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1. Introduction

A Poisson algebra has simultaneously a Lie algebra structure and a commutative asso-
ciative algebra structure, satisfying the Leibniz identity. These algebras �rstly appeared
in the work of Siméon-Denis Poisson two centuries ago when he was studying the three-
body problem in celestial mechanics. Since then, Poisson algebras have shown to be
connected to many areas of mathematics and physics. In mathematics, Poisson algebras
play a fundamental role in Poisson geometry [23], quantum groups [7, 9] and deforma-
tion of commutative associative algebras [11]. In physics, Poisson algebras represent a
major part of deformation quantization [16], Hamiltonian mechanics [4] and topological
�eld theories [21]. Poisson-like structures are also used in the study of vertex operator
algebras [10].

The �rst motivation to study nonassociative Hom-algebras comes from quasi-deforma-
tions of Lie algebras of vector �elds, in particular q-deformations of Witt and Virasoro
algebras [2, 6, 8, 14, 15]. Hom-Lie algebras were �rst introduced by Hartwig, Larsson
and Silvestrov in order to describe q-deformations of Witt and Virasoro algebras using
σ-derivations [13]. The corresponding associative type objects and non-commutative
version, called Hom-associative algebras and Hom-Leibniz algebras respectively, were
introduced by Makhlouf and Silvestrov in [17]. The notion of Hom-Poisson algebras
appeared for the �rst time in [18] where it is shown that Hom-Poisson algebras play
the same role in the deformation of commutative Hom-associative algebras as Poisson
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algebras do in the deformation of commutative associative algebras. They are further
studied in [26] where the author proved that the polarisation of a given Hom-algebra
is a Hom-Poisson algebra if and only if this Hom-algebra is an admissible Hom-Poisson
algebra. The purpose of this paper is to study color Hom-Poisson algebras which are �rst
introduced in [5]. For more informations on other color Hom-type algebras, the reader
can refer to [1, 3, 5, 20, 27].

A description of the rest of this paper is as it follows.
In Section 2, we recall basic notions concerning color Hom-algebras. Color Hom-

Poisson algebras [5] are de�ned without the ε-commutativity condition. Here we give
the de�nition of these color Hom-algebras by adding this condition (De�nition 2.5) and
then Hom-Poissons algebras could be seen as color Hom-Poisson algebras with G = {0}.
We then extend the notion of �exible algebras to the one of color Hom-�exible algebras
(De�nition 2.11). Theorem 2.8 as well as Theorem 2.12, produce a sequence of color
Hom-Poisson and color Hom-�exible algebras respectively.

In Section 3, we de�ne admissible color Hom-Poisson algebras (De�nition 3.1) and
then prove the main result of this paper (Theorem 3.10).
Throughout this paper, all graded vector spaces are assumed to be over a �eld K of
characteristic 0.

2. Preliminaries and some results

Let G be an abelian group. A vector space V is said to be a G-graded if, there exists
a family (Va)a∈G of vector subspaces of V such that V = ⊕a∈GVa. An element x ∈ V
is said to be homogeneous of degree a ∈ G if x ∈ Va. We denote H(V ) the set of all
homogeneous elements in V. Let V = ⊕a∈GVa and V ′ = ⊕a∈GV ′a be two G-graded vector
spaces. A linear mapping f : V → V ′ is said to be homogeneous of degree b ∈ G if
f(Va) ⊆ V ′a+b , ∀a ∈ G. If, f is homogeneous of degree zero i.e. f(Va) ⊆ V ′a holds for any
a ∈ G, then f is said to be even. An algebra (A,µ) is said to be G-graded if its underlying
vector space is G-graded i.e. A = ⊕∈GAa, and if furthermore µ(Aa, Ab) ⊆ Aa+b, for all
a, b ∈ G. Let A′ be another G-graded algebra. A morphism f : A → A′ of G-graded
algebras is by de�nition an algebra morphism from A to A′ which is, in addition an even
mapping.

2.1. De�nition. Let G be an abelian group. A mapping ε : G × G −→ K∗ is called a
bicharacter on G if the following identities hold for all a, b, c ∈ G:
(i) ε(a, b)ε(b, a) = 1,
(ii) ε(a+ b, c) = ε(a, c)ε(b, c),
(iii) ε(a, b+ c) = ε(a, b)ε(a, c).

