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Abstract

Fuzzy regression analysis is one of the most widely used statistical tech-
niques which represents the relation between variables. In this paper,
the crisp inputs and the symmetrical triangular fuzzy output are consid-
ered. Two hybrid algorithms are considered to �t the fuzzy regression
model. In this study, algorithms are based on adaptive neuro-fuzzy
inference system. The results are derived based on the V -fold cross
validation, so that the validity and quality of the suggested methods
can be guaranteed. Finally, using the numerical examples, the perfor-
mance of the suggested methods are compared with the other ones,
such as linear programming (LP) and quadratic programming (QP).
Based on examples, hybrid methods are veri�ed for the prediction.
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1. Introduction

The concept of fuzzy regression analysis was introduced by Tanaka et al. [38] in 1982.
Tanaka et al. [39] regarded fuzzy data as a possibility distribution. So, they supposed the
deviations between the observed values and the estimated values are due to the fuzziness
of the system structure. In general, several fuzzy regression techniques have been pro-
posed based on fuzzy least squares (FLS) and mathematical programming methods, such
as linear programming (LP) or quadratic programming (QP) that minimize the total
spread of the output. FLS and mathematical programming methods were initially pro-
posed by Diamond [11] and Tanaka et al. (see, e.g. [36, 37, 39]) respectively. Moreover,
the several variants FLS (see, e.g. [1, 2, 24, 30]) and mathematical programming (see,
e.g. [27, 28]) have been applied for the fuzzy linear regression problem. In the fuzzy liter-
atures, the several extensions of these methods have been proposed in a non-parametric
context. For fuzzy nonparametric regression, Cheng and Lee [4] proposed k-NN and
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kernel smoothing techniques, Farnoosh et al. [14] introduced a modi�cation on ridge es-
timation and Wang et al. [40] proposed local linear smoothing technique. Razzaghnia and
Danesh [29] analyzed local linear smoothing technique in nonparametric regression with
trapezoidal fuzzy data. In the recent years, the arti�cial intelligent modeling techniques
have been utilized to approximate the non-linear problems, the complex behaviors and
the prediction of the regression parameters. Ishibuchi et al. (see, e.g. [16, 17, 18]) have
introduced fuzzy regression analysis by using neural networks and proposed a learning
algorithm of the fuzzy neural networks with the triangular fuzzy weights. Mosleh et al.
[25, 26] used a novel hybrid method based on fuzzy neural network for fuzzy coe�cients
prediction of fuzzy linear and nonlinear regression models and for solving a system of
fuzzy di�erential equations. Shapiro [32] proposed the merge of neural networks, fuzzy
logic, and genetic algorithms. Kraily et al. [23] have utilized k-NN graph of high dimen-
sional data as e�cient representation of the hidden structure of the clustering problem.
Cluster centers are �ne-tuned by minimizing fuzzy-weighted geodesic distances. Their
algorithm is capable to cluster networks. In 1993, Jang [20] proposed adaptive network
based on inference systems (ANFIS) that combines the arti�cial neural networks and the
fuzzy systems. It has the bene�ts of the two models. In 1998, Cheng and Lee [3, 5]
formulated the ANFIS model and radial basis function networks for the fuzzy regression
and Dalkilic and Apaydin [7, 8] used the ANFIS model to analyze the switching regres-
sion and estimate the fuzzy regression parameters in 2009 and 2014. Also, Danesh et al.
[9] proposed the fuzzy least squares problem based on Diamond's distance to optimize
the consequent parameters in the hybrid algorithm of the adaptive neuro-fuzzy inference
system method. Kayacan and Khanesar [21] have been proposed a novel hybrid training
method that uses particle swarm optimization (PSO) for the training of the antecedent
parts of type 2 fuzzy neural networks (T2FNNs) and SMC-based training methods for
the training of parameters of their consequent parts. Gaxiola et al. [15] presented the
optimization of type-2 fuzzy inference systems using genetic algorithms (GAs) and PSO.
So in recently years, ANFIS has been applied in di�erent areas such as medicine, in-
dustry, geography, and econometrics. In medical �eld, Sridevi and Nirmala [33] utilized
ANFIS to perceive and show clinical results of prenatal Truncus Arteriosus congenital
heart defect, and in geography, Dewan et al. [10] proposed that ANFIS model could be
utilized for prediction of ultimate tensile strength of Friction-stir-welding joints. They
considered three critical process parameters including spindle speed, plunge force and
welding speed. Fang and Lee [13] have used a self-tuning controller based on a neuro-
fuzzy algorithm to control the rotation speed of the outboard thrusters for the optimal
adjustment of the ship position, heading and for path tracking. In industry, Sarhadi
et al. [31] have proposed a novel adaptive predictive control method based on adap-
tive neuro-fuzzy inference system for a class of nonlinear industrial processes. Linear
part is approximated using least squares estimation technique, and the nonlinear part
is identi�ed using an ANFIS-based identi�er. In econometrics, Cheng et al. [6] pre-
sented that arti�cial intelligence approaches are applicable to cost estimating problems
related to expert systems, case based reasoning (CBR), neural network (NN), fuzzy logic
(FL), genetic algorithms (GA) and derivatives. In this study, the linear programming
method is proposed to optimize the consequent parameters in the hybrid algorithm of the
adaptive neuro-fuzzy inference system method. Also, hybrid algorithms based on linear
programming and fuzzy least square are designed to predict fuzzy regression model and
reduce error. In these algorithms, the gradient descent method is used to compute the
premise parameters (fuzzy weights). Also, the linear programming method (FWLP) and
the fuzzy least squares (FWLS) to optimize the consequent parameters. Hybrid methods
are compared with LP and QP methods. It is demonstrated that hybrid methods have
lower error than LP and QP in the prediction.
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This paper includes four sections. In Section 2, the concepts and formulations of
the di�erent models are explained. In Section 3, ANFIS method is extended in fuzzy
regression and the consequent parameters are obtained by using the linear programming
and fuzzy least squares based on Diamond's distance. Two examples are used to illustrate
the methods in Section 4, and the analysis of the results is discussed in Section 5.

