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Abstract

Non-response is an unavoidable feature in sample surveys and it needs
to be carefully handled to avoid the biased estimates of population
characteristics/parameters. Imputation is one of the latest fascinating
methods which is attracting the attention of survey practitioners to deal
with the problems of non-response because it makes the survey data
complete before the beginning of generating the survey estimates. The
present work proposes some new imputation methods to compensate
the missing data in two-phase sampling when non-response observed in
samples of both the phases. The proposed imputation methods result in
chain type estimators of population mean of study variable and the re-
sultant estimators have shown the e�cacious performances in terms of
producing the more precise estimates. Properties of the proposed esti-
mators are examined with the help of empirical and simulation studies.
Results are critically analyzed and suitable recommendations are put
forward to the survey practitioners.
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1. Introduction

In many surveys due to various reasons, some of the target units either respond
partially or do not respond at all,which result either in item non-response or in unit
non-response respectively. Such non-response often occurs in surveys related to socio-
economic, business/commercial activities, agriculture etc. The situation of non-response
produces incomplete data sets or missing observations and their usual treatment causes
signi�cant problem in statistical analyses. The inappropriate handling of missing data
may accelerate the magnitude of non-sampling errors and biasedness in the inference re-
lated to characteristics under study. To compensate the missing data due to non-response
various methods exist, such as imputation methods, weighting methods, randomized re-
sponse methods, model based procedures such as maximum likelihood estimation etc.
Among the wide variety of procedures for reducing the impact of missing data in order
to make the valid inference about population characteristics/parameters, imputing the
missing values with appropriately derived arti�cial values is a popular strategy. Rubin
[13] addressed the missing data concept and suggested various imputation methods which
make the data structurally complete at the beginning of the analysis. Some important
works based on imputation method were carried out by [8, 9, 10, 14]. Later on utilizing
the information on an auxiliary variable and using the missing completely at random
(MCAR) response mechanism, [1, 3, 5, 6, 7, 15, 16, 17, 18] among others have suggested
several interesting imputation methods with success.

The use of auxiliary information in the estimation procedure of population parameters
of the study variable increases the precision of the estimates. Sometimes, the informa-
tion on auxiliary variable for each and every units of the populations may not be readily
available, which may restrict the desirability of survey practitioners to make use of such
information for making their estimates more precise. Two-phase or double sampling is
a cost e�ective survey design to generate the reliable estimates of unknown population
parameters of auxiliary variables in �rst-phase sample. In this context, numerous re-
searchers like [12, 19, 20, 21] and others have suggested some imputation methods for
compensating the missing data with the assumption that the non-response may occur
in study variable as well as auxiliary variable in second phase sample.It is worth to be
mentioned that no researcher has kept his/her eyes on the problems when non-response
occurs in �rst-phase sample as well.

Motivated with these arguments and following the work of [15] and assuming missing
completely at random (MCAR ) response mechanism, the present work proposes some
imputation methods which result in the point estimators of population mean of study
variable in two-phase sampling setup. The properties of the proposed estimators have
been discussed . Empirical as well as simulation studies are carried out to validate the
propositions of the suggested imputation methods and resultant estimators. Suitable
recommendations have been made to the survey practitioners for real life applications.

2. Sampling design and notations

Consider a �nite population U = (U1, U2...UN ) of size N indexed by triplet characters
(y, x, z). Let y be the study variable and ( x and z) be the (�rst and second) auxiliary
variables respectively such that y is highly correlated with x while in compare to x, it is
remotely correlated with z. When the population mean X̄ of the �rst auxiliary variable is
unknown but information on second auxiliary variable z is available for on all the units of
the population, the following two-phase sampling scheme has been designed for making
inference about the population characteristics/ parameters.

Let s
′
be the �rst-phase sample of size n

′
drawn using simple random sampling with-

out replacement (SRSWOR) scheme from the population and surveyed for the auxiliary
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variable x to estimate its population mean X̄. The second phase sample of size n < n
′

is drawn to measure the study characteristic y under the following design:

Design I: The second-phase sample s is drawn from the �rst-phase sample s
′

Design II: The second-phase sample s is independently drawn from the entire popula-
tion.
It is assumed that non-response occurs in the �rst and second-phase samples such that

r
′
and r are the number of responding units in the �rst and second-phase samples of

sizes n
′
and n respectively. The corresponding sets of responding units are denoted by

(R1 and R2) and the sets of non-responding units by (R
′
1 and R

′
2) respectively. It is

also assumed that sample units in the second-phase sample s have been drawn from the
responding set R1.