It is easy to see that ε(0, a) = ε(a, 0) = 1 and ε(a, a) = ±1 for all a ∈ G. In partic-
ular, for a �xed a ∈ G, the induced map εa : G −→ K∗ de�ned by εa(b) = ε(a, b) is a
homomorphism of groups.

If x and y are two homogeneous elements of degree a and b respectively and ε is a
bicharacter, then we shorten the notation by writing ε(x, y) instead of ε(a, b).
Unless stated, in the sequel all the graded spaces are over the same abelian group G and
the bicharacter will be the same for all the structures. For the rest of this section, we
give basic facts about color Hom-algebras [5],[22], [27] and prove some results concerning
color Hom-Poisson and color Hom-�exible algebras.

2.2. De�nition. (i) By a color Hom-algebra, we mean a quadruple (A,µ, ε, α) consisting
of a G-graded vector space A, an even bilinear map µ : A×A −→ A i.e µ(Aa, Ab) ⊆ Aa+b
for all a, b ∈ G, a bicharacter ε : G × G −→ K∗ and an even linear map α : A −→ A.
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A color Hom-algebra (A,µ, ε, , α) is said to be multiplicative if α ◦ µ = µ ◦ α⊗2 and
ε-commutative if µ(x, y) = ε(x, y)µ(y, x) for all x, y ∈ H(A).
(ii) A weak morphism f : (A,µ, ε, α) −→ (A′, µ′, ε, α′) of two color Hom-algebras is
an even linear map f : A −→ A′ of the underlying G-graded vector spaces, satisfying
f ◦ µ = µ′ ◦ f⊗2. If furthermore f ◦ α = α′ ◦ f, then f is said to be a morphism.

For the rest of this paper, we will often write µ(x, y) as xy for homogeneous element
x, y.

2.3. De�nition. (i) A color Hom-associative algebra is a color Hom-algebra
(A,µ, ε, α) such that asA(x, y, z) = 0 where asA is the Hom-associator de�ned for all
x, y, z ∈ H(A) by

asA(x, y, z) = (xy)α(z))− α(x)(yz)(2.1)

(ii) A color Hom-Lie algebra is a color Hom-algebra (A, {, }, ε, α) such that

{x, y} = ε(x, y){y, x} ( ε-skew-symmetry )(2.2) ∮
ε(z, x){α(x), {y, z}} = 0 ( ε-Hom-Jacobi identity )(2.3)

for all x, y, z ∈ H(A) where
∮
means the cyclic summation over x, y, z.

By the ε-skew-symmetry (2.2) of the color Hom-Lie bracket {, }, the ε-Hom-Jacobi
identity (2.3) is equivalent to JA(x, y, z) = 0 where

JA(x, y, z) =

∮
ε(z, x){{x, y}, α(z)}(2.4)

for all x, y, z ∈ H(A), is called the color Hom-Jacobian of A.

2.4. Remark. A graded associative (resp. color Lie) algebra is a color Hom-associative
(resp. color Hom-Lie) algebra with α = Id.

2.5. De�nition. A color Hom-Poisson algebra consists of a G-graded vector space A,
two even bilinear maps µ, {, } : A⊗2 −→ A, an even linear map α : A −→ A and a
bicharacter ε such that
(1) (A,µ, ε, α) is an ε-commutative color Hom-associative algebra,
(2) (A, {, }, ε, α) is a color Hom-Lie algebra,
(3) the color Hom-Leibniz identity

{α(x), µ(y, z)} = µ({x, y}, α(z)) + ε(x, y)µ(α(y), {x, z})(2.5)

is satis�ed for all x, y, z ∈ H(A).

By the ε-skew-symmetry of {, }, the color Hom-Leibniz identity is equivalent to

{µ(x, y), α(z)} = µ(α(x), {y, z}) + ε(y, z)µ({x, z}, α(y))(2.6)

In a color Hom-Poisson algebra (A,µ, {, }, ε, α), the operations µ and {, } are called the
color Hom-associative product and the color Hom-Poisson bracket, respectively.

2.6. Remark. In [5], color Hom-Poisson algebras are de�ned without the ε-commutativity
condition in De�nition 2.5. In this case, if G = Z2 we get the notion of Hom-Poisson
superalgebras de�ned in [24]. According to our de�nition, we could see Hom-Poisson
algebras [18] (resp. Hom-Poisson superalgebra [28]) as color Hom-Poisson algebras with
G = {0} (resp. G = Z2 and ε(x, y) = (−1)xy for all homogeneous elements x, y).

