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Abstract

In the present study, improved cosine similarity measure for an intu-
itionistic fuzzy sets (IFSs) has been proposed by considering the inter-
action between the pairs of the membership degrees. Pairs of mem-
bership, non-membership are to be considered as vector representation
during the formulation. The shortcomings of the existing measures
have been highlighted and overcome by using the proposed measure.
Also, in order to deal with the situation where the elements in a set
are correlative, weighted cosine similarity measure has been de�ned.
Finally, multi-criteria decision making (MCDM) method, based on the
proposed similarity measure, has been presented under intuitionistic
fuzzy environment. Numerical examples, one from the investment the
money and others from the pattern recognition and medical diagnosis,
have been taken to demonstrate the e�ciency of the proposed approach
and compared their results with the existing approaches results.
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1. Introduction

In many decision-making problems, it is di�cult for a decision maker to give his assess-
ments towards the object in crisp values due to ambiguity and incomplete information.
Instead, it has become popular that these assessments are presented by a fuzzy set or
extensions of the fuzzy set. Fuzzy set (FS)[30], proposed by Zadeh, is a powerful tool to
deal with vagueness and has received much attention. After it, some extensions such as
intuitionistic fuzzy set (IFS) [1], interval-valued intuitionistic fuzzy set (IVIFS) [2] etc.,
have been proposed by the researchers. Under these environments, various researchers
have investigated these theories in the process of decision making in the di�erent �elds
[10, 16, 28, 13, 9]. For instance, Xu [27] presented weighted averaging aggregation oper-
ators for di�erent intuitionistic fuzzy numbers (IFNs). Garg [8] presented a generalized
intuitionistic fuzzy interactive geometric aggregation operator using Einstein norm op-
erations. Garg [10] presented a new generalized score function for ranking the di�erent
IVIFSs. Garg [12] presented improved operational laws for aggregating the di�erent
preferences of the decision makers under the intuitionistic fuzzy environment.

However, in the �eld of information measure theory, the concept of correlation, sim-
ilarity, distance, divergence are of key importance in a number of theoretical and ap-
plied statistical inferences like decision-making, machine learning etc. In that direction,
Chen [4, 5] presented the similarity measure between the vague sets. Hung and Yang
[21] gave the similarity measures between the two di�erent IFSs based on Hausdor�
distance. Garg et al. [13] presented an entropy-based method for solving the multi-
criteria decision-making problem under the fuzzy environment. Szmidt and Kacprzyk
[25] presented the similarity measures between the IFSs. Gerstenkorn and Manko [17]
and Bustince and Burillo [3], respectively introduced the concept of the correlation coef-
�cient of IFS and interval-valued IFS. Garg [10] presented novel correlation coe�cients
under the Pythagorean fuzzy set environment. Singh and Garg [24] developed the dis-
tance measures between the type-2 intuitionistic fuzzy sets. Garg et al. [14] threw light
on a generalized entropy measure of order α and degree β under the IFS environment
and applied it to solve the decision-making problems. Recently, Garg [11] presented the
distance and similarity measures for the intuitionistic multiplicative preference relation
and applied them to solve the decision-making problems from the �eld of pattern recog-
nition and medical diagnosis. Apart from these, the several types of similarity measures
have been proposed by the researchers [4, 5, 20, 7, 6, 23, 15, 31, 21, 29] for solving the
decision making problems under the IFS environment. Out of these various measures,
correlation coe�cient and their corresponding cosine similarity measure (CSM) are one
of the important measures for measuring the degree of similarity between the IFSs. But
from these existing studies, it has been analyzed that they have some sort of de�ciencies.
For instance, under the intuitionistic fuzzy environment, when we take any two IFSs in
which one set has zero membership degree and the other set have zero non-membership
degree then their corresponding correlation coe�cients, as well as the cosine similarity
measure, becomes zero. Thus, these existing measures are independent on the other
nonzero of the IFSs and hence it gives inconsistent results during the ranking procedure.
Furthermore, it has been analyzed that the existing measures are unable to consider
the degree of the interaction between the pairs of the membership into the analysis and
hence their corresponding measures and their results do not give the correct information
to the decision makers'. In other words, there is no interaction between the degree of
membership functions.

In this regards, the present paper has resolved these issues by proposing an improved
cosine similarity measure between the two IFSs. For this, an interaction between the
pairs of membership functions has been considered in terms of their hesitation degree
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and hence their corresponding operations has been built. Based on it, improved cosine
and weighted cosine similarity measures have been proposed under the IFS environment.
The performance of the proposed measure with respect to the several existing similarity
measures has been tested. Finally, based on the proposed similarity measures, we have
developed a decision-making approach for ranking the alternatives under the intuition-
istic fuzzy environment. At length, we provide multi-criteria decision-making (MCDM)
problem from the �elds of decision making to validate the e�ectiveness and applicabil-
ity of the proposed decision method. Results are compared with the various existing
measures and show the superiority of the approach.

To do so, the rest of the manuscript is organized as follows. Section 2 describes the
basic de�nition of the IFS, correlation coe�cient, cosine similarity measure along with
their shortcomings. Section 3 presented improved operational laws between the two IFSs
and hence based on it, an improved cosine and weighted cosine similarity measures have
been proposed under the intuitionistic fuzzy environment. Section 4 describe the decision-
making approach based on the proposed measure and hence validated with numerical
examples of pattern recognition, medical diagnosis etc. A comparison analysis with some
other existing measures has been investigated also in this section. A conclusion has been
summarized in section 5.

2. Preliminaries

In this section, some basic concepts on the IFSs and the cosine similarity measures
have been de�ned over the universal set X.

2.1. De�nition. An IFS A in a �nite universe of discourse X = {x1, x2, . . . , xn} is
de�ned as [1]

A = {〈x, µA(x), νA(x)〉 | x ∈ X}
where µA(x), νA(x) represent the degrees of membership and non-membership of the
element x ∈ X to the set A, respectively, such that their sum is atmost one and πA(x) =
1 − µA(x) − νA(x) is called the degree of hesitation of x to A. For a given x, the pair
A = 〈µ, ν〉 is called intuitionistic fuzzy value (IFV) or intuitionistic fuzzy number (IFN)
where µ ∈ [0, 1], ν ∈ [0, 1], µ+ ν ≤ 1.