3. Proposed methods of imputation and subsequent estimators

In this section, using the ratio method of imputation in �rst-phase sample, we have
proposed some new compromised imputation methods under MCARmechanism in second-
phase sample for missing data on study variable y. The suggested imputation methods
and resultant estimators are presented below:

Imputation for missing data in �rst-phase sample. To compensate the missing
values on auxiliary variable x in �rst-phase sample, we considered the ratio method of
imputation, hence after imputation the sample data in x takes the following form:

(3.1) x.i =

{
xi, if i ∈ R1

b̂′zi, if i ∈ R
′
1

where b̂′ =

∑r
′

i=1 xi∑r
′

i=1 zi
Under the imputation method described in equation (3.1), the point estimator of the
population mean X̄ in �rst-phased sample is derived as

x̄
′

=
1

n′


∑
i∈Ri

x.i +
∑
i∈R′

i

x.i


which gives the point estimator of the population mean X̄ in �rst-phase sample as

(3.2) x̄
′

= x̄r′
z̄n′

z̄r′

Imputation for missing data in second-phase sample. To derive the reliable sub-
stitutes for missing values in second-phase sample, we suggest two new compromised
imputation methods which are presented below:
First imputation method: Under this method of imputation sample data takes the
following forms

y.i =

{α1nyic

r
+ (1− α1)b̂zic if i ∈ R2

(1− α1)cb̂zi if i ∈ R
′
2

(3.3)

where c =
x̄
r
′

x̄n

z̄
n
′

z̄
r
′
,b̂ =

∑r
i=1 yi∑r
i=1 zi

and α1 is unknown constant.

Under the imputation method described in equation (3.3), the point estimator of the
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population mean Ȳ takes following form

(3.4) τ1 =

{
α1ȳr + (1− α1)ȳr

z̄n
z̄r

}
x̄r′

x̄n

z̄n′

z̄r′

Second imputation method: Under this method of imputation sample data takes
the following forms

y.i =


α2nyi
r

+ (1− α2)b̂zi if i ∈ R2

(1− α2)b̂zi +
1

n− r b̂yx(r)

{
x̄r′

z̄n′

z̄r′
− x̄n

}
if i ∈ R

′
2

(3.5)

where ˆbyx(r) =
syx
s2
x

and α2 is unknown constant.

Under the imputation method described in equation (3.5), the point estimator of the
population mean Ȳ takes following form

(3.6) τ2 =

{
α2ȳr + (1− α2)ȳr

z̄n
z̄r

}
+ byx(r)

{
x̄r′

z̄n′

z̄r′
− x̄n

}
4. Properties of estimators τ1 and τ2

The properties of the proposed estimators τ1 and τ2 have been explored under two
di�erent types of two-phase sampling design opted for MCAR response mechanism. Large
sample approximations have been used in order to obtain the expressions of biases and
mean square errors of the proposed estimators using the following transformations:

ȳr = Ȳ (1 + e0) , x̄r = X̄ (1 + e1) , x̄r′ = X̄
(

1 + e
′
1

)
, x̄n = X̄(1 + e2),

x̄n′ = X̄(1 + e
′
2), z̄r′ = Z̄(1 + e

′
3), z̄n = Z̄(1 + e4), z̄n′ = Z̄(1 + e

′
4),

syx(r) = Syx(1 + e5)and s2
x(r) = S2

x(1 + e6);

such that E(e
′
i) = E(ei) = 0, ∀ i, i

′
= 0, 1, 2, 3, 4, 5, 6.