Here, we give an example of a color Hom-Poisson algebra for G = Z2 which could be
seen in [28].
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2.7. Example. There is a three-dimensional multiplicative color Hom-Poisson algebra
A = (A = A0⊕A1, ·, {, }, α), where A0 = Ce1⊕Ce2, A1 = Ce3 and an algebra morphism
α is de�ned by

α(e1) = xe1, α(e2) = e1 + e2, α(e3) = ye3,

with x and y �xed nonzero complex numbers. The de�ning non-zero relations are

e1 · e2 = xe1, e2 · e2 = e1 + e2, e3 · e2 = ye3, {e1, e2} = x2e1.

In fact these color Hom-Poisson algebras (Hom-Poisson superalgbras) are not Poisson
superalgebras for x 6= 1, or y 6= 1.

The following theorem produces a sequence of color Hom-Poisson algebras. It says
again that the category of color Hom-Poisson algebras is closed by weak morphisms.

2.8. Theorem. Let A = (A,µ, {, }, ε, α) be a color Hom-Poisson algebra and β : A −→ A
a weak morphim. Then for each n ∈ N, Aβn = (A,µβn = βn◦µ, {, }βn = βn◦{, }, ε, βn◦α)
is a color Hom-Poisson algebra. Moreover, if A is multiplicative and β is a morphism of
A, then Aβn is also multiplicative.

Proof. First we note that the ε-commutativity and the ε-skew-symmetry of µβn and
{, }βn follow from the one of µ and {, } respectively. Next, it is straightforward to check
that

asAβn = β2n ◦ asA and JAβn = β2n ◦ JA(2.7)

Since (A,µ, ε, α) is an ε-commutative color Hom-associative algebra and (A, {, }, ε, α) is
a color Hom-Lie algebra, we deduce by (2.7) that (A,µβn , ε, β

n ◦α) is an ε-commutative
color Hom-associative algebra and (A, {, }βn , ε, βn ◦ α) is a color Hom-Lie algebra.
Now, writting for readability the composition law "◦" as juxtaposition, (2.5) is proved
as it follows

{βnα(x), µβn(y, z)}βn = βn{βnα(x)), βn(yz)})
= β2n{α(x), yz}
= β2n(µ({x, y}, α(z)) + ε(x, y)µ(α(y), {x, z}))

( by ( 2.5 ) in A )

= βnµ(βn{x, y}, βnα(z)) + ε(x, y)βnµ(βnα(y), βn{x, z})
= µβn({x, y}βn , βnα(z)) + ε(x, y)µβn(β

nα(y), {x, z}βn)

Finally, observing that the conditions β◦α = α◦β and β◦µ = µ◦β⊗2 implie βn◦α = α◦βn
and βn ◦ µ = µ ◦ (βn)⊗2 respectively, we have for all x, y ∈ H(A) : βnαµβn(x, y) =
βnαβnµ(x, y) = βnαµ(βn(x), βn(y)) = βnµ(αβn(x), αβn(y)) = βnµ(βnα(x), βnα(y)) =
µβn(β

nα(x), βnα(y)). Similarly, we prove that
βnα{x, y}βn = {βnα(x), βnα(y)}βn . Therefore if A is multiplicative and β is a morphism
of A, then Aβn is also multiplicative. �

If we drop the ε-commutativity condition in De�nition 2.5 and set β = α, (resp. n = 1
and α = Id) in Theorem 2.8, we get some results in [5].

2.9. Example. From the multiplicative color Hom-Poisson algebra A in Example 2.7,
we get the familly of multiplicative color Hom-Poisson algebras (Aαn)n∈N where for each
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n ∈ N,

Aαn = (A, ·αn , {, }αn , αn+1) with the following non-zero products :

e1 ·αn e2 = xne1, e2 ·αn e2 = (1 + x+ x2 + · · ·+ xn−1)e1 + e2, e3 ·αn e2 = yne3,

{e1, e2}αn = xn+2e1 and the morphism de�ned by: αn+1(e1) = xn+1e1,

αn+1(e2) = (1 + x+ x2 + · · ·+ xn)e1 + e2, α
n+1(e3) = yn+1e3.