2.2. De�nition. Let A = 〈µ, ν〉, A1 = 〈µ1, ν1〉 and A2 = 〈µ2, ν2〉 be three IFNs and for
any real number λ > 0, the basic operational rules between them are de�ned as follows
[26].

(a) A1 ⊕A2 = 〈1− (1− µ1)(1− µ2), ν1ν2〉
(b) A1 ⊗A2 = 〈µ1µ2, 1− (1− ν1)(1− ν2)〉
(c) λ A = 〈1− (1− µ)λ, νλ〉
(d) Aλ = 〈µλ, 1− (1− ν)λ〉

2.3. De�nition. [17] LetX = {x1, x2, . . . , xn} be a �nite �xed set, A = 〈xi, µA(xi), νA(xi)〉
and B = 〈xi, µB(xi), νB(xi)〉 be two IFSs. If

k(A,B) =
C(A,B)√
T (A) · T (B)

(2.1)

where C(A,B) =
n∑
i=1

(
µA(xi)µB(xi) + νA(xi)νB(xi)

)
be the covariance between A and

B; T (A) =
n∑
i=1

(
µ2
A(xi)+ν

2
A(xi)

)
and T (B) =

n∑
i=1

(
µ2
B(xi)+ν

2
B(xi)

)
be the informational

energies of the IMS A and B respectively, then k(A,B) is called the correlation coe�cient
of the IFSs A and B.
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2.4. De�nition. A cosine similarity measure between two IFSs A and B is de�ned as
[29]

CIFS(A,B) =
1

n

n∑
i=1

µA(xi)µB(xi) + νA(xi)νB(xi)√
µ2
A(xi) + ν2A(xi)

√
µ2
B(xi) + ν2B(xi)

(2.2)

where 0 ≤ CIFS(A,B) ≤ 1.

From Eq.(2.2), it has been observed that under some circumstances, this measure will
not give some suitable decision to the decision makers to rank the di�erent alternatives.
These shortcomings have been explained with some counter examples as follows.

2.5. Example. Let A1, A2 and A3 be three IFSs de�ned over X = {x1, x2} given
by A1 = {(x1, 0.10, 0.15), (x2, 0.10, 0.15)}, A2 = {(x1, 0.20, 0.30), (x2, 0.20, 0.30)} and
A3 = {(x1, 0.30, 0.45), (x2, 0.30, 0.45)}. Then, by utilizing Eq. (2.2), we get CIFS(A1, A2)
= CIFS(A2, A3) = CIFS(A3, A1) and hence measure de�ned in Eq. (2.2) are unable to
distinguish between the IFSs A1, A2 and A3. Therefore, it is unable to give the correct
order of the sets.

2.6. Example. Consider two IFNs A = 〈0.4, 0〉 and B = 〈0, 0.5〉, then by utilizing
(2.2), we get CIFS(A,B) = 0 which means that there is no relationship between them.
Moreover, if we take two IFNs A = 〈α, 0〉 and B = 〈0, β〉, where 0 ≤ α, β ≤ 1 then by
Eq. (2.2), we get CIFS(A,B) = 0 which means that it is independent of the degrees of
α and β and therefore, it gives an undesirable result to the decision-makers.

2.7. Example. If we consider the two IFNs A = 〈0.4, 0.3〉 and B = 〈0, 0.5〉 then by
utilizing (2.2), we get

CIFS(A,B) =
(0.4)(0) + (0.3)(0.5)√
0.42 + 0.32

√
02 + 0.52

= 0.6

Now, if we take two di�erent IFNs C = 〈0.1, 0.4898〉 and D = 〈0.45189, 0.21398〉 respec-
tively, then we get

CIFS(C,D) =
(0.1)(0.45189) + (0.4898)(0.21398)√
0.12 + 0.48982

√
0.451892 + 0.213982

= 0.6

Since CIFS(A,B) = CIFS(C,D), but it has been clearly seen that IFNs A and B is
di�erent from C and D. Hence, the results computed by the existing measure (2.2) is
inconsistent.

Therefore, from these examples, we have concluded that the existing cosine similarity
measure is unable to give the correct decision to the decision makers while ranking the
numbers and hence there is a necessary to enhance these measures. In the next section,
we have resolved this issue by de�ning a new measure based on some new operational
laws and by taking the proper interaction between the pairs of the membership degrees.

3. Proposed improved cosine similarity measure

In this section, we have presented some improved form of the cosine similarity measures
to compute the similarity index between the two IFSs de�ned over the �xed setX. Firstly,
we have de�ned some improved operational laws between the pairs of the IFNs as follows.

3.1. De�nition. Let A = 〈µA, νA〉 and B = 〈µB , νB〉 be two IFNs, λ > 0 be a real
number then operational rules between them are de�ned as follows [18, 19]

(a) A⊕B =
〈
1− (1−µA) · (1−µB), (1−µA) · (1−µB)− (1−µA− νA) · (1−µB − νB)

〉
;

(b) A⊗B =
〈
(1− νA) · (1− νB)− (1−µA− νA) · (1−µB − νB), 1− (1− νA) · (1− νB)

〉
;
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(c) λ ·A =
〈
1− (1− µA)λ, (1− µA)λ − (1− µA − νA)λ

〉
;

(d) Aλ =
〈
(1− νA)λ − (1− µA − νA)λ, 1− (1− νA)λ

〉
.

From these operational laws, it is clearly seen that the nonmembership part of the
A⊕B contains the pairs µA ·νB and µB ·νA while membership function of A⊕B does not
contain these pairs. For instance, the pair µB ·νA represent the probability of µB and νA
occurring simultaneously. Therefore, we can say that the in�uence on non-membership
function is greater than that of membership function. It implies that attitude of the
decision maker is optimistic. On the other hand for the pair of A⊗ B, these pairs have
an e�ect on the membership functions while non-membership function of A⊗B does not
contains. Thus in such circumstances, the attitude of the decision maker is pessimistic.