Under the above transformations, the estimators τ1 and τ2 take the following forms:

(4.1) τ1 = Ȳ

[
α1(1 + e0) + (1 + α1)(1 + e0)

1 + e4

1 + e3

]
(1 + e

′
1)

(1 + e2)

(1 + e
′
4)

(1 + e
′
3)

and

(4.2) τ2 = Ȳ

{
α2(1 + e0) + (1 + α2)(1 + e0)

1 + e4

1 + e3

}
Syx(1 + e5)

S2
x(1 + e6){

X̄(1 + e
′
1)

(1 + e
′
4)

(1 + e
′
3)
− X̄(1 + e2)

}
4.1. Biases and mean square errors of estimators τ1 and τ2. Let B(.)d and
MSE(.)d be the bias and mean square error, respectively, of an estimator under a given
two-phase sampling design d(= I, II). Since, the resultant estimators τ1 and τ2 are bi-
ased estimators of Ȳ , therefore, their respective biases and mean square errors have been
derived in the following theorems:

4.1. Theorem. The biases of the estimators τ1 and τ2 are given by

B(τ1)I = Ȳ

[
(1− α1)δ3(C2

Z − ρY ZCY CZ)+
δ2(C2

X − C2
Z − ρYXCY CX)− δ4ρY ZCY CZ

]
(4.3)

B(τ1)II = Ȳ

[
(1− α1)δ3(C2

Z − ρY ZCY CZ)
+f1(C2

X − ρYXCY CX)− δ2C2
Z − δ4ρXZCXCZ

]
(4.4)
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(4.5) B(τ2)I = Ȳ (1− α2)δ3(C2
Z − ρY ZCY CZ) + βYXX̄[

δ((C
2
Z − ρXZCXCZ)) +

δ2

X̄

(
µ030

µ020
− µ120

µ110

)
+
δ4

Z̄

(
µ021

µ020
− µ111

µ110

)]

(4.6) B(τ2)II = Ȳ (1− α2)δ3(C2
Z − ρY ZCY CZ)

+ βYXX̄

[
δ2(ρXZCXCZ − C2

Z)

+ f1
X̄

(
µ030
µ020
− µ120

µ110

) ]
where

δ1 =

(
1

r
− 1

N

)
, δ2 =

(
1

n
− 1

r′

)
, δ3 =

(
1

r
− 1

n

)
, δ4 =

(
1

r′
− 1

n′

)
,

δ5 =

(
1

n′ −
1

N

)
, δ6 =

(
1

r′
− 1

N

)
and f1 =

(
1

n
− 1

N

)
.

Proof. The biases of the estimators τ1 and τ2 under two types of sampling design are
derived as

(4.7) B(τ1)d = E(τ1 − Ȳ )

= E

[
Ȳ

{
α1(1 + e0) + (1 + α1)(1 + e0)

1 + e4

1 + e3

}
(1 + e

′
1)

(1 + e2)

(1 + e
′
4)

(1 + e
′
3)
− Ȳ

]
and

(4.8) B(τ2)d = E(τ2 − Ȳ )

= E

[
Ȳ

{
α2(1 + e0) + (1 + α2)(1 + e0)

1 + e4

1 + e3

}
Syx(r)(1 + e5)

S2
x(r)(1 + e6){

X̄(1 + e
′
1)

(1 + e
′
4)

(1 + e
′
3)
− X̄(1 + e2)

}
− Ȳ

]
.

Now, expanding the right hand sides of the equations (4.7) and (4.8) binomially, taking
expectations under the sampling designs I and II respectively and retaining the terms upto
the �rst order of approximations, we get the expressions of the biases of the proposed
estimators τ1 and τ2 under sampling designs I and II as given in equations (4.3) and
(4.6). �

4.2. Theorem. The mean square errors of the estimators τ1 and τ2 are given by

MSE(τ1)I = Ȳ 2

 δ1C
2
Y + δ2(C2

X − 2ρYXCY CX)
+δ4(C2

Z − 2ρY ZCY CZ)
+δ3{(1− α1)2C2

Z − 2(1− α1)ρY ZCY CZ}

(4.9)

(4.10) MSE(τ2)I = Ȳ 2

[
(δ1 − δ2ρ2

YX)C2
Y

+δ3{(1− α2)2C2
Z − 2(1− α2)ρY ZCY CZ}

]
+ δ4(β2

YXX̄
2C2

Z − 2Ȳ X̄βYXρYXCY CZ)