The next result shows that, color Hom-Novikov Poisson algebras can be gotten from
ε-commutative color Hom-associative algebras.

2.10. Proposition. Let (A,µ, ε, α) be an ε-commutative color Hom-associative algebra.
Then

A− = (A,µ, {, }, ε, α)

is a color Hom-Poisson algebra where {x, y} = µ(x, y)− ε(x, y)µ(y, x)
for all x, y ∈ H(A).

Proof. It is proved in [27] (Proposition 3. 13) that (A, {, }, ε, α) is a color Hom-Lie
algebra. To check the color Hom-Leibniz identity (2.5) for A−, we write µ as juxtaposition
and compute as follows:

µ({x, y}, α(z)) + ε(x, y)µ(α(y), {x, z})− {α(x), µ(y, z)}
= (xy)α(z)− ε(x, y)(yx)α(z) + ε(x, y)α(y)(xz)− ε(x, y)ε(x, z)α(y)(zx)
−α(x)(yz) + ε(x, y)ε(x, z)(yz)α(x)

= asA(x, y, z)− ε(x, y)asA(z, x, z) + ε(x, y)ε(x, z)asA(y, z, x)

Since asA = 0, we conclude that A− satis�es the color Hom-Leibniz identity. �

The following de�nition will be useful in Section 3.

2.11. De�nition. A color Hom-�exible algebra is a color Hom-algebra (A,µ, ε, α) that
satis�es the ε-Hom-�exible (color Hom-�exible) identity i.e for all x, y, x ∈ H(A)

asA(x, y, z) = −ε(x, y)ε(x, z)ε(y, z)asA(z, y, x)(2.8)

It follows that when G = Z2 and ε(x, y) = (−1)xy (resp. G = {0} ) in De�nition 2.11,
we recover the notion of Hom-�exible superalgebra [1] (resp. Hom-�exible algebra [25]).

As for color Hom-Poisson algebras, we get the following:

2.12. Theorem. Let A = (A,µ, ε, α) be a color Hom-�exible algebra and β : A −→ A
a weak morphim. Then for each n ∈ N, Aβn = (A,µβn = βn ◦ µ, ε, βn ◦ α) is a color
Hom-�exible algebra. Moreover, if A is multiplicative and β is a morphism of A, then
Aβn is also multiplicative.

Proof. The proof follows from (2.7) and the proof of Theorem 2.8. �

3. Characterizations

In [12] and [19], it is shown that Poisson algebras can be described using only one
operation of its two binary operations via the polarization-depolarization process. This
enables to explore Poisson algebras in the realm of non-associative algebras. The similar
is done for Hom-Poisson algebras [26]. The purpose of this section is to extend this
alternative description of Poisson algebras or Hom-Poisson algebras to color Hom-Poisson
algebras. Let's �rst de�ne the notion of an admissible color Hom-Poisson algebras.
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3.1. De�nition. Let (A,µ, ε, α) be a color Hom-algebra. Then A is called an admissible
color Hom-Poisson algebra if it satis�es

asA(x, y, z) =
1

3
{ε(y, z)(xz)α(y)− ε(x, z)ε(y, z)(zx)α(y)

+ε(x, y)ε(x, z)(yz)α(x)− ε(x, y)(yx)α(z)}(3.1)

for all x, y, z ∈ H(A), where asA is the Hom-associator (2.1) of A.

An admissible color Hom-Poisson algebra with G = {0} is exactly an admissible
Hom-Poisson algebra as de�ned in [26]. If furthermore α = Id, we get the notion of an
admissible Poisson algebra [12]. To compare color Hom-Poisson algebras and admissible
color Hom-Poisson algebras, we need the following function, which generalizes a similar
function in [19, 26].

3.2. De�nition. Let (A,µ, ε, α) be a color Hom-algebra. De�ne the quintuple

P (A) = (A, ∗, {, }, ε, α)(3.2)

called the polarization of A, where x∗y = 1
2
(xy+ε(x, y)yx) and {x, y} = 1

2
(xy−ε(x, y)yx)

for all x, y ∈ H(A). We call P the polarization function.

The main result is to prove that admissible color Hom-Poisson algebras, and only
these color Hom-algebras, give rise to color Hom-Poisson algebras via polarization. It is
the color Hom-version of [19, Example 2]. To do that, we need some useful ingredients.