Based on these improved operational laws, we de�ne the cosine similarity measures
between two IFSs A and B as follows.

Consider A = {〈xi, µA(xi), νA(xi)〉 | xi ∈ X} and B = {〈xi, µB(xi), νB(xi)〉 | xi ∈ X}
be two IFSs de�ned over the universal set X then based on the improved operational
laws between IFSs, the informational energies of the elements between them are de�ned
as

TA(xi) = (1− νA(xi))2 + (1− µA(xi))2 + 2(1− µA(xi)− νA(xi))2(3.1)

and

TB(xi) = (1− νB(xi))2 + (1− µB(xi))2 + 2(1− µB(xi)− νB(xi))2(3.2)

Further, the correlation between two IFSs is de�ned as

C(A,B)(xi) =
∏

j={A,B}

(
1− νj(xi)

)
+

∏
j={A,B}

(
1− µj(xi)

)
(3.3)

+2
∏

j={A,B}

(
1− µj(xi)− νj(xi)

)
From the above, it is obvious that Eq. (3.3) satisfy the following properties for each
xi ∈ X(i = 1, 2, . . . , n):

(P1) C(A,A)(xi) = TA(xi)
(P2) C(A,B)(xi) = C(B,A)(xi)

3.2. De�nition. LetA = {〈xi, µA(xi), νA(xi)〉 | xi ∈ X} andB = {〈xi, µB(xi), νB(xi)〉 |
xi ∈ X}, respectively be the sets of two IFSs de�ned on a universe of discourse X. Then,
the improved cosine similarity measure (ICIFS) between them is de�ned as

ICIFS(A,B) =
1

n

n∑
i=1

CA,B(xi)√
TA(xi) · TB(xi)

(3.4)

=
1

n

n∑
i=1

{
(1− νA(xi)) · (1− νB(xi)) + (1− µA(xi)) · (1− µB(xi))
+ 2(1− µA(xi)− νA(xi)) · (1− µB(xi)− νB(xi))

}
√√√√√√√
{
(1− νA(xi))2 + (1− µA(xi))2 + 2(1− µA(xi)− νA(xi))2

}
·{

(1− νB(xi))2 + (1− µB(xi))2 + 2(1− µB(xi)− νB(xi))2
}

3.3. Theorem. The improved cosine similarity measure, as de�ned in Eq. (3.4), between
the two IFSs A and B satisfy the following properties:

(P1) ICIFS(A,B) = ICIFS(B,A)
(P2) 0 ≤ ICIFS(A,B) ≤ 1
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(P3) ICIFS(A,B) = 1, if and only if A = B i.e., µA(xi) = µB(xi) and νA(xi) = νB(xi)
for i = 1, 2, . . . , n

(P4) ICIFS(A,C) ≤ ICIFS(A,B) and ICIFS(A,C) ≤ ICIFS(B,C), if A ⊆ B ⊆ C for
an IFS C.

Proof. Consider two IFSsA = {〈xi, µA(xi), νA(xi)〉 | xi ∈ X} andB = {〈xi, µB(xi), νB(xi)〉 |
xi ∈ X} such that for each xi ∈ X, µA, νA, µB , νB ∈ [0, 1] and µA+νA ≤ 1, µB+νB ≤ 1.
Then we have,

(P1) By the de�nition of ICIFS , we get

ICIFS(A,B) =
1

n

n∑
i=1

{
(1− νA(xi)) · (1− νB(xi)) + (1− µA(xi)) · (1− µB(xi))
+ 2(1− µA(xi)− νA(xi)) · (1− µB(xi)− νB(xi))

}
√√√√√√√
{
(1− νA(xi))2 + (1− µA(xi))2 + 2(1− µA(xi)− νA(xi))2

}
·{

(1− νB(xi))2 + (1− µB(xi))2 + 2(1− µB(xi)− νB(xi))2
}

=
1

n

n∑
i=1

{
(1− νB(xi)) · (1− νA(xi)) + (1− µB(xi)) · (1− µA(xi))
+ 2(1− µB(xi)− νB(xi)) · (1− µA(xi)− νA(xi))

}
√√√√√√√
{
(1− νB(xi))2 + (1− µB(xi))2 + 2(1− µB(xi)− νB(xi))2

}
·{

(1− νA(xi))2 + (1− µA(xi))2 + 2(1− µA(xi)− νA(xi))2
}

= ICIFS(B,A)

(P2) It is quite obvious that ICIFS(A,B) ≥ 0. In order to show ICIFS(A,B) ≤ 1 for
two IFSs A and B. We use the well-known Cauchy-Schwarz inequality:

n∑
i=1

aibi ≤

√√√√( n∑
i=1

a2i

)
·
( n∑
i=1

b2i

)
(3.5)

with equality if and only if the two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
are linearly dependent.

In terms of membership and non-membership functions for two IFSs A and B,
Eq. (3.3) yields to

C(A,B)(xi) =
∏

j={A,B}

(
1− µj(xi)

)
+

∏
j={A,B}

(
1− νj(xi)

)
+ 2

∏
j={A,B}

(
1− µj(xi)− νj(xi)

)
=

(
1− µA(xi)

)(
1− µB(xi)

)
+
(
1− νA(xi)

)(
1− νB(xi)

)
+2
(
1− µA(xi)− νA(xi)

)(
1− µB(xi)− νB(xi)

)

≤

√√√√√√√√
{(

1− µA(xi)
)2

+
(
1− νA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
·
{(

1− µB(xi)
)2

+
(
1− νB(xi)

)2
+ 2
(
1− µB(xi)− νB(xi)

)2}
≤

√
T (A) · T (B)

Thus, from Eq. (3.4) we get, ICIFS(A,B) ≤ 1. Therefore, 0 ≤ ICIFS(A,B) ≤ 1.
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(P3) If A = B i.e., µA(xi) = νB(xi) and νA(xi) = νB(xi) for all xi ∈ X then by Eq.
(3.4), we get