2. Material and methods

2.1. De�nition. Suppose thatX = (lX , aX , rX) is a triangular fuzzy number so that aX ,
lX and rX and are the center, the lower and the upper limits being this fuzzy number,
respectively. The membership function of X = (lX , aX , rX) is de�ned as follows:

µx(z) =


L( aX−z

aX−lX
), lX < z < aX ,

R( z−aX
rX−aX

), aX < z < rX ,

0, otherwise.

.(2.1)

Let A = (lA, aA, rA) and B = (lB , aB , rB), lA, rA, lB , rB ≥ 0 be any two triangular
fuzzy numbers. So, the distance between A and B can be expressed as [11]:

d2(A,B) = (lB − lA)2 + (aB − aA)2 + (rB − rA)2.(2.2)

This distance measures the closeness between the membership functions of two triangular
fuzzy numbers. The membership functions A and B are equal when d2(A,B) = 0. Also,
the result of addition of triangular fuzzy numbers is a triangular fuzzy number again.

2.2. De�nition. The function f(x) is a mapping from x to Y where
xj = (xj0, xj1, . . . , xjp)(j = 1, . . . , n) is a p-dimentional vector crisp independent variable
and domain is assumed to be D⊂Rp. Consider the following the fuzzy regression model:

Y = f(x) {+} ε = (l(x), a(x), r(x))LR {+} ε,(2.3)

where Y has the fuzzy structure and ε represents the regression error with conditional
mean zero and variance σ2(x) given x. Y is the response variable. A symmetric triangular
fuzzy number Yj can be written as Yj = (aj , βj) where aj and βj are the center and the
spread of a symmetric triangular fuzzy number respectively, and βj = rj − aj = aj − lj .

2.1. Forecasting methods. In this section, we will brie�y describe LP and QP meth-
ods.

2.1.1. Fuzzy regression with linear programming (LP). In this study, we consider a fuzzy
regression model with crisp inputs and triangular fuzzy output. Consider the following
fuzzy regression model as:

Yj = p0 + p1xj1 + p2xj2 + . . .+ ppxjp = Pxj , j = 1, . . . , n,(2.4)

where n is the number of data points, xj = (xj0, xj1, . . . , xjp) is a p-dimensional input
vector of the independent variables at the jth observation, P = (p0, p1, . . . , pp) is a
vector of unknown fuzzy parameters and Yj is the jth observed value of the dependent
variables. P can be denoted in vector form as P = {a, b} where b = (b0, b1, . . . , bp),
α = (α0, α1, . . . , αp), bi is the center value and αi is the spread value of pi, i = 0, . . . , p.
Also, Yj = (aj , βj) is symmetric triangular fuzzy number where aj and βj are the center
and the spread, respectively. Also according to the proposed method by Tanaka et al.
[39], the fuzzy regression parameters can be obtained by solving the following linear
programming (LP) model:

min L =

n∑
j=1

p∑
i=0

αi|xji|,(2.5)
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so that, the following two constraints must be established:
p∑

i=0

bi|xji| − (1− h)

p∑
i=0

αi|xji| ≤ aj − (1− h)βj ,(2.6)

p∑
i=0

bi|xji|+ (1− h)

p∑
i=0

αi|xji| ≥ aj + (1− h)βj ,(2.7)

and, αi ≥ 0, i = 0, . . . , p, j = 1, . . . , n. In this model, the constrains guarantee that the
support of the estimated values from the regression model includes the support of the
observed values in h-level (0 < h ≤ 1).

2.1.2. Quadratic programming. Let the observed values Yj = (lyj , ayj , ryj ) and the pre-

dicted values Ŷj = (l̂yj , âyj , r̂yj ) are asymmetric triangular fuzzy numbers (j = 1, . . . , n)
where lyj , ayj and ryj are the lower, the center and the upper limits of the observed

fuzzy outputs and l̂yj , âyj and r̂yj are the lower, the center, and the upper limits of
the predicted fuzzy outputs. In this method, the proposed objective function in [12] is
applied for the crisp inputs and the asymmetric fuzzy output that is de�ned as follows:

n∑
j=0

k1(ayj − âyj )2 + (k2(lyj − l̂yj )2 + (ryj − r̂yj )2).(2.8)

Where k1 > k2 allow to give more importance to the central tendency and k1 < k2
to reduce of estimates uncertainty in the process. Suppose Yj = (ayj , βyj ) and Ŷj =

(âyj , β̂yj ) are two symmetric fuzzy numbers, where ayj and βyj are the center and the

spread of the observed fuzzy outputs, âyj and β̂yj are the center and spread of the

predicted fuzzy outputs, lyj = ayj − βyj , ryj = ayj + βyj , l̂yj = âyj − β̂yj and r̂yj =

âyj + β̂yj . In this study, k1 = k2 is considered. By substituting lyj , ryj , l̂yj and r̂yj in
Eq. (2.8), it can be rewritten as follows:

n∑
j=0

((ayj − βyj )− (âyj − β̂yj ))2 + (ayj − âyj )2 + ((ayj + βyj )− (âyj + β̂yj ))2

=

n∑
j=0

(3(ayj − âyj )2 + 2(βyj − β̂yj )2).(2.9)

Therefore, Eq. (2.9) is applied as objective function in the quadratic programming. In
this method, we will minimize the following function:

n∑
j=0

(3(ayj − âyj )2 + 2(βyj − β̂yj )2),

so that, constraints Eqs. (2.6) and (2.7) must be established.

2.1.3. Adaptive neuro-fuzzy inference system (ANFIS). ANFIS is a famous hybrid tech-
nique which combines the adaptive learning capability of ANN along with the intuitive
fuzzy logic of human reasoning formulated as a feed forward neural network. Hence, the
advantages of a fuzzy system can be combined with a learning algorithm [19, 20]. It
is one of the most popular neural fuzzy systems. The fuzzy inference system forms a
useful computing based on concepts of fuzzy if-then rules [35]. To present ANFIS ar-
chitecture, we consider four fuzzy if-then rules with two input variables and one output y.

Rule 1: If x1 is A1 and x2 is A3 then f1 = p10 + p11x1 + p12x2,
Rule 2: If x1 is A1 and x2 is A4 then f2 = p20 + p21x1 + p22x2,
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Figure 1. ANFIS architecture.