3.3. De�nition. Let (A, ∗, {, }, ε, α) be a quintuple in which A is a graded vector space,
∗, {, } : A −→ A are linear even maps, α : A −→ A an even linear map and ε a bicharacter.
De�ne the color Hom-algebra

P−(A) = (A,µ = ∗+ {, }, ε, α)(3.3)

called the depolarization of A. We call P− the depolarization function.

The following observation says that admissible color Hom-Poisson algebras are color
Hom-�exible algebras. It is the color Hom-version of [12, Proposition 4].

3.4. Lemma. Every admissible color Hom-Poisson algebra (A,µ, ε, α) is a color Hom-
�exible algebra.

Proof. The color Hom-�exibility identity (2.8) is proved using (3.1) as it follows:

asA(z, y, x) =
1

3
{ε(y, x)(zx)α(y)− ε(z, x)ε(y, x)(xz)α(y)

+ε(z, y)ε(z, x)(yx)α(z)− ε(z, y)(yz)α(x)}

= −1

3
ε(y, x)ε(z, x)ε(z, y){ε(y, z)(xz)α(y)− ε(x, z)ε(y, z)(zx)α(y)

+ε(y, x)ε(z, x)(yz)α(x)− ε(x, y)(yx)α(z)}
= −ε(y, x)ε(z, x)ε(z, y)asA(x, y, z)

i.e. asA(x, y, z) = −ε(x, y)ε(x, z)ε(y, z)asA(z, y, x) for all x, y, z ∈ H(A) and then we get
(2.8). �

For a given color Hom-algebra A, the color cyclic sum SA of the Hom-associator is
de�ned by:

SA(x, y, z) := asA(x, y, z) + ε(y, z)ε(x, z)asA(z, x, y) +

ε(x, y)ε(x, z)asA(y, z, x)(3.4)

for all x, y, z ∈ H(A).
Next we observe that in an admissible color Hom-Poisson algebra the color cyclic sum

of the Hom-associator is identically zero.
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3.5. Lemma. Let (A,µ, ε, α) be an admissible color Hom-Poisson algebra. Then
SA(x, y, z) = 0 for all x, y, z ∈ H(A).

Proof. Using the de�ning identity (3.1), we have for all x, y, z ∈ H(A):

asA(x, y, z) =
1

3
{ε(y, z)(xz)α(y)− ε(x, z)ε(y, z)(zx)α(y)

+ε(x, y)ε(x, z)(yz)α(x)− ε(x, y)(yx)α(z)}

= −1

3
{ε(y, z)ε(x, z)ε(x, y)(zy)α(x)− ε(x, z)ε(x, y)(yz)α(x)

+(xy)α(z)− ε(y, z)(xz)α(y)}+ 1

3
{(xy)α(z)− ε(x, y)(yx)α(z)

+ε(y, z)ε(x, z)ε(x, y)(zy)α(x)− ε(y, z)ε(x, z)(zx)α(y)}

= −1

3
ε(y, z)ε(x, z){ε(x, y)(zy)α(x)− ε(z, y)ε(x, y)(yz)α(x)

+ε(z, x)ε(z, y)(xy)α(z)− ε(z, x)(xz)α(y)}

+
1

3
ε(y, z){ε(z, y)(xy)α(z)− ε(x, y)ε(z, y)(yx)α(z)

+ε(x, z)ε(x, y)(zy)α(x)− ε(x, z)(zx)α(y)}
= −ε(y, z)ε(x, z)asA(z, x, y) + ε(y, z)asA(x, z, y)

= −ε(y, z)ε(x, z)asA(z, x, y)− ε(x, y)ε(x, z)asA(y, z, x)
( by Lemma 3.4 )

Therefore, we conclude that SA = 0. �

Next we show that the polarization of an admissible color Hom-Poisson algebra is
ε-commutative Hom-associative.

3.6. Lemma. Let (A,µ, ε, α) be an admissible color Hom-Poisson algebra. Then

(A, ∗, ε, α)(3.5)

is an ε-commutative Hom-associative color Hom-algebra.