ICIFS(A,B) =
1

n

n∑
i=1


(
1− νA(xi)

)
·
(
1− νA(xi)

)
+
(
1− µA(xi)

)
·
(
1− µA(xi)

)
+ 2
(
1− µA(xi)− νA(xi)

)
·
(
1− µA(xi)− νA(xi)

)
√√√√√√√

{(
1− νA(xi)

)2
+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
·{(

1− νA(xi)
)2

+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}

=
1

n

n∑
i=1

{(
1− νA(xi)

)2
+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
{(

1− νA(xi)
)2

+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
= 1

On the other hand, if we assume ICIFS(A,B) = 1, then by Eq. (3.4), we
conclude that{

(1− νA(xi)) · (1− νB(xi)) + (1− µA(xi)) · (1− µB(xi))
+ 2(1− µA(xi)− νA(xi)) · (1− µB(xi)− νB(xi))

}
√√√√√√√
{
(1− νA(xi))2 + (1− µA(xi))2 + 2(1− µA(xi)− νA(xi))2

}
·{

(1− νB(xi))2 + (1− µB(xi))2 + 2(1− µB(xi)− νB(xi))2
}

= 1(3.6)

Take 1 − νA(xi) = a1, 1 − νB(xi) = a2, 1 − µA(xi) = b1, 1 − µB(xi) = b2,
1− µA(xi)− νA(xi) = c1 and 1− µB(xi)− νB(xi) = c2. Then, from (3.6), we get

a1a2 + b1b2 + 2c1c2√
(a21 + b21 + 2c21) · (a22 + b22 + 2c22)

= 1

⇒ (a1a2 + b1b2 + 2c1c2)
2 = (a21 + b21 + 2c21) · (a22 + b22 + 2c22)

⇒ (a1b2 − b1a2)2 + 2(b1c2 − b2c1)2 + 2(a1c2 − a2c1)2 = 0

which implies that a1b2 = b1a2, b1c2 = b2c1 and a1c2 = c1a2. Thus, from it, we
conclude that a1

a2
= b1

b2
= c1

c2
which implies that a1 = ha2, b1 = hb2 and c1 = hc2 for

some nonzero h. Therefore, a1 + b1 − c1 = h(a2 + b2 − c2) and by substituting the
values of a1, b1, c1, a2, b2 and c2, we get h = 1. Hence, a1 = a2, b1 = b2 and c1 = c2
which further implies that νA(xi) = νB(xi), µA(xi) = µB(xi) and get A = B.

Therefore, ICIFS(A,B) = 1 if and only if A = B.
(P4) If A ⊆ B ⊆ C, geometrically the angle between A and C should be larger than the

angle between A and B and the angle between B and C for any element xi. Thus,
the relation ICIFS(A,C) ≤ ICIFS(A,B) and ICIFS(A,C) ≤ ICIFS(B,C) can be
obtained from Eq. (3.4).

Hence, ICIFS is a valid cosine similarity measure. �

In order to show the superiority of the proposed measure de�ned in Eq. (3.4) against
the existing one, the proposed measure has been tested on the above considered examples
as given in section 2 where the existing measure fails to rank the di�erent IFSs.

3.4. Example. If we utilize Eq. (3.4) to the considered data as given in Example
2.5 then their corresponding measurement values are computed as ICIFS(A1, A2) =
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0.9922 ; ICIFS(A2, A3) = 0.9772 and ICIFS(A3, A1) = 0.9430. Thus, we conclude
that the proposed measure has successfully overcome the shortcoming of the existing
similarity measure, where Ye [29] gets incorrect results: CIFS(A1, A2) = CIFS(A2, A3) =
CIFS(A3, A1) as shown in Example 2.5.

3.5. Example. If we apply the proposed ICIFS on the data given in Example 2.6
then the corresponding value is ICIFS(A,B) = 0.8910 which is non-zero. Thus, the
proposed measure are capable to handle the problem when at least one degree of their
corresponding IFN become zero.

3.6. Example. If we utilize proposed ICIFS on the data given in Example 2.7 i.e., for
A = 〈0.4, 0.3〉 and B = 〈0, 0.5〉 then we get

ICIFS(A,B) =
(0.7)(0.5) + (0.6)(1) + 2(0.3)(0.5)√

(0.6)2 + (0.7)2 + 2(0.3)2
√

(1)2 + (0.5)2 + 2(0.5)2
= 0.9310

On the other hand, if we compute the ICIFS for the IFNs C and D then we get
ICIFS(C,D) = 0.9220. Thus, it has been clearly seen that by changing the degree of the
membership functions, their corresponding measure changes and hence their is an e�ect
of the pair of the membership functions on proposed similarity measure.

Hence, the proposed measure has successfully overcome the shortcoming of the existing
cosine similarity measure.

3.7. Example. Let A = {(x1, 0.7, 0.2), (x2, 0.4, 0.5), (x3, 0.5, 0.3)} and B = {(x1, 0.6,
0.4), (x2, 0.3, 0.6), (x3, 0.7, 0.2)} be two IFSs de�ned over the �nite universeX = {x1, x2, x3}
then by using the Eq. (3.1), the informational energy of A is

TA(xi) =

{(
1− νA(xi)

)2
+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
=

{
0.82 + 0.32 + 2(1− 0.7− 0.2)2, 0.52 + 0.62 + 2(1− 0.4− 0.5)2,

0.72 + 0.52 + 2(1− 0.5− 0.3)2
}

=
{
0.75, 0.63, 0.82

}
and by Eq. (3.2), the informational energy of B is

TB(xi) =

{(
1− νA(xi)

)2
+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
=

{
0.62 + 0.42 + 2(1− 0.6− 0.4)2, 0.42 + 0.72 + 2(1− 0.3− 0.6)2,

0.82 + 0.32 + 2(1− 0.7− 0.2)2
}

=
{
0.52, 0.67, 0.75

}
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On the other hand, by using the Eq. (3.3), the correlation between the intuitionistic
fuzzy set A and B is

C(A,B)(xi) =

{ ∏
j=A,B

(
1− νj(xi)