Rule 3: If x1 is A2 and x2 is A3 then f3 = p30 + p31x1 + p32x2,
Rule 4: If x1 is A2 and x2 is A4 then f4 = p40 + p41x1 + p42x2.

Figure. 1 shows the architecture of the ANFIS model in which x1, x2 and y ∈ R are
input and output variables, respectively. Ak's are fuzzy sets and fk represents system
output due to rule Rk (k = 1, 2, 3, 4).

\begin{figure}

\centering

\includegraphics[width=4cm]{fig1.png}

\caption{ ANFIS architecture.}

\label{fig:anfis2}

\end{figure}

In the following, the �ve layers of the system are explained that have two-dimensional
input and one output. In the �rst layer, all the nodes are adaptive nodes. They generate
membership grades of the inputs. The node functions are given by:

o1,k = µAk (xi) = exp

[
−1

2
(
xi − τk
σk

)2
]
, k = 1, 2, 3, 4, i = 1, 2,(2.10)

where x1 and x2 are inputs, µAk 's are appropriate membership functions and o1,k is the

output of the kth node of the layer l. In this paper, we will use Gaussian membership
function where parameters τk and σk represent the center and the width, respectively.

In the second layer, the nodes are also �xed. The outputs of this layer can be calculated
as:

o2,k = ωk = µAk (x1).µAk (x2), k = 1, 2, 3, 4.(2.11)

In Figure. 1, implication has been shown with notation
∏

.. In the third layer, the nodes
are �xed nodes. It calculates the ratio of a rule's �ring of all the rules. The outputs of
this layer can be calculated as:

o3,k = ωk =
ωk∑4
j=0 ωk

, k = 1, 2, 3, 4.(2.12)

This is called normalized �ring strength and it has been shown with notation N in Figure.
1. In the fourth layer, the node is an adaptive node. The node function associated in the
level 4 is a linear function. The outputs of this layer can be represented as below:

o4,k = ωkfk = ω̄k(pk0 + pk1x1 + pk2x2), k = 1, 2, 3, 4.(2.13)

In this work, pki will be assumed to be a triangular fuzzy number for k = 1, . . . , 4 and
i = 0, 1, 2.



1610

In the �fth layer, the single node carries out the sum of inputs of all the layers. The
overall output of the structure is expressed as:

o5,k =

4∑
j=0

ω̄kfk.(2.14)

3. Methodology of the proposed method

In Eq. (2.14), assume that the consequence parameter pki is a symmetric triangular
fuzzy number and is represented as pk

j = (bki , α
k
i ), i = 0, . . . , p, k = 1, . . . ,m. Also, Yj and

Ŷj are symmetric triangular fuzzy numbers and are represented by Yj = (ayj , βyj ) and

Ŷj = (âyj , β̂yj ), j = 1, . . . , n, where n is the number of data points, ayj is center value

and βyj is spread value of Yj , and âyj is center value and β̂yj is spread value of Ŷj .
Suppose xj = (xj0, xj1, . . . , xjp) is a p-dimensional input vector of the indepen-

dent variables at the jth observation, also, P = (p0, p1, . . . , pp) is a vector of unknown
fuzzy parameters and Yj is the jth observed value of the dependent variables.pi, i =
0, . . . , p, can be denoted in vector form as pi = {a, b} where b = (bk0 , b

k
1 , . . . , b

k
p) and

α = (αk
0 , α

k
1 , . . . , α

k
p), k = 1, . . . ,m, where bki is center value and αk is spread value of

pi, i = 0, . . . , p. So from the above de�nitions, using fuzzy arithmetic and substituting
pki into Eq. (2.14), it can be expressed as:

Ŷj =

m∑
k=1

p∑
i=0

bki ω̄xji +

m∑
k=1

p∑
i=0

αk
i ω̄xji.(3.1)

So,

ây =

m∑
k=1

p∑
i=0

bki ω̄xji,(3.2)

and

β̂yj =

m∑
k=1

p∑
i=0

αk
i ω̄xji.(3.3)

where w̄k is known. In this paper, the fuzzy weights (premise parameters) are updated
by using the back propagation. In this method, we only use the �rst part of the Eq. (2.9)
to update fuzzy weights that is de�ned as:

e =

n∑
j=1

e2j =

n∑
j=1

(aj − âj)2,(3.4)

and the in�uence of the spread is ignored. So, the back propagation error for each layer
is obtained as follows [3, 20]:

el,k =

Ml+1∑
r=1

el+1
∂Al+1,r

∂ol,k
,(3.5)

el,k is the back propagation error of the kth node of the layer l. Al+1,r, is the node

function of the rth node of (l + 1)th layer, ol,k represents the output kth node of the

layer l and Ml+1 is the total number of nodes in the (l + 1)th layer. So, error of the �nal
output node is calculated as:

e5,1 =
∂e2j
∂ŷj

= −(aj − âj).(3.6)
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So, the gradient vector is de�ned as the error measure derivatives with respect to each
parameter. The derivative of the overall error measure e with respect to parameter δ is:

∂e

∂δ
=

1

n

n∑
j=1

∂e2j
∂δ

=

n∑
j=1

el,k
∂ol,k
∂δ

.(3.7)

Thus, the updating formula for δ is de�ned as:

∆δ = −ϑ∂e
∂δ
,(3.8)

where ϑ is the learning rate. In this paper, the consequence parameters pki are obtained by
solving linear programming (LP) and fuzzy least squares problem. Two hybrid methods
will be explained in the following.

3.1. Linear programming in the prediction of the consequence parameters.

In Eq. (3.1), it was shown that

Ŷj =
∑m

k=1

∑p
i=0 b

k
i ω̄xji +

∑m
k=1

∑p
i=0 α

k
i ω̄xji.

The consequence parameters bki and α
k
i can be obtained by solving the following linear

programming (LP) model:

min
∑m

k=1

∑p
i=0 α

k
i ω̄xji

So that, the following two constraints must be established:

m∑
k=1

p∑
i=0

bki ω̄xji − (1− h)

m∑
k=1

p∑
i=0

αk
i ω̄xji ≤ aj − (1− h)βj ,(3.9)

m∑
k=1

p∑
i=0

bki ω̄xji + (1− h)

m∑
k=1

p∑
i=0

αk
i ω̄xji ≥ aj + (1− h)βj ,(3.10)

and, αiω̄ ≥ 0, i = 0, . . . , p, k = 1, . . . ,m, j = 1, . . . , n.