(4.11) MSE(τ1)II = Ȳ 2

 δ1C
2
Y

+δ6(C2
X − 2ρXZCXCZ) + f1(C2

X − 2ρYXCY CX)
+δ4C

2
Z − δ3{(1− α1)2C2

Z − 2(1− α1)ρY ZCY CZ}


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and

(4.12) MSE(τ2)II =

 Ȳ 2(δ1 − f1ρ
2
yx)C2

Y

+δ3{(1− α2)2C2
Z − 2(1− α2)ρY ZCY CZ}

+β2
YXX̄

2{δ4(C2
Z − 2ρXZCXCZ) + δ5C

2
Z}


Proof. The mean square errors of the estimators τ1 and τ2 are derived as

(4.13) MSE(τ1)d = E(τ1 − Ȳ )2

= E

[
Ȳ {α1(1 + e0) + (1 + α1)(1 + e0)

1 + e4

1 + e3
} (1 + e

′
1)

(1 + e2)

(1 + e
′
4)

(1 + e
′
3)
− Ȳ

]2

(4.14) MSE(τ2)d = E(τ2 − Ȳ )2

= E

[
Ȳ

{
α2(1 + e0) + (1 + α2)(1 + e0)

1 + e4

1 + e3

}
Syx(r)(1 + e5)

S2
x(r)(1 + e6){

X̄(1 + e
′
1)

(1 + e
′
4)

(1 + e
′
3)
− X̄(1 + e2)

}
− Ȳ

]2

Now, expanding the right hand sides of the equations (4.13) and (4.14) binomially, taking
expectations under the sampling designs I and II respectively and retaining the terms
upto �rst order of approximations, we get the expressions of the mean square errors of the
proposed estimators τ1 and τ2 under sampling designs I and II as obtained in equations
(4.9) - (4.12). �

4.2. Minimum mean square errors of the estimators τ1 and τ2. Since the mean
square errors of estimators τ1 and τ2 under two types of sampling designs mentioned in
equations (4.9)-(4.12) are the functions of unknown scalars α1 and α2. The optimum

choices of α
′
is are obtained by minimizing the mean square errors given in equations

(4.9)-(4.12) with respect to αi, (i = 1, 2) as

α1(opt)I = α1(opt)II = 1− ρY Z
CY
CZ

(4.15)

α2(opt)I = α2(opt)II = 1− ρY Z
CY
CZ

(4.16)

The minimum mean square errors of the estimators τ1 and τ2 have been obtained
by substituting the optimum choices of αi(opt), (i = 1, 2) from equations (4.15)-(4.16) in
the equations (4.9)-(4.12). The optimum mean square errors of the estimators τ1 and τ2
under two types of sampling designs are given as

M(τ1)I = Ȳ 2

[
δ1C

2
Y + δ2(C2

X − 2ρYXCY CX)
+δ4(C2

Z − 2ρY ZCY CZ)− δ3ρ2
Y ZC

2
Y

]
(4.17)

M(τ2)I =

[
Ȳ 2
(
(δ1 − δ2ρ2

YX)C2
Y − δ3ρ2

Y ZC
2
Y

)
+δ4(β2

YXX̄
2C2

Z − 2Ȳ X̄βYXρYXCY CZ)

]
(4.18)

M(τ1)II = Ȳ 2

[
δ1C

2
Y + δ6(C2

X − 2ρY ZCY CZ)
+f1(C2

X − 2ρYXCY CX) + δ4C
2
Z − δ3ρ2

Y ZC
2
Y

]
(4.19)

and

M(τ2)II =

[
Ȳ 2C2

Y

(
(δ1 − f1)ρ2

YX − δ3ρ2
Y Z

)
+β2

YXX̄
2
(
δ4(C2

Z − 2ρXZCXCZ) + δ5C
2
Z

) ](4.20)
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5. Some well-known methods of imputation

When the sample of size n is drawn from the population under SRSWOR scheme
in single-phase sampling design and non-response is observed in the sample data, some
classical methods of imputations are discussed in this section under the assumption that
information on auxiliary variable x is readily available for all the units of the population.
These methods are also frequently used in many statistical software packages.