Proof. It is obvious that ∗ is ε-commutative. To show that asP (A) = 0, pick x, y, z ∈ H(A)
and write µ using juxtatposition of homogeneous elements.
Expanding asP (A) in terms of µ, we have:

asP (A) = (x ∗ y) ∗ α(z)− α(x) ∗ (y ∗ z)

=
1

2
{(xy + ε(x, y)yx) ∗ α(z)− α(x) ∗ (yz + ε(y, z)zy)}

=
1

4
{(xy)α(z) + ε(x, y)(yx)α(z) + ε(x, z)ε(y, z)α(z)(xy)

+ε(x, z)ε(y, z)ε(x, y)α(z)(yx)− α(x)(yz)− ε(y, z)α(x)(zy)
−ε(x, y)ε(x, z)(yz)α(x)− ε(x, y)ε(x, z)ε(y, z)(zy)α(x)}
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=
1

4
{asA(x, y, z)− ε(x, y)ε(x, z)ε(y, z)asA(z, y, x) + ε(x, y)(yx)α(z)

−ε(x, y)ε(x, z)(yz)α(x)− ε(x, z)ε(y, z)asA(z, x, y)
+ε(x, z)ε(y, z)(zx)α(y) + ε(y, z)asA(x, z, y)− ε(y, z)(xz)α(y)}

=
1

4
{asA(x, y, z)− ε(x, y)ε(x, z)ε(y, z)asA(z, y, x)− [ε(y, z)(xz)α(y)

−ε(x, z)ε(y, z)(zx)α(y) + ε(x, y)ε(x, z)(yz)α(x)− ε(x, y)(yx)α(z)]
−ε(x, z)ε(y, z)asA(z, x, y) + ε(y, z)asA(x, z, y)}(rearranging terms)

=
1

4
{asA(x, y, z)− ε(x, y)ε(x, z)ε(y, z)asA(z, y, x)− 3asA(x, y, z)

−ε(x, z)ε(y, z)asA(z, x, y) + ε(y, z)asA(x, z, y)}(by (3.1))

=
1

4
{asA(x, y, z) + asA(x, y, z)− 3asA(x, y, z)

−ε(x, z)ε(y, z)asA(z, x, y)− ε(x, y)ε(x, z)asA(y, z, x)}
(by Lemma 3.4 )

=
1

4
{asA(x, y, z) + asA(x, y, z)− 3asA(x, y, z) + asA(x, y, z)}

( by Lemma 3.5 )

and thus asP (A) = 0. �

Now we observe that the polarization of an admissible color Hom-Poisson algebra is
a color Hom-Lie algebra.

3.7. Lemma. Let (A,µ, ε, α) be a color Hom-algebra. Then

4JP (A)(x, y, z) = ε(z, x)SA(x, y, z)− ε(x, y)ε(z, x)SA(y, x, z)(3.6)

for all x, y, z ∈ H(A) where JP (A) is the Hom-Jacobian (2.4) of the polarisation of A see
(3.2). Moreover, if A is an admissible color Hom-Poisson algebra, then

(A, {, }, ε, α)

is a color Hom-Lie algebra where {x, y} = µ(x, y)− ε(x, y)µ(y, x) for all
x, y ∈ H(A).

Proof. To show this relation, pick x, y, z ∈ H(A) and write µ using juxtatposition of
homogeneous elements. Expanding JP (A) in terms of µ, we have:

4JP (A)(x, y, z) =

∮
ε(z, x){{x, y}, α(z)}

= ε(z, x)(xy)α(z)− ε(y, z)α(z)(xy)− ε(z, x)ε(x, y)(yx)α(z)
+ε(x, y)ε(y, z)α(z)(yx) + ε(y, z)(zx)α(y)− ε(x, y)α(y)(zx)
−ε(y, z)ε(z, x)(xz)α(y) + ε(z, x)ε(x, y)α(y)(xz)

+ε(x, y)(yz)α(x)− ε(z, x)α(x)(yz)− ε(x, y)ε(y, z)(zy)α(x)
+ε(y, z)ε(z, x)α(x)(zy)

= ε(z, x)asA(x, y, z) + ε(y, z)asA(z, x, y)

−ε(z, x)ε(x, y)asA(y, x, z)− ε(x, y)ε(y, z)asA(z, y, x)
+ε(x, y)asA(y, z, x)− ε(y, z)ε(z, x)asA(x, z, y)

= ε(z, x)SA(x, y, z)− ε(x, y)ε(z, x)SA(y, x, z) ( by (3.4))

and then the desired relation holds. �
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If A is an admissible color Hom-Poisson algebra, then by Lemma 3.5, it follows that
JP (A) = 0 and therefore (A, {, }, ε, α) is a color Hom-Lie algebra.