3.2. Fuzzy least squares problem in the prediction of the consequence param-

eters. By using fuzzy least squares problem, we can obtain the consequence parameters
estimation for the fuzzy regression model as follows:

(b̂ki )T = (XTX)
−1
XTAY ,(3.11)

(α̂k
i )T = (XTX)

−1
XTαY ,(3.12)

where,

(3.13) X =


ω̄11 ω̄12 . . . ω̄1m ω̄11x11 . . . ω̄1mx11 . . . ω̄11x1p . . . ω̄1mx1p
ω̄21 ω̄22 . . . ω̄2m ω̄21x21 . . . ω̄2mx21 . . . ω̄21x2p . . . ω̄2mx2p
. . . . . . .
. . . . . . .
. . . . . . .
ω̄n1 ω̄n2 . . . ω̄nm ω̄n1xn1 . . . ω̄nmxn1 . . . ω̄n1xnp . . . ω̄nmxnp
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(3.14) AY =


ay1
ay2
.
.
.
ayn

 , αY =


αy1

αy2

.

.

.
αyn

 , (b̂ki )T =



b̂10
.
.
.

b̂m0
.
.
.

b̂1p
.
.
.

b̂mp



, (α̂k
i )T =



α̂1
0

.

.

.
α̂m
0

.

.

.
α̂1
p

.

.

.
α̂m
p



.

3.3. Modelling Performance Criterion. In the following, we put
ERROR = 1

n

∑n
j=1(Yj − Ŷj)

2

=
1

n

n∑
j=0

(3(ayj −
m∑

k=1

p∑
i=0

bki ω̄xji)
2 + 2(βyj −

m∑
k=1

p∑
i=0

αk
i ω̄xji)

2).(3.15)

and use Eq. (3.13) as a quantity to measure bias between the observed values, Yj =

(lj , aj , rj), and the predicted values, Ŷj = (l̂j , âj , r̂j), for all Xjs (j = 1, . . . , n) where

lj , aj , rj , l̂j , âj , and r̂j are lower, center and upper of the observed fuzzy outputs and,
lower, center and upper of the estimated fuzzy outputs. Large value of this quantity
indicates lack-of-�t and too small value re�ects over-�t for the observed fuzzy outputs.
Also, we use the method of Kim and Bishu (1998) [22] for evaluation of the performance
of the suggested models. In this method, the absolute di�erence between the observed
membership values and the estimated values are calculated. This method is de�ned as:

Ej =

∫
S(Yj)

⋃
S(Ŷj)

|Yj − Ŷj |dy,(3.16)

where S(Yj) and S(Ŷj) are support of Yj and Ŷj , respectively. In other words, Ej is the
error in our estimation. If Ej trend to zero, then the �tting is the best. In this study, an
'epoch' (EP) means a complete presentation of the entire set of the training data.

3.4. The learning algorithm of FWLP method. For forecasting model parameters,
the steps taken can be summarized as follows:

Step 1: Input value h and EP.
Step 2: Divide all data into two subsets, train data (TRD) and test data set (TED)

by V-fold cross validation technique. For each of V folds, use V-1 folds for training and
the remaining one for testing.

Step 3: Determine the initial values of the premise parameters (fuzzy weights) by
using Eq. (3.8).

Step 4: Identify the consequent parameters by solving the linear programming Eqs.
(3.9) and (3.10).

Step 5: Terminate the training of network when average of ERROR in Eq. (3.4) is
smaller than a prede�ned small number or reach the last number of prede�ned epoch,
otherwise go to Step 2 and update the premise parameters.

Step 6: Determine the error values of Ej and ERROR in Eqs. (3.13) and (3.14) for
the evaluation of the designed method.

Step 7: Repeat steps 3 to 6 for each of the V-folds.
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3.5. The learning algorithm of FWLS method. This algorithm is similar to FWLP's
except that the consequent parameters are identi�ed by fuzzy least squares problem Eqs.
(3.11) and (3.12) in step 4. In this paper, we use MATLAB software tool for codding.

4. Numerical examples

In order to demonstrate the applicability of the hybrid algorithms, numerical examples
are used. Also, the obtained results of the di�erent methods are compared.

Example 1. Grinding is a material removal and surface generation process used to
shape and �nish components made of metals and other materials. The precision and the
�nish surface obtained through grinding can be up to ten times better than either turning
or milling. As seen in Figure. 2(a), grinding employs an abrasive product and usually a
rotating wheel brought into controlled contact with a work surface. The grinding wheel
is composed of abrasive grains held together in a binder.

These abrasive grains act as cutting tools and remove tiny chips of material from the
work surface. As these abrasive grains wear and become dull, the added resistance leads
to fracture of the grains or weakening of their bond (see Figure. 2 (b) and (c)).

Figure 2. Grinding wheel and work piece interaction.

Grinding goals are as follows:
1. Creating precise tolerances,
2. Create optimal surface �nish,
3. Creating accurate surface form,
4. Machining of hard and brittle materials.
The work part moves past the wheel at a certain linear velocity called feed speed

(vw). Consider dataset in Table 1. The input x is the feed speed of a grinding wheel
and Yj is the roughness of a workpiece surface. The output Yj is measured by symmetric
triangular fuzzy numbers as Yj = (aj , βj), with center aj and spread βj . The structure
of the suggested models with 5-fold cross validation technique, that the validity and
quality of the proposed methods can be guaranteed, are designed for a single input and
an output. Also, LP and QP methods with 5-fold cross validation technique are applied
to �t regression model. The obtained parameters of the �fth fold (V=5) that has the least
error in test for di�erent methods such as, LP, QP, FWLP and FWLS are respectively
shown as follows:
Ŷj = (âj , β̂j) = (0.1397, 0.0700) + (0.0895, 0.0465)Xj ,