5.1. Mean method of imputation. The data produced by mean method of imputa-
tion is given as

y.i =

{
yi if i ∈ R
ȳr if i ∈ R

′(5.1)

Under the imputation method discussed in equation (5.1), the corresponding point esti-
mator of the population mean Ȳ is derived as

ȳm =
1

r

r∑
i=1

y.i = ȳr(5.2)

The variance of the estimator ȳm is obtained as

v(ȳm) = δ1Ȳ
2C2

Y(5.3)

5.2. Ratio method of imputation. The data generated by ratio method of imputa-
tion is given as

y.i =

{
yi if i ∈ R
b̂xi if i ∈ R

′(5.4)

where b̂ =

∑.
i∈R yi∑.
i∈R xi

Under the imputation method discussed in equation (5.4), the corresponding point
estimator of the population mean Ȳ is derived as

ȳrat =
1

n

n∑
i=1

y.i = ȳr
x̄n
x̄r

(5.5)

The mean square error of the estimator ȳrat upto the �rst order of approximations is
obtained as

M(ȳrat) = Ȳ 2 [δ1C2
Y + δ3(C2

X − 2ρYXCY CX)
]

(5.6)

5.3. Regression method of imputation. The data produced by regression method
of imputation is given as

y.i =

{
yi if i ∈ R
â+ b̂yx xi if i ∈ R

′(5.7)

where b̂yx =
syx(r)

s2
x(r)

and â =
(
ȳr − b̂yx x̄r

)
Under the imputation method discussed in equation (5.7), the corresponding point esti-
mator of the population mean Ȳ is derived as

ȳreg =
1

n

n∑
i=1

y.i = ȳr + b̂yx (x̄n − x̄r)(5.8)
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The mean square of the estimator ȳreg upto the �rst order of approximations is obtained
as

M(ȳreg) = Ȳ 2C2
Y

[
δ1 − δ3ρ2

YX

]
(5.9)

6. E�ciency comparison

In this section, the performances of the proposed methods of imputation and resul-
tant estimators have been demonstrated over mean, ratio and regression methods of
imputation through empirical as well as simulation studies.

6.1. Empirical study. To access the performances of proposed methods, empirical
studies are carried out on four natural populations chosen from various survey literatures.
The percent relative e�ciencies of the proposed methods with respect to the mean, ratio
and methods of imputation are given as

E11 =
v(ȳm)

M(τ1)
× 100, E12 =

M(ȳrat)

M(τ1)
× 100, E13 =

M(ȳreg)

M(τ1)
× 100;

E21 =
v(ȳm)

M(τ2)
× 100 E22 =

M(ȳrat)

M(τ2)
× 100 and E23 =

M(ȳreg)

M(τ2)
× 100.

The percent relative e�ciencies are computed for four natural populations under both
two-phase sampling designs I and II and presented in Tables 1-3. The details of popula-
tions are provided below:
Population I [Source: [2]] (Page No. 58)
Y :Head length of second son
X:Head length of �rst son
Z: Head breadth of �rst son
N = 25, n

′
= 18, r

′
= 12, n = 10, r = 7.

Population II [Source: [11] ] (Page No. 399)
Y : Area under wheat in 1964
X: Area under wheat in 1963
Z: : Cultivated area in 1961
N = 34, n

′
= 22, r

′
= 16, n = 10, r = 7.

Population III [Source: [4]] (Page No. 182)
Y : Number of `placebo' children
X: Number of paralytic polio cases in the placebo group
Z: Number of paralytic polio cases in the `not inoculated' group

N = 33, n
′

= 22, r
′

= 18, n = 12, r = 8.
Population IV [Source:[22]] (Page No. 349)
Y : Volume
X: Diameter
Z: Height

N = 31, n
′

= 22, r
′

= 16, n = 10, r = 7.

6.2. Simulation Study. An important aspect of simulation is that one builds a simu-
lation model to replicate the actual system. Simulation allows comparison of analytical
techniques and helps in concluding whether a newly developed technique is better than
the existing ones. Motivated with this argument, simulation study has been carried out
to illustrate and compare the performance of the proposed imputation methods. In this
simulation study, two arti�cial population has been generated which is described as be-
low:
Population-V Source: [Arti�cially Generated Data Set]
A population of size N = 2000 with one study variable y and two auxiliary variable
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x and z are generated from the multivariate normal distribution where study vari-
able y is strongly correlated with auxiliary variables with �xed correlations ρYX = 0.7
and ρY Z = 0.7 while mutual correlation between auxiliary variables x and and z is
ρZX = 0.49. The triplet (y, x, z) is generated using MVNORM package in R software.