The following result says that the polarization of an admissible color Hom-Poisson algebra
satis�es the color Hom-Leibniz identity (2.5).

3.8. Lemma. Let (A,µ, ε, α) be a color Hom-algebra. Then the polarization P (A) sat-
is�es

4({α(x), y ∗ z} − {x, y} ∗ α(z)− ε(x, y)α(y) ∗ {x, z})
= −asA(x, y, z)− ε(x, y)ε(x, z)asA(y, z, x)− ε(y, z)asA(x, z, y)
−ε(x, y)ε(x, z)ε(y, z)asA(z, y, x) + ε(x, y)asA(y, x, z)

+ε(y, z)ε(x, z)asA(z, x, y)

for all x, y, z ∈ H(A). Moreover, if A is an admissible color Hom-Poisson algebra, then
the polarization P (A) satis�es the color Hom-Leibniz identity.

Proof. To prove this relation, pick x, y, z ∈ H(A) and write µ using juxtatposition of
homogeneous elements. Expanding the left-hand side in terms of µ, we have:

4({α(x), y ∗ z} − {x, y} ∗ α(z)− ε(x, y)α(y) ∗ {x, z})
= α(x)(yz)− ε(x, y)ε(x, z)(yz)α(x) + ε(y, z)α(x)(zy)

−ε(y, z)ε(x, z)ε(x, y)(zy)α(x)− (xy)α(z) + ε(x, y)(yx)α(z)

−ε(x, z)ε(y, z)α(z)(xy) + ε(x, y)ε(x, z)ε(y, z)α(z)(yx)− ε(x, y)α(y)(xz)
+ε(x, y)ε(x, z)α(y)(zx)− ε(y, z)(xz)α(y) + ε(y, z)ε(x, z)(zx)α(y)

= −asA(x, y, z)− ε(x, y)ε(x, z)asA(y, z, x)− ε(y, z)asA(x, z, y)
−ε(x, y)ε(x, z)ε(y, z)asA(z, y, x) + ε(x, y)asA(y, x, z)

+ε(y, z)ε(x, z)asA(z, x, y)

For the second assertion, suppose that A is an admissible color Hom-Poisson algebra.
Then the color Hom-�exibility (Lemma 3.4) implies that the right-hand side of (3.7) is
0. We conclude that

{α(x), y ∗ z} = {x, y} ∗ α(z) + ε(x, y)α(y) ∗ {x, z}

which is the color Hom-Leibniz identity in the polarization P (A). �

Next we show that only admissible color Hom-Poisson algebras can give rise to color
Hom-Poisson algebras via polarization.

3.9. Lemma. Let (A,µ, ε, α) be a color Hom-algebra such that the polarization P (A) is
a color Hom-Poisson algebra. Then A is an admissible color Hom-Poisson algebra.

Proof. We need to prove the identity (3.1). Pick x, y, z ∈ H(A). We will express the
Hom-associator asA in several di�erent forms and compare them.

On the one hand, the color Hom-Jacobi identity JP (A) = 0 and (3.6) imply that

asA(x, y, z) = −ε(y, z)ε(x, z)asA(z, x, y)− ε(x, y)ε(x, z)asA(y, z, x)
+ε(x, y)asA(y, x, z) + ε(x, y)ε(x, z)ε(y, z)asA(z, y, x)

+ε(y, z)asA(x, z, y) ( by (3.4) )(3.7)
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Moreover, the color Hom-Leibniz identity in P (A) and (3.7) imply that

asA(x, y, z) = −ε(x, y)ε(x, z)asA(y, z, x)− ε(y, z)asA(x, z, y)(3.8)

−ε(x, y)ε(x, z)ε(y, z)asA(z, y, x) + ε(x, y)asA(y, x, z)

+ε(y, z)ε(x, z)asA(z, x, y)

Adding (3.7) and (3.8) and dividing the result by 2, we obtain

asA(x, y, z) = ε(x, y)asA(y, x, z)− ε(x, y)ε(x, z)asA(y, z, x)(3.9)

which we will use in a moment.