)
+

∏
j=A,B

(
1− µj(xi)

)
+ 2

∏
j=A,B

(
1− µj(xi)− νj(xi)

)}

=

{
(0.8)(0.6) + (0.3)(0.4) + 2(0.1)(0), (0.5)(0.4) + (0.6)(0.7) + 2(0.1)(0.1),

(0.8)(0.7) + (0.5)(0.3) + 2(0.2)(0.1)

}
=

{
0.60, 0.64, 0.75

}
Hence, the cosine similarity measure between IFSs A and B is given by

ICIFS(A,B) =
1

3

3∑
i=1

C(A,B)(xi)√
TA(xi) · TB(xi)

=
1

3

[
0.60√

0.75× 0.52
+

0.64√
0.63× 0.67

+
0.75√

0.82× 0.75

]
= 0.9674

3.8. Remark. From Eq. (3.4), it has been observed the following points

(i) If µ(xi) + ν(xi) = 1 for all xi ∈ X then the proposed ICIFS will be equivalent to
the existing CIFS .

(ii) If n = 1 and µ(xi) + ν(xi) = 1 for all xi ∈ X then the ICIFS(A,B) becomes the
correlation coe�cient between two IFSs A and B.

However, in many practical situations, the di�erent set may have taken di�erent
weights and thus, weight ωi of the element xi ∈ X(i = 1, 2, . . . , n) should be taken
into account. In the following, we develop weighted cosine similarity measures between
the two IFSs. For it, let ω = (ω1, ω2, . . . , ωn)

T be the weight vector of xi(i = 1, 2, . . . , n)

with ωi > 0 and
n∑
i=1

ωi = 1, then we have extended the above formulated cosine similarity

coe�cients ICIFS to weighted cosine similarity measures WICIFS between two IFSs A
and B, as follows:

WICIFS(A,B) =

n∑
i=1

ωi
CA,B(xi)√

TA(xi) · TB(xi)
(3.7)

n∑
i=1

ωi


(
1− νA(xi)

)
·
(
1− νB(xi)

)
+
(
1− µA(xi)

)
·
(
1− µB(xi)

)
+ 2
(
1− µA(xi)− νA(xi)

)
·
(
1− µB(xi)− νB(xi)

)
√√√√√√√

{(
1− νA(xi)

)2
+
(
1− µA(xi)

)2
+ 2
(
1− µA(xi)− νA(xi)

)2}
·{(

1− νB(xi)
)2

+
(
1− µB(xi)

)2
+ 2
(
1− µB(xi)− νB(xi)

)2}
From the above it has been seen that if ω = (1/n, 1/n, . . . , 1/n)T , then Eq. (3.7)

reduces to Eq. (3.4).

3.9. Theorem. Let ω = (ω1, ω2, . . . , ωn)
T be the weight vector of xi, (i = 1, 2, . . . , n)

with ωi > 0 and
n∑
i=1

ωi = 1, then the measure de�ned in Eq. (3.7), satisfy the following

properties:
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(P1) WICIFS(A,B) =WICIFS(B,A)
(P2) 0 ≤WICIFS(A,B) ≤ 1
(P3) WICIFS(A,B) = 1, if and only if A = B i.e. µA(xi) = µB(xi) and νA(xi) =

νB(xi) for i = 1, 2, . . . , n
(P4) WICIFS(A,C) ≤ WICIFS(A,B) and WICIFS(A,C) ≤ WICIFS(B,C), if A ⊆

B ⊆ C for an IFS C.

Proof. Proof follows from the above theorem, so we omit here. �

Furthermore, various authors [4, 5, 20, 7, 6, 23, 31, 21, 29] have proposed the di�erent
types of similarity measure under the IFSs environment, whose description are listed as
below.

(i) SC(A,B) = 1−
n∑
i=1
|µA(xi)−νA(xi)−µB(xi)+νB(xi)|

2n
;

(ii) SH(A,B) = 1−
n∑
i=1

(|µA(xi)−µB(xi)|)+(|νA(xi)−νB(xi)|)

2n
.

(iii) SL(A,B) = 1−
n∑
i=1
|SA(xi)−SB(xi)|

4n
−

n∑
i=1
|µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|

4n

(iv) SO(A,B) = 1−

√
n∑
i=1

(µA(xi)−µB(xi))2+(νA(xi)−νB(xi))2

2n
.

(v) SDC(A,B) = 1−
p

√
n∑
i=1
|µA(xi)−νA(xi)+µB(xi)−νB(xi)

2
|p

n
,

(vi) SHB(A,B) = SDC(µA(xi),µB(xi))+SDC(1−νA(xi),1−νB(xi))
2

(vii) Spe (A,B) = 1−
p

√
n∑
i=1

(φµ(xi)+φν(xi))p

n
, where φµ(A,B) = |µA(xi)−µB(xi)|

2
; φν(xi) =

|νB(xi)−νA(xi)|
2

(viii) Sps (A,B) = 1 −
p

√
n∑
i=1

(φs1(xi)+φs2(xi))p

n
where φs1(xi) = |mA1(xi)−mB1(xi)|

2
and

φs2(xi) =
|mA2(xi)−mB2(xi)|

2
; mA1(xi) =

µA(xi)+mA(xi)
2

; mB1(xi) =
µB(xi)+mB(xi)

2
;

mA2(xi) =
mA(xi)+1−νA(xi)

2
;mB2(xi) =

mB(xi)+1−νB(xi)
2

;mA(xi) =
µA(xi)+1−νA(xi)

2

and mB(xi) =
µB(xi)+1−νB(xi)

2

(ix) S1
HY = 1 − dH(A,B) where dH(A,B) = 1

n

n∑
i=1

max(| µA(xi) − µB(xi) |, | νA(xi) −

νB(xi) |)
(x) S2

HY = (e−dH (A,B) − e−1)/(1− e−1) for the same dH(A,B)
(xi) S3

HY = (1− dH(A,B))/(1 + dH(A,B)) for the same dH(A,B)