Ŷj = (âj , β̂j) = (0.1425, 0.0651) + (0.0886, 0.0479)Xj .
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Table 1. The grinding data of Example 1.

xj : feed speed(vw) Yj : Surface roughness Yj = (bj , βj)
(10mm/min) min. value max. value

0.75 0.27 0.31 (0.290,0.020)

1.000 0.190 0.29 (0.240,0.05)

1.250 0.200 0.28 (0.240,0.040)

1.500 0.245 0.135 (0.280,0.035)

1.750 0.230 0.330 (0.280,0.050)

2.000 0.200 0.270 (0.235,0.035)

2.250 0.170 0.290 (0.230,0.06)

2.500 0.200 0.460 (0.330,0.130)

2.750 0.200 0.350 (0.2750,0.075)

3.000 0.220 0.380 (0.300,0.0800)

3.250 0.260 0.410 (0.335,0.075)

3.500 0.220 0.330 (0.275,0.055)

3.750 0.300 0.500 (0.400,0.100)

4.000 0.340 0.550 (0.455,0.105)

4.250 0.340 0.500 (0.420,0.080)

4.500 0.370 0.600 (0.4850,0.1150)

4.750 0.400 0.600 (0.500,0.100)

5.000 0.410 0.890 (0.650,0.240)

5.250 0.410 0.890 (0.640,0.160)

Table 2. The obtained premise and consequence parameters of the
FWLP method.

k (τk, σk) (bk0 , α
k
0) (bk1 , α

k
1)

1 (1.7413,0.1549) (0.2741,0.0373) (-0.0145,0.0182)

2 (4.3434,0.4687) (-0.5011,0.0375) (0.2123,0.0161)

3 (5.0774,0.6616) (0.4907,0.0843) (0.0383,0.0412)

Table 3. The obtained premise and consequence parameters of the
FWLS method.

k (τk, σk) (bk0 , α
k
0) (bk1 , α

k
1)

1 (1.7413,0.1549) (0.2939,-0.0194) (-0.0278,0.0334)

2 (4.3434,0.4687) (-0.1927,0.0410) (0.1337,0.0017)

3 (5.0774,0.6616) (0.2786,0.0951) (0.0749,0.0238)
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Table 4. The obtained error results of the �rst fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0046 0.0355 0.7024 0.5347

FWLP 0.0197 0.0332 1.2432 0.5150

QP 0.0524 0.0581 2.1847 0.6426

LP 0.0572 0.0620 2.2775 0.6650

Table 5. The obtained error results of the second fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0057 0.0042 0.7672 0.1178

FWLP 0.0127 0.0122 0.9940 0.2818

QP 0.0479 0.0419 2.1042 0.4930

LP 0.0493 0.0381 2.1233 0.4736

Table 6. The obtained error results of the third fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0022 0.0181 0.5512 0.3989

FWLP 0.0046 0.0190 0.6623 0.4430

QP 0.0343 0.0273 1.8398 0.4942

LP 0.0346 0.0276 1.8468 0.4972

Table 7. The obtained error results of the fourth fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0036 0.0037 0.6766 0.1998

FWLP 0.0063 0.0136 0.7429 0.3292

QP 0.0432 0.0478 2.0380 0.5688

LP 0.0486 0.0622 2.1254 0.6476
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Table 8. The obtained error results of the �fth fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0046 0.0030 0.7565 0.1212

FWLP 0.0111 0.0074 1.0170 0.1932

QP 0.0579 0.0310 2.4873 0.3409

LP 0.0582 0.0315 2.4923 0.3464

Table 9. The obtained error results mean of the di�erent methods for
5-folds.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0041 0.0129 0.6908 0.2745

FWLP 0.0109 0.0171 0.9319 0.3524

QP 0.0471 0.0412 2.1308 0.5079

LP 0.0496 0.0443 2.1731 0.5260

Table 10. The predicted fuzzy outputs using di�erent methods.

xj Yj = (aj , βj) f̂(xj) = (âj , β̂j) f̂(xj) = (âj , β̂j) f̂(xj) = (âj , β̂j)ff̂(xj) = (âj , β̂j)

of FWLS methodof FWLP method of QP method of LP method

0.75(0.290,0.020) (0.2908,0.0366) (0.3370,0.0695) (0.2090,0.1010) (0.2068,0.1049)

1.25(0.240,0.040) (0.2591,0.0224) (0.2559,0.0601) (0.2533,0.1250) (0.2516,0.1281)

1.50(0.280,0.035) (0.2522,0.0307) (0.2523,0.0647) (0.2754,0.1369) (0.2739,0.1398)

2 (0.235,0.035) (0.2383,0.0474) (0.2450,0.0738) (0.3197,0.1609) (0.3187,0.1630)

2.25 (0.230,0.06) (0.2351,0.0578) (0.2465,0.0806) (0.3419,0.1728) (0.3411,0.1747)

2.50(0.330,0.130) (0.3147,0.1035) (0.3274,0.1361) (0.3640,0.1848) (0.3634,0.1863)

2.75(0.275,0.075) (0.2985,0.0914) (0.2874,0.1279) (0.3862,0.1968) (0.3858,0.1980)

3.00(0.300,0.080) (0.2984,0.0828) (0.2791,0.1230) (0.4083,0.2087) (0.4082,0.2096)

3.25(0.335,0.075) (0.3122,0.0781) (0.2958,0.1219) (0.4305,0.2207) (0.4306,0.2212)

3.50(0.275,0.055) (0.3357,0.0768) (0.3289,0.1244) (0.4526,0.2326) (0.4530,0.2329)

3.75(0.400,0.100) (0.3663,0.0788) (0.3729,0.1301) (0.4748,0.2446) (0.4753,0.2445)

4 (0.455,0.105) (0.4031,0.0845) (0.4244,0.1397) (0.4970,0.2566) (0.4977,0.2561)

4.25(0.420,0.080) (0.4461,0.0953) (0.4815,0.1546) (0.5191,0.2685) (0.5201,0.2678)

4.75(0.500,0.100) (0.5506,0.1386) (0.6005,0.2074) (0.5634,0.2925) (0.5649,0.2910)

5.00(0.650,0.240) (0.6046,0.1689) (0.6489,0.2430) (0.5856,0.3044) (0.5872,0.3027)