On the other hand, since µ = {, }+∗, we can expand the Hom-associator asA in terms
of {, } and ∗ as follows:

asA(x, y, z) = µ(µ(x, y), α(z))− µ(α(x), µ(y, z))
= {{x, y}, α(z)}+ {x ∗ y, α(z)}+ {x, y} ∗ α(z) + (x ∗ y) ∗ α(z)
−{α(x), {y, z}} − {α(x), y ∗ z} − α(x) ∗ {y, z} − α(x) ∗ (y ∗ z)(3.10)

Since the polarization P (A) is assumed to be a color Hom-Poisson algebra, we have:

0 = asP (A)(x, y, z) = (x ∗ y) ∗ α(z)− α(x) ∗ (y ∗ z)(3.11)

0 = {x, z} ∗ α(y)− ε(x, y)ε(z, y)α(y) ∗ {x, z} ( by ε-commutativity)

= {x ∗ y, α(z)} − α(x) ∗ {y, z} − {α(x), y ∗ z}+ {x, y} ∗ α(z)(3.12)

(by (2.5) and (2.6) )

(3.13) {{x, z}, α(y)} = ε(z, y){{x, y}, α(z)} − ε(z, y){α(x), {y, z}}
by (2.3) and the ε-skew-symmetry of {, }.

Using the identities (3.11) in (3.13), we obtain from (3.10):

4asA(x, y, z) = 4ε(y, z){{x, z}, α(y)}
= ε(y, z)(xz)α(y)− ε(y, z)ε(x, z)(zx)α(y)− ε(x, y)α(y)(xz)

+ε(x, y)ε(x, z)α(y)(zx)

= ε(y, z)(xz)α(y)− ε(y, z)ε(x, z)(zx)α(y) + ε(x, y)asA(y, x, z)

−ε(x, y)(yx)α(z)− ε(x, y)ε(x, z)asA(y, z, x)
+ε(x, y)ε(x, z)(yz)α(x)

= ε(y, z)(xz)α(y)− ε(y, z)ε(x, z)(zx)α(y) + ε(x, y)ε(x, z)(yz)α(x)

−ε(x, y)(yx)α(z) + asA(x, y, z) ( by (3.9) )

Finally, subtracting asA(x, y, z) in the above calculation and dividing the result by 3, we
obtain the desired identity (3.1). �

Now the main result of this section is the following

3.10. Theorem. Let (A,µ, ε, α) be a color Hom-algebra. Then the polarization P (A) is
a color Hom-Poisson algebra if and only if A is an admissible color Hom-Poisson algebra.

Proof. If A is an admissible color Hom-Poisson algebra, then Lemmas 3.6, 3.7, and 3.8
imply that the polarization P (A) is a color Hom-Poisson algebra. The converse is Lemma
3.9. �

3.11. Corollary. The polarization and the depolarization functions

P : {admissible color Hom-Poisson algebras}� {color Hom-Poisson algebras} : P−

preserve multiplicativity and are the inverses of each other.
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Proof. If (A,µ, ε, α) is an admissible color Hom-Poisson algebra, then P (A) is a color
Hom-Poisson algebra by Theorem 3.10. Furthermore we have for all x, y ∈ H(A) :

{x, y}+ x ∗ y =
1

2
(µ(x, y)− ε(x, y)µ(y, x)) + 1

2
(µ(x, y) + ε(x, y)µ(y, x))

= µ(x, y)

i.e. P−(P (A)) = A.
Conversely, suppose that (A, {, }, ∗, ε, α) is a color Hom-Poisson algebra. To show that
P−(A) is an admissible color Hom-Poisson algebra, note by the ε-skew-symmetry of {, }
and the ε-commutativity of ∗ that for all x, y ∈ H(A),

1

2
[({x, y}+ x ∗ y)− ε(x, y)({y, x}+ y ∗ x)] = {x, y}

1

2
[({x, y}+ x ∗ y) + ε(x, y)({y, x}+ y ∗ x)] = x ∗ y

i.e. P (P−(A)) = A, which is a color Hom-Poisson algebra. It follows from Theorem 3.10
that P−(A) is an admissible color Hom-Poisson algebra. Since P−P and PP− are both
identity functions, P and P− are the inverses of each other.
The fact that P and P− preserve multiplicativity is straightforward. �
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