Now, in order to compare the performance of the proposed measure with these existing
measures, six di�erent sets of IFSs A and B have been taken for an illustration which are
mentioned in Table 1. The results corresponding to the proposed measures along with
the existing measures are given in Table 1.
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Table 1. Similarity measure between IFSs A and B

1 2 3 4 5 6

A (0.3, 0.3) (0.3, 0.4) (1, 0) (0.5, 0.5) (0.4, 0.2) (0.4, 0.2)
B (0.4, 0.4) (0.4, 0.3) (0, 0) (0, 0) (0.5, 0.3) (0.5, 0.2)

SC [4, 5] 1 0.9 0.5 1 1 0.95
SH [20] 0.9 0.9 0.5 0.5 0.9 0.95
SL[7] 0.95 0.9 0.5 0.75 0.95 0.95
SO[7] 0.9 0.9 0.3 0.5 0.9 0.93
SDC [6] 1 0.9 0.5 1 1 0.95
SHB [23] 0.9 0.9 0.5 0.5 0.9 0.95
Spe [31] 0.9 0.9 0.5 0.5 0.9 0.95
Sps [31] 0.95 0.9 0.5 0.75 0.95 0.95
S1
HY [21] 0.9 0.9 0 0.5 0.9 0.9
S2
HY [21] 0.85 0.85 0 0.38 0.85 0.85
S3
HY [21] 0.82 0.82 0 0.33 0.82 0.82

CIFS [29] 1 0.96 0 0 0.9971 0.9965
ICIFS (proposed) 0.9806 0.9903 0.5 0.7071 0.9804 0.9929

4. A new method for intuitionistic fuzzy group decision making

based on the proposed cosine similarity measures

In this section, we have presented a decision-making approach based on the proposed
cosine similarity measures under the intuitionistic fuzzy environment following by the
three numerical examples.

4.1. Proposed decision making method. The following assumptions or notations
are used to present the MCDM problems for evaluating of these with an intuitionis-
tic fuzzy environment. Let A = {A1, A2, . . . , Am} be the set of m di�erent alternatives
which have to be evaluated under the set of n di�erent criteria C = {C1, C2, . . . , Cn}. The
weight vector information corresponding to each criterion is denoted by ω = (ω1, ω2, . . . , ωn)

T

with wj > 0 and
∑n
j=1 ωj = 1. Assume that these alternatives Ai(i = 1, 2, . . . ,m) are

evaluated by an expert who will receive the full responsibility for the whole process
and gives their preferences under the intuitionistic fuzzy environment. These prefer-
ence values are summarized in the form of the decision matrix D = (αij)m×n where
αij = 〈µij , νij〉 represents the priority values of alternative Ai given by decision maker
such that µij , νij ∈ [0, 1] and µij + νij ≤ 1. Then, the proposed method has been
summarized into the various steps which are described as follows.

(Step 1:) Construct the intuitionistic fuzzy decision matrix D = (αij)m×n as.

D =

C1 C2 . . . Cn


A1 〈µ11, ν11〉 〈µ12, ν12〉 . . . 〈µ1n, ν1n〉
A2 〈µ21, ν21〉 〈µ22, ν22〉 . . . 〈µ2n, ν2n〉
...

...
...

. . .
...

Am 〈µm1, νm1〉 〈µm2, νm2〉 . . . 〈µmn, νmn〉

(4.1)
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(Step 2:) Utilize appropriately the ICIFS measure:

ICIFS(Ai, B) =
1

n

n∑
j=1


(
1− νAi (Cij)

)
·
(
1− νB(Cij)

)
+
(
1− µAi (Cij)

)
·
(
1− µB(Cij)

)
+ 2
(
1− µAi (Cij)− νAi (Cij)

)
·
(
1− µB(Cij)− νB(Cij)

)
√√√√√√√

{(
1− νAi (Cij)

)2
+
(
1− µAi (Cij)

)2
+ 2
(
1− µAi (Cij)− νAi (Cij)

)2}
·{(

1− νB(Cij)
)2

+
(
1− µB(Cij)

)2
+ 2
(
1− µB(Cij)− νB(Cij)

)2}
or WICIFS measure:

WICIFS(Ai, B) =

n∑
j=1

ωj


(
1− νAi (Cij)

)
·
(
1− νB(Cij)

)
+
(
1− µAi (Cij)

)
·
(
1− µB(Cij)

)
+ 2
(
1− µAi (Cij)− νAi (Cij)

)
·
(
1− µB(Cij)− νB(Cij)

)
√√√√√√√

{(
1− νAi (Cij)

)2
+
(
1− µAi (Cij)

)2
+ 2
(
1− µAi (Cij)− νAi (Cij)

)2}
·{(

1− νB(Cij)
)2

+
(
1− µB(Cij)

)2
+ 2
(
1− µB(Cij)− νB(Cij)

)2}
to compute the measure values between the alternatives Ai(i = 1, 2, . . . ,m)
and the ideal alternative B.

(Step 3:) Rank all the alternatives based on index as obtained from k = argmax{ICIFS}
or k = argmax{WICIFS}. More the measure index, the better the alternative
Ai(i = 1, 2, . . . ,m).

4.2. Illustrative Example. The above mentioned approach has been demonstrated
with a numerical example on pattern recognition; medical diagnosis and an investing a
money in a market. The details illustration have been described as follows.

4.2.1. Pattern recognition. Consider a universe X = {x1, x2, x3} and three known pat-
tern C1, C2 and C3 in the form of IFSs given as

C1 = {(x1, 1.0, 0.0), (x2, 0.8, 0.0), (x3, 0.7, 0.1)}
C2 = {(x1, 0.8, 0.1), (x2, 1.0, 0.0), (x3, 0.9, 0.0)}
C3 = {(x1, 0.6, 0.2), (x2, 0.8, 0.0), (x3, 1.0, 0.0)}

Consider an unknown IFS pattern P = {(x1, 0.5, 0.3), (x2, 0.6, 0.2), (x3, 0.8, 0.1)} which
will be recognized. Then the target is to classify the pattern P in one of the classes
of C1, C2 and C3. For it, an improved cosine similarity measure (3.4) has been utilized
to compute the measurement values from P to Ck(k = 1, 2, 3) and their corresponding
results for each pattern is given as follows.