5.25(0.640,0.160) (0.6495,0.1965) (0.6811,0.2760) (0.6077,0.3164) (0.6096,0.3143)

Test data

1.00 (0.240,0.05) (0.2661,0.0141) (0.2597,0.0556) (0.1130,0.2311) (0.2292,0.1165)

1.75(0.280,0.050) (0.2452,0.0391) (0.2487,0.0692) (0.2976,0.1489) (0.2963,0.1514)

4.50(0.485,0.115) (0.4957,0.1130) (0.5419,0.1768) (0.5413,0.2805) (0.5425,0.2794)
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The structure of the hybrid methods are constructed for this example, for a single
input and an output. The MATLAB software tool is used for codding. The experimental
dataset is randomly divided into TRD and TED using 5-fold cross validation method.
TRD is inputted into the proposed models for training. TED is used to verify the
predictive accuracy and the e�ect of system. TRD is trained by the proposed algorithms
with 3 mf because it covers the entire data better. The premise parameters are obtained
by Eq. (3.8). Then the obtained premise parameters are put in Eqs. (2.10) and (3.1).
The consequence parameters are obtained by the linear programing and the fuzzy least
squares. The obtained premise and the consequence parameters are shown in Tables 2
and 3. In the �nally, output Yj is calculated.

For example, f̂(x18) can be calculated using the FWLP method as follows. In the
�rst, w18,k are calculated for k = 1, 2, 3. So using the premise parameters of Table 2,
Eqs. (2.10) and (2.12), and x18 = 5, w18,k are equivalent:

w18,1 = exp

[
−1

2
(
5− 1.7431

0.1549
)2
]

= 6.8674e− 97, w18,2 = 0.3749, w18,3 = 0.9932,

and,∑3
k=1 w18,k = 6.8674e− 97 + 0.3749 + 0.9932 = 1.3681.

Therefore, w̄18,1 = 6.8674e−97
1.3681

= 5.0197e − 97, w̄18,2 = 0.3749
1.3681

= 0.2740, w̄18,3 =
0.9932
1.3681

= 0.7260.

In the following, ŵ18,k and the obtained consequence parameters (bki , a
k
i , k = 1, 2, 3, i =

0, 1) of Table 2 are substituted in Eqs. (3.11) and (3.12). In the �nally, f̂(x18) is computed
as follows:

â18 = (5.0197e− 97)(0.2741) + (0.274)(−0.5011) + (0.726)(0.4907) + (5.0197e− 97)

(−0.0145)(5) + (0.2740)(0.2123)(5) + (0.7260)(0.0383)(5) = 0.6488,
and,

β̂18 = (5.0197e− 97)(0.0373) + (0.274)(0.0375) + (0.726)(0.0843) + (5.0197e− 97)
(0.0182)(5) + (0.2740)(0.0161)(5) + (0.7260)(0.0412)(5) = 0.2431.

Thereupon,

f̂(x18) = (â18, β̂18) = (0.6488, 0.2431).

Also in the FWLS method, f̂(x18) is calculated as the FWLP method.
The obtained results of the di�erent methods are displayed in Tables 4-9. Also, for

making a numerical comparison, the observed values and the predicted values of the �fth
fold (V=5) that has the least error in test are summarized in Table 10. They are used
to compare the estimated values and the observed values. The error values Ej of the
di�erent methods are shown in Table 11. By using tables, it can be observed that the
error values of hybrid algorithms are lower than the error values the other ones and the
hybrid algorithm based on fuzzy weights and fuzzy least squares problem provides the
best prediction.
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Table 11. The predicted fuzzy outputs using di�erent methods.

xj Ej Ej Ej Ej

of FWLS method of FWLP method of QP method of LP method

0.75 0.0166 0.0694 0.1078 0.1110

1.25 0.0324 0.0302 0.0860 0.0888

1.50 0.0438 0.0478 0.1020 0.1049

2 0.0131 0.0405 0.1463 0.1473

2.25 0.0100 0.0319 0.1700 0.1697

2.50 0.0343 0.0072 0.0722 0.0726

2.75 0.0437 0.0550 0.1778 0.1778

3.00 0.0037 0.0510 0.1792 0.1795

3.25 0.0422 0.0719 0.1775 0.1779

3.5 0.0934 0.0951 0.2455 0.2459

3.75 0.0610 0.0513 0.1671 0.1673

4 0.0896 0.0579 0.1584 0.1581

4.25 0.0483 0.1092 0.2124 0.2123

4.75 0.0905 0.1686 0.2031 0.2023

5.00 0.0950 0.0034 0.1212 0.1183

5.25 0.0387 0.1260 0.1609 0.1583

Test data

1.00 0.0442 0.0357 0.0638 0.0676

1.75 0.0560 0.0544 0.1005 0.1027

4.50 0.0209 0.1031 0.1766 0.1761

Example 2. Consider the following function:{
f(x1, x2) = 24.23r2(0.75− r2) + 5,
r2 = (x1

10
− 0.5)2 + (x2

10
+ 0.5)2.

.

where the domain of X = (x1, x2) is D = [0, 10]2. A set of data is generated the same
way as that in [18] and in the following manner.

The crisp inputs of the independent variables x1 and x2 are randomly taken from 0
to 10. Let output Yj = (aj , βj)(j = 1, 2, . . . , n) is a symmetric fuzzy number that is
generated by:

aj = f(xj1, xj2),
j = 1, . . . , 30

βj = 1
4
f(xj1, xj2) + rand[0, 1],

.

where rand[a, b] denotes a random number between a and b for each j.
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Table 12. The obtained premise and consequence parameters of the
FWLP method.

k (τk, σk) (bk0 , α
k
0) (bk1 , α

k
1) (bk2 , α

k
2)

1 (-0.1313,1.0728) (-8.6242,1.0819) (2.3234,0.3206) (2.8434,0.0797)

2 (10.2741,1.7615) (-18.5882,0.4728) (1.1806,0.6415) (1.9722,0.0711)

3 (1.6331,4.3634) (-5.2832,1.5163 ) (2.4173,0.2220) (-0.6884,0.2267)

