). In the following lemmas we take θ = τν.

2.1. Lemma. The curves Cn(F1, l2) don't intersect each other.

Proof. Assume that l1(θ1) = l2(θ2) andK1(θ1) = K2(θ2) for θ1 ∈ Ja and θ2 ∈ Jb , a 6= b.
Hence we have

−θ1 cos(θ1)
τ sin(θ1)

= −θ2 cos(θ2)
τ sin(θ2)

and −θ1
τ sin(θ1)F1

= −θ2
τ sin(θ2)F1

.

Writing the second equality in the �rst one we have cos(θ1) = cos(θ2). Therefore we
get θ1 = θ2. We conclude that our assumption is wrong and the curves Cn(F1, l2) don't
intersect each other. �

2.2. Lemma. The curves Cn(F1, l2) intersect the line l1 = 0 only once. For the K-
coordinates Ke where the curves Cn(F1, l2) intersect the line l1 = 0 we have
Ke > Ke+1 for e ≥ 0

Ke < Ke+1 for e < 0

where

e =

{
e = f , n = 2f , f ∈ N

e = −f , n = 2f − 1 , f ∈ N .

Proof. Assuming l1 = 0 we get θ = π
2

+2eπ. Taking this θ value we get theK-coordinates

uniquely as K(θ) = −(π+4eπ)
2τF1

where the curves Cn(F1, l2) intersect the line l1 = 0.

Considering these Ke-coordinates we get
Ke > Ke+1 for e ≥ 0

Ke < Ke+1 for e < 0. �
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2.3. Lemma. Considering (2.9), the following limits are satis�ed:

limθ→kπ+ l1(θ) = −∞
limθ→kπ− l1(θ) = +∞
limθ→kπ+ K(θ) = +∞
limθ→kπ− K(θ) = −∞
limθ→2kπ+ K(θ) = −∞
limθ→2kπ− K(θ) = +∞
limθ→2kπ+ l1(θ) = −∞
limθ→2kπ− l1(θ) = +∞

Proof. The proof is clear from (2.9). �

2.4. Lemma. The curve C0(F1, l2) intersects the line C∗(F1, l2) only at the point
(limθ→0 l1(θ), limθ→0 K(θ)) = (−1

τ
, −1
τF1

). Moreover the curves Cn(F1, l2) for n 6= 0 don't

intersect the line C∗(F1, l2) at any point.

Proof. Considering and writing (2.9) in the sigular line C∗(F1, l2), we get
θl2

τ sin θ
(1 − cos θ) = 0 and hence θ = 2nπ , n = 0, 1, 2, .... This is a contradiction to

selection of Jn regions. �

To investigate the stability of the model in terms of the number of characteristic
roots with positive real parts we use the Stépán's formula [6],[8]. Consider the functions
P (ν, l1,K) and R(ν, l1,K) on the parameter space (l1,K) and take a point B(l0,K0) in
one of the subspace of the parameter space.

Let ω = ρj , j = 1, ..., s and ρ1 ≥ ... ≥ ρs be the positive real roots of P (ν, l0,K0) and
let ω = σi , i = 1, ..., s and σ1 ≥ ... ≥ σs = 0 be the nonnegative real roots of R(ν, l0,K0).

If the dimension of (2.4) is even (d = 2m , m ∈ Z+) then we calculate the number of
characteristic roots with positive real parts in this subspace by the formula

(2.10) k = m+ (−1)m
s∑
j=1

(−1)j+1sgn(R(ρj , l0,K0))

If the dimension of (2.4) is odd (d = 2m+ 1 , m ∈ Z+) then we calculate the number
of characteristic roots with positive real parts in this subspace by the formula

(2.11) k = m+
1

2
+ (−1)m

[
1

2
(−1)ssgn(P (0, l0,K0) +

s−1∑
j=1

(−1)jsgn(P (σi, l0,K0))

]

Now we use the ν−parametric expressions in (2.9) to draw the D curves in the pa-
rameter space (l1,K). The asymptotic stability region (where k = 0) and the number
of unstable characteristic roots in the subregions of the parameter space is shown in the
following graphs. Also the e�ect of the delay term on the stability is shown below.
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Figure 1. Stability region for the system (2) where τ = 0.5 and F1 = l2 = 1.

Figure 2. Stability region for the system (2) where τ = F1 = l2 = 1.

Figure 3. Stability region for the system (2) where τ = 2 and F1 = l2 = 1.

Hence the asymptotic stable region is the region where k = 0. By considering these
�gures, we observed that the asymptotic stability region depends on the delay term. The
asymptotic stability region getting smaller as the delay term increases.
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2.5. Theorem. The solution of system (2.2) is asymptotically stable if and only if

l1 > 0 and l1
F1

> K > −θ
τ sin(θ)F1

. Here θ values are the roots of l1 − −θ cos(θ)
τ sin(θ)

= 0 for

θ ∈ (0, π).

Proof. The asymptotic stability region is given by means of C∗(F1, l2), and (2.9). This
region is bounded below by C0(F1, l2) and above by C∗(F1, l2). �

2.2. Special case : Real roots. In this section we consider a speci�c case in which all
characteristic roots are real numbers. Taking the roots λ = µ ∈ R in (2.4) we have the
following

l1 =
−µ(µ+ l2) + (µ+ l2)e−µτF1K

(µ+ l2)

From the model we considered we know that l1 > 0. Hence

(2.12) l1 = −µ+ e−µτF1K > 0

For the asymptotic stability of the system, we give the following theorem.

2.6. Theorem. Consider l1 = −µ + e−µτF1K > 0. If F1K < 0 then the system is
asymptotically stable.

Proof. Considering l1 = −µ + e−µτF1K > 0 and F1K < 0 then µ ∈ (−∞, F1K) which
implies that the system is asymptotically stable. �

3. Conclusion

In this study, we consider the neural �eld model for two neural population and we
investigate the stability of this model by using the D-curves and Stépán's formula. The
novelty of this study is to make the stability analysis by getting the characteristic equation
of the linearized model. We determine the conditons for the solutions to be asymptotically
stable. The asymptotic stability regions are shown on the graphs. As in the stability
analysis of the Hayes equation, the asymptotic stability region of the model in this
research is bounded by some D-curves namely the singular line and the �rst D-curve.
Moreover as a special case we consider the real roots of the characteristic equation and
determine the stability condition. As an open problem, fractional derivatives can be
included in the model to make it more realistic and the stability of the system can be
analyzed.
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