ICIFS(C1, P ) = 0.9085; ICIFS(C2, P ) = 0.9191; ICIFS(C3, P ) = 0.9736

Thus, based on the recognition principal, we conclude that pattern P should be classi�ed
with C3.

On the other hand, if we apply the similarity measure, as proposed by Ye [29], to
classify the pattern P then their measurement values are computed as CIFS(C1, P ) =
0.9353, CIFS(C2, P ) = 0.9519 and CIFS(C3, P ) = 0.9724. On the other hand, by using
the similarity measure SDC as proposed by Dengfeng and Chuntian [6] to the considered
data then their corresponding measurement values are obtained as SDC(C1, P ) = 0.74,
SDC(C2, P ) = 0.78, SDC(C3, P ) = 0.84 while by using the similarity measure T as
proposed by Liu [22] measure, then their corresponding results are T (C1, P ) = 0.72,
T (C2, P ) = 0.74, T (C3, P ) = 0.84. Hence, from all these analysis, it has been concluded
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that the pattern P is recognized with the C3 and which coincides with the proposed
measure result.

If we assign that weight vector of the elements x1, x2, and x3 be 0.5, 0.3, and 0.2,
then by using Dengfeng and Chuntian [6] measure (corresponding to p = 2), we get
SDC(C1, P ) = 0.696, SDC(C2, P ) = 0.779 and SDC(C3, P ) = 0.853 while by Ye [29] we
get WIFS(C1, P ) = 0.9133, WIFS(C2, P ) = 0.9404 and WIFS(C3, P ) = 0.9712. On the
other hand, if we utilize the proposed weighted cosine similarity measure de�ned in Eq.
(3.7), then their corresponding measurement values are

WICIFS(C1, P ) = 0.8737;WICIFS(C2, P ) = 0.9103;WICIFS(C3, P ) = 0.9775

Hence, pattern P should be classi�ed with C3.
Finally, the measurement values of the various existing similarity measures have been

computed for the considered data and their corresponding analysis and results are sum-
marized in Table 2. From this table, we conclude that pattern P belongs to the pattern
C3 too and the result coincides with the existing similarity measure results and validate
the approach.

Table 2. Similarity measure comparison for Pattern recognition

(P,Q1) (P,Q2) (P,Q3)

SC [4, 5] 0.7500 0.7667 0.9000
SH [20] 0.7500 0.7667 0.9000
SL [7] 0.7500 0.7667 0.9000
SO [7] 0.7142 0.7551 0.8845
SDC [6] 0.7500 0.7667 0.9000
SHB [23] 0.7500 0.7667 0.9000
Spe [31] 0.7500 0.7667 0.9000
Sps [31] 0.7500 0.7667 0.9000
S1
HY [21] 0.7000 0.7333 0.8667
S2
HY [21] 0.5900 0.6297 0.8025
S3
HY [21] 0.5385 0.5789 0.7647

CIFS [29] 0.9353 0.9519 0.9724
ICIFS (proposed) 0.9085 0.9191 0.9736

4.2.2. Medical diagnosis. Consider a set of diagnosesQ = {Q1(Viral fever), Q2(Malaria),
Q3(Typhoid), Q4(Stomach Problem), Q5(Chest problem)} and a set of symptoms S =
{s1(Temperature), s2(HeadAche), s3(Stomach Pain), s4(Cough), s5(Chest pain)} which
are represented in the form of IFSs as below.

Q1 = {(s1, 0.4, 0.0), (s2, 0.3, 0.5), (s3, 0.1, 0.7), (s4, 0.4, 0.3), (s5, 0.1, 0.7)}
Q2 = {(s1, 0.7, 0.0), (s2, 0.2, 0.6), (s3, 0.0, 0.9), (s4, 0.7, 0.0), (s5, 0.1, 0.8)}
Q3 = {(s1, 0.3, 0.3), (s2, 0.6, 0.1), (s3, 0.2, 0.7), (s4, 0.2, 0.6), (s5, 0.1, 0.9)}
Q4 = {(s1, 0.1, 0.7), (s2, 0.2, 0.4), (s3, 0.8, 0.0), (s4, 0.2, 0.7), (s5, 0.2, 0.7)}
Q5 = {(s1, 0.1, 0.8), (s2, 0.0, 0.8), (s3, 0.2, 0.8), (s4, 0.2, 0.8., (s5, 0.8, 0.1)}

Suppose a patient P has been evaluated by an expert in order to �nd which diseases
are the most a�ected by the person. For it, they have treated this patient as a reference
set and gave their preferences with respect to all the symptoms in terms of IFNs and
represented by the following set:

P = {(s1, 0.8, 0.1), (s2, 0.6, 0.1), (s3, 0.2, 0.8), (s4, 0.6, 0.1), (s5, 0.1, 0.6)}
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Now, the target is to classify the patient P in one of the Q1, Q2, Q3, Q4, Q5. For this, a
developed cosine similarity measure ICIFS as given in Eq. (3.4) has been utilized and
their following indices have been computed corresponding to it.

ICIFS(P,Q1) = 0.9264; ICIFS(P,Q2) = 0.9376; ICIFS(P,Q3) = 0.8900;

ICIFS(P,Q4) = 0.7010; ICIFS(P,Q5) = 0.6438

Thus, ranking order of diseases is Q2 � Q1 � Q3 � Q4 � Q5 and hence the patient P
su�er from Q2 (Malaria) disease.

On the other hand, if we compute the similarity index by using existing Ye [29] ap-
proach then their corresponding results are CIFS(P,Q1) = 0.9046, CIFS(P,Q2) = 0.8832,
CIFS(P,Q3) = 0.8510, CIFS(P,Q4) = 0.5033 and CIFS(P,Q5) = 0.4190. The detailed
analysis of the considered problem by using the existing similarity as well as cosine simi-
larity indices are summarized in Table 3. From these results, we have concluded that the
patient su�er from the diagnosis Q1(Viral fever). Also, it has been seen that the existing
approaches does not coincide with the proposed one because the proposed approach have
also considered the pairs of indeterminacy between the membership functions, while the
existing approaches have ignored it.