4 (11.3822,4.0364) (17.3542,1.0915) (0.9686,0.3688) (-0.8430,0.0349)

Table 13. The obtained premise and consequence parameters of the
FWLS method.

k (τk, σk) (bk0 , α
k
0) (bk1 , α

k
1) (bk2 , α

k
2)

1 (-0.1313,1.0728) (-10.0164,3.4735) (2.5053,0.2557) (3.295,-0.7969)

2 (10.2741,1.7615) (-24.3085,8.1058) (1.1930,0.4945) (2.4987,0.6068)

3 (1.6331,4.3634) (-3.9404,0.0396) (2.1887,0.4699) (-0.5228,-0.3314)

4 (11.3822,4.0364) (15.1877,10.5082) (1.1195,0.2425) (-0.7718, 0.8392)

Table 14. The obtained error results of the �rst fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.2507 3.2065 10.3372 8.7480

FWLP 0.8923 2.5053 15.4732 7.7833

QP 4.2831 5.6830 35.4783 9.8158

LP 4.7131 5.8636 36.8859 10.1274

Table 15. The obtained error results of the second fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.6737 1.3293 15.0116 6.0966

FWLP 1.7938 4.5294 19.9959 9.3311

QP 4.5529 4.6121 36.1482 9.1455

LP 4.7448 5.0400 36.9513 9.5492

Using 5-fold cross validation technique, the di�erent methods are applied to �t re-
gression model. The error values Ej and ERROR are numerically used to evaluate the
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performance of the di�erent methods. In the following, the obtained parameters of dif-
ferent methods such as, LP, QP, FWLP and FWQP for the �fth fold (V=5), that has
the least error in test, are respectively shown.

Ŷj = (âj , β̂j) = (0.1870, 1.2098) + (1.4134, 0.3839)xj1 + (0.3975, 0.1239)xj2,

Ŷj = (âj , β̂j) = (0.1661, 1.5768) + (1.4524, 0.3515)xj1 + (0.3794, 0.0786)xj2.
The premise and consequence parameters of hybrid methods are shown in Tables 12

and 13. The obtained results of the di�erent methods are displayed in Tables 14-19 and
the obtained results of the �fth fold (V=5) are summarized in Tables 20 and 21. Like
the previous example, it can be observed that the error values of hybrid algorithms are
lower than the error values the other ones. Also, the hybrid algorithm FWLS provides
the best prediction.

Table 16. The obtained error results of the third fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.3810 0.4528 11.4517 4.0443

FWLP 1.1796 1.4328 16.2115 5.8828

QP 3.9016 3.8819 33.5601 8.8401

LP 4.3402 4.4038 35.3156 9.3767

Table 17. The obtained error results of the fourth fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.4505 2.4743 11.3176 7.8856

FWLP 1.3311 5.9150 17.2955 12.1632

QP 3.9046 5.0599 33.9085 10.3841

LP 4.0033 5.1717 34.2578 10.4800

Table 18. The obtained error results of the �fth fold.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.2397 0.4422 9.4212 3.0951

FWLP 0.7111 1.4019 12.9048 5.3403

QP 2.4106 2.9348 26.8854 7.5938

LP 2.7049 3.3036 28.0474 7.8011
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Table 19. The obtained error results mean of the di�erent methods
for 5-folds.

Di�erent Value ERROR Value ERROR Value Ej Value Ej

methods of train of test of train of test

FWLS 0.0041 0.0129 0.6908 0.2745

FWLP 0.0109 0.0171 0.9319 0.3524

QP 0.0471 0.0412 2.1308 0.5079

LP 0.0496 0.0443 2.1731 0.5260

Table 20. The predicted fuzzy outputs using di�erent methods.

x1 x2 Yj = (aj , βj) f̂(xj) = (âj , β̂j) f̂(xj) = (âj , β̂j) f̂(xj) = (âj , β̂j) f̂(xj) = (âj , β̂j)

of FWLS method of FWLP method of QP method of LP method

6.6280 6.6090 (11.6800,3.6280) (12.1820,3.6977) (12.1136,4.1353) (12.1820,4.5736) (12.2997,4.4258)

3.1780 7.1450 (7.7340,2.4680) (16.8441,4.6942) (16.9159,4.9607) (16.1817,5.6692) (16.3931,5.4089)

3.5530 4.2610 (7.4810,2.5100) (7.9028,2.3889) (7.9173,2.8744) (7.5189,3.3154) (7.4924,3.2553)

1.1940 6.2100 (3.9620,1.2360) (4.4365,1.4688) (4.5649,1.8390) (4.3430,2.4378) (4.2561,2.4845)

3.9220 8.9840 (9.7070,3.1400) (9.4459,2.8544) (9.6675,3.3062) (9.3014,3.8289) (9.2706,3.6613)

2.6390 5.7270 (7.2780,1.8480) (7.2507,1.9211) (7.1731,2.4552) (6.1934,2.9327) (6.1716,2.9544)

9.7360 8.8430 (17.8320,4.4820) (17.7156,4.5543) (17.7777,5.1549) (17.4629,6.0437) (17.6612,5.6938)

2.8300 3.6310 (5.8000,2.2370) (6.8624,2.1690) (6.4447,2.8308) (6.9549,3.1094) (7.0093,3.1822)

0.8910 7.1500 (3.7140,1.4080) (5.8966,2.1951) (5.8062,2.3219) (5.6302,2.7463) (5.6538,2.8568)

6.3490 2.6600 (10.1150,2.8770) (11.4717,3.2677) (11.5358,3.5361) (11.0612,4.1924) (11.2879,4.2445)

7.1880 1.7980 (11.4750,3.3530) (9.6251,2.8420) (9.4511,3.4726) (10.1123,3.9441) 10.2955,3.9965)

6.3490 2.3940 (9.5760,3.2770) (4.0293,1.4751) (4.0882,1.8244) (3.9531,2.3102) (3.8949,2.4150)

1.3000 4.8520 (4.1170,1.7250) (3.0594,1.2054) (3.2485,1.5254) (3.2917,2.1485) (3.1826,2.2278)

0.7250 2.1290 (4.1320,1.4590) (12.2493,3.4220) (12.2111,4.0068) (12.3138,4.5608) (12.5239,4.5204)

8.931 7.5400 (15.2670,4.2210) (4.192,1.6107) (4.4044,1.8220) (4.6748,2.5482) (4.5600,2.5412)

7.1060 2.0840 (11.2450,2.9840) (11.2512,3.2035) (11.2637,3.5811) (11.0590,4.1964) (11.2773,4.2382)

5.2480 6.6670 (10.1170,3.2140) (9.9395,3.2160) (9.8087,3.7303) (10.2546,4.0509) (10.3175,3.9453)

2.9670 8.8280 (6.7840,2.2730) (7.3249,2.5402) (7.3681,2.9400) (7.8896,3.4429) (7.8244,3.3134)

3.9190 8.9900 (9.3860,2.5520) (8.5536,2.7990) (8.6419,3.2587) (8.8229,3.6975) (8.7815,3.5442)

5.6960 9.6320 (12.0780,3.0950) (9.4400,2.8530) (9.6609,3.3060) (9.2996,3.8285) (9.2685,3.6607)

3.1610 7.1270 (8.0850,2.6180) (12.3228,3.0783) (12.6549,3.7723) (12.0664,4.5904) (12.0929,4.3358)

5.8020 0.2170 (8.9130,2.8190) (7.8817,2.3777) (7.8961,2.8632) (7.4877,3.3066) (7.4608,3.2479)

4.4860 9.4330 (9.6210,3.0670) (8.9342,2.8972) (8.9141,2.8624) (8.4738,3.4644) (8.6752,3.6331)

3.9070 9.3700 (7.6903,1.9226 ) (4.8333,1.4966) (4.7855,1.7578) (5.2378,2.7386) (5.0700,2.6335)

Test data

6.3490 2.6600 (10.1150,2.8770) (9.6223,3.4350) (9.4242,3.5285) (10.2180,3.9771) (10.3964,4.0174)

6.3490 2.3940 (9.5760,3.2770) (9.6249,3.4390) (9.4510,3.4723) (10.1123,3.9441) (10.2955,3.9965)

5.2480 6.6670 (10.1170,3.2140) (9.9393,3.0458) (9.8087,3.7301) (10.2546,4.0509) (10.3175,3.9453)

2.9670 8.8280 (6.7840,2.2730) (7.3249,2.2450) (7.3677,2.9395) (7.8896,3.4429) (7.8244,3.3134)

3.9190 8.9900 (9.3860,2.5520) (9.4399,2.6347) (9.6607,3.3059) (9.2996,3.8285) (9.2685,3.6607)

5.6960 9.6320 (12.0780,3.0950) (12.3226,3.0236) (12.6549,3.7723) (12.0664,4.5904) (12.0929,4.3358)
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Table 21. The predicted fuzzy outputs using di�erent methods.

x1 x2 Ej Ej Ej Ej

of FWLS method of FWLP method of QP method of LP method

6.6280 6.6090 0.3634 0.4514 1.1563 1.0756

3.1780 7.1450 0.0881 0.2107 1.0887 1.2523

3.5530 4.2610 0.5187 0.1492 0.8502 0.8905

1.1940 6.2100 0.8658 1.0876 1.2945 1.2831

3.9220 8.9840 0.2783 0.1075 0.7496 0.6244

2.6390 5.7270 0.0831 0.6228 1.9579 1.9231

9.7360 8.8430 0.1911 0.0853 0.6501 0.5601

2.8300 3.6310 1.0210 1.1131 1.8870 2.0009

0.8910 7.1500 0.4040 0.3842 1.1820 1.1465

6.3490 2.6600 0.3317 0.4828 0.8512 0.8940

7.1880 1.7980 0.8189 0.6633 0.7287 0.8561

6.3490 2.3940 0.2660 1.1328 1.1924 1.1203

1.3000 4.8520 0.3101 0.8413 1.1189 1.2812

0.7250 2.1290 0.5129 0.1753 0.8586 0.9041

8.9310 7.5400 0.3501 0.6867 0.7807 0.8569

7.1060 2.0840 0.4799 1.1202 1.2409 1.4955

5.2480 6.6670 0.0839 0.0434 0.8748 0.9136

2.9670 8.8280 0.4401 0.2730 1.3678 1.0584

3.9190 8.9900 0.9696 0.8537 1.2315 1.1814

5.6960 9.6320 0.2197 0.5976 1.2549 1.2361

3.1610 7.1270 0.0854 0.2028 0.9262 1.0207

5.8020 0.2170 0.2682 0.8050 1.3031 1.3310

4.4860 9.4330 0.2397 0.1381 1.1062 1.5055

3.9070 9.3700 0.2313 0.6770 1.2330 1.6360

Test data

6.6280 6.6090 1.0170 1.1123 1.8870 2.0009

2.6390 5.7270 0.1173 0.8411 1.1189 1.2812

9.7360 8.8430 0.3504 0.6866 0.7807 0.8569

2.8300 3.6310 0.4794 1.1202 1.2409 1.4955

1.3000 4.8520 0.9546 1.3071 1.1984 1.1082

7.1060 2.0840 0.1764 0.2730 1.3678 1.0584

5. Conclusion

In this paper, we proposed two hybrid algorithms to design neuro-fuzzy systems with
the linear programming and the fuzzy least squares to predict the fuzzy regression model.
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Also, we used numerical examples to demonstrate the applicability of the hybrid algo-
rithms in case of crisp inputs and fuzzy output. In order to, we compared the obtained
results of the di�erent forecasting techniques. This article can propose a guideline for
selecting the appropriate regression method for predictive proposes. The main �ndings
this paper may be summarized as follows:

(1). By using tables, it can be seen that hybrid methods are stable. Based on examples,
the hybrid methods decrease errors to a minimum level and have more accurate than the
LP and QP methods. observation number increases the width of the estimated value

(2). In the FWLP method, the constrains guarantee that the support of the estimated
values from the regression model includes the support of the observed values in h-level
(0 < h ≤ 1). As the increases, so that applicability of the FWLP method is limited in
action.

(3). The FWLP method has less complicated than the FWLS method in computations
but the FWLS method is more accurate than the FWLP method.
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