Table 3. Similarity measure comparison for Medical diagnosis

(P,Q1) (P,Q2) (P,Q3) (P,Q4) (P,Q5)

SC [4, 5] 0.6300 0.6400 0.8200 0.6400 0.8200
SH [20] 0.5900 0.6400 0.8000 0.6400 0.8000
SL[7] 0.6100 0.6400 0.8100 0.6400 0.8100
SO[7] 0.5194 0.5805 0.6714 0.5901 0.7000
SDC [6] 0.6300 0.6400 0.8200 0.6400 0.8200
SHB [23] 0.5900 0.6400 0.8000 0.6400 0.8000
Spe [31] 0.5900 0.6400 0.8000 0.6400 0.8000
Sps [31] 0.6200 0.6400 0.8100 0.6400 0.8100
S1
HY [21] 0.5200 0.6000 0.7600 0.5800 0.7200
S2
HY [21] 0.3969 0.4785 0.6625 0.4575 0.6137
S3
HY [21] 0.3514 0.4286 0.6129 0.4085 0.5625

CIFS [29] 0.9046 0.8832 0.8510 0.5033 0.4190
ICIFS (proposed) 0.9264 0.9376 0.8900 0.7010 0.6438

4.2.3. Invest a money. Consider a person which have some sort of money and they
want to invest in some multi-national company. After carefully analyzing the market,
they have analyzed the following four possible alternative namely, car, food, computer
and arm companies denoted by Ai, i = 1, 2, 3, 4 respectively. The decision maker take
a decision by keeping three criteria on his mind namely risk, growth and environment
impact factor denoted by Cj , j = 1, 2, 3 respectively and giving their weights according
to it as ω = (0.35, 0.25, 0.40)T . The information related to it has been summarized in
the form of decision matrix as below.

D =


〈0.4, 0.3〉 〈0.4, 0.2〉 〈0.1, 0.5〉
〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.1〉
〈0.3, 0.3〉 〈0.5, 0.3〉 〈0.5, 0.1〉
〈0.7, 0.1〉 〈0.6, 0.1〉 〈0.3, 0.1〉


In order to access the best alternative in the decision set, a concept of an ideal point

has been used. Although the ideal alternative does not exist in real world, it does provide
a useful theoretical construct against which to evaluate alternatives. Hence, we de�ne
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the �xed ideal alternative A∗ = 〈1, 0〉 as the IFS. Now, utilizing the proposed weighted
cosine similarity measure as de�ned in Eq. (3.7) to compute the measurement values of
each alternative from its ideal alternative and hence get

WICIFS(A1, A
∗) = 0.5857 ; WICIFS(A2, A

∗) = 0.7903 ;

WICIFS(A3, A
∗) = 0.7146 ; WICIFS(A4, A

∗) = 0.7813

Thus, the ranking order of the alternatives Ai(i = 1, 2, 3, 4) is A2 � A4 � A3 � A1

where � means �preferred to�.
On the other hand, if we apply Ye [29] approach to compute the cosine similarity mea-

sure index corresponding to each alternative, then their corresponding measurement val-
ues are WCIFS(A1, A

∗) = 0.5821, WCIFS(A2, A
∗) = 0.9573, WCIFS(A3, A

∗) = 0.8541
andWCIFS(A4, A

∗) = 0.9726. Finally, in order to analyze the e�ect of the weight vector
on the selection of the best alternative(s), we have conducted the analysis and their cor-
respondingly results are summarized in Table 4. From this table, it has been seen that
the best alternative is A2 i.e., food company while by Ye [29] result, the best alternative
is A4. But it has been observed as above that Ye [29] does not consider the pair of the
interaction between the pairs of the membership functions and hence their corresponding
results does not give the correct decision to the system analysts.

Table 4. E�ect of weight vector on cosine similarity measure index

ω Ye [29] result Proposed results

(1/3, 1/3, 1/3) (0.6302, 0.9558, 0.8484, 0.9750) (0.6039, 0.8007, 0.7177, 0.7939)
(0.25, 0.25, 0.50) (0.5217, 0.9594, 0.8814, 0.9684) (0.5593, 0.7746, 0.7298, 0.7537)
(0.35, 0.25, 0.40) (0.5821, 0.9573, 0.8541, 0.9726) (0.5857, 0.7903, 0.7146, 0.7813)
(0.40, 0.25, 0.35) (0.6122, 0.9562, 0.8404, 0.9746) (0.5989, 0.7981, 0.7070, 0.7951)
(0.50, 0.30, 0.20) (0.7076, 0.9530, 0.8069, 0.9806) (0.6389, 0.8215, 0.6921, 0.8330)
(0.25, 0.40, 0.35) (0.6264, 0.9562, 0.8630, 0.9741) (0.5999, 0.7981, 0.7308, 0.7846)

5. Conclusion

In this paper, we have presented newly improved cosine and weighted cosine similar-
ity measures based decision-making method between the intuitionistic fuzzy sets. For
it, �rstly some drawbacks of the existing cosine similarity measures have been pointed
out and validated with a numerical example. These shortcomings have been resolved
by de�ning new operational laws between the two IFSs by considering the pairs of the
interaction between their membership functions. Based on these new operations, infor-
mational energies between the sets of IFNs as well as cosine similarity measures index
have been proposed under the intuitionistic fuzzy environment. An illustrated example
has been given which demonstrate the proposed similarity measure can easily handle the
situation where the existing measures fail. Also, the developed measures have been tested
on some pattern recognition, medical and MCDM problems which show the strength of
the approach. By comparison with the existing paper's results with the proposed results,
it has been found that the proposed results are more stable and practical and coincides
with the conclusion of the existing measures. In our further research, we will focus on
adopting this approach to some more complicated applications from the �elds of cluster
analysis, uncertain programming, and mathematical programming.
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