We have taken n
′

= 800, r
′

= 640, n = 256, r = 204. Population-VI Source: [Arti-
�cially Generated Data Set]
A arti�cial population is generated of size N = 200 which involves one study vari-
able y and two auxiliary variable x and z. The study variable y is highly correlated
with auxiliary variables with �xed correlations ρYX = 0.87 and ρY Z = 0.93 while mu-
tual correlation between auxiliary variables x and z is ρXZ = 0.95. We have taken

n
′

= 80, r
′

= 64, n = 26, r = 21.
Population-VII, Source: [11]
The percent relative e�ciencies and losses of the proposed estimators under both types

of sample designs are computed through 50,000 repeated samples n
′
and n as per design.

The following steps have been followed for the simulation studies:

Step I : Draw a random sample s
′
of size n

′
from population size N.

Step II: Drop down (n
′
− r

′
) sample units randomly from �rst-phase sample each time.

Impute dropped units using imputation method considered for �rst-phase sample.

Step III: Draw a random sub-sample of size n from s
′
for design I and independent ran-

dom sample n from N for design II.
Step IV: Drop down (n− r) sample units randomly from second-phase sample each time.
Impute dropped units using proposed method of imputation considered for second-phase
sample.
Step V:Compute relevant statistic.
Step VI: Repeat the above steps 50,000 times = M (say).
The simulated variance and mean square errors of the existing and proposed estimators
are given as

var∗(ȲM ) =
1

M

M∑
j=1

((ȳm)j − Ȳ )2; M∗(ȳrat) =
1

M

M∑
j=1

(ȳrat)j − Ȳ )2;

M∗(ȳreg) =
1

M

M∑
j=1

((ȳreg)j − Ȳ )2; M∗(τ1)d =
1

M

M∑
j=1

((τ1)dj − Ȳ )2;

and M∗(τ2)d =
1

M

M∑
j=1

((τ1)dj − Ȳ )2.

The simulated percent related e�ciencies are given as

E
′
11 =

var∗(ȳm)

M∗(τ1)d
× 100, E

′
12 =

M∗(ȳrat)

M∗(τ1)d
× 100, E

′
13 =

M∗(ȳreg)

M∗(τ1)d
× 100;

E
′
21 =

var(ȳm)

M∗(τ2)d
× 100, E

′
22 =

M∗(ȳrat)

M∗(τ2)d
× 100 and E

′
23 =

M∗(ȳreg)

M∗(τ2)d
× 100.

The percent relative losses in e�ciencies due to imputation of the estimators τ1 and τ2
are obtained with respect to the similar estimators when non-response has not observed
in any phase. The estimators T1 and T2 are de�ned under the similar circumstances
as the estimators τ1 and τ2 respectively but under complete response. The simulated
percent relative losses in e�ciencies of the proposed estimators τ1 and τ2 with respect to
T1 and T2 respectively under their respective design are given as

l1 =
M

′
(τ1)d −MSE(T1)d

M ′(τ1)d
× 100 and l2 =

M
′
(τ2)d −MSE(T2)d

M ′(τ1)d
× 100
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Table 1. Percent relative e�ciencies of the proposed methods of im-
putation with respect to mean method of imputation

Population

Design I Design II

E11 E21 E11 E21

I 164.13 169.88 159.73 193.55
II 395.4 393.34 2619 976.5
III 141.51 161.97 128.28 167.72
IV 162.46 194.4 214.13 360.14

Table 2. Percent relative e�ciencies of the proposed methods of im-
putation with respect to ratio method of imputation

Population

Design I Design II

E12 E22 E12 E22

I 144.5446 149.6076 140.6665 170.4568
II 338.3642 336.6064 2241.216 835.647
III 136.7759 156.5481 123.9857 162.1012
IV 146.1351 174.8677 192.6174 323.9517

Table 3. Percent relative e�ciencies of the proposed methods of im-
putation with respect to regression method of imputation

Population

Design I Design II

E13 E23 E13 E23

I 132.6246 137.2701 129.0663 156.3999
II 337.1721 335.4205 2233.319 832.7029
III 130.4527 149.3108 118.2539 154.6072
IV 138.2431 165.424 182.2151 306.4568

Table 4. Percent relative e�ciencies of the proposed methods of impu-
tation with respect to mean, ratio and regression method of imputation
under design I

Population E
′
11 E

′
12 E

′
13 E

′
21 E

′
22 E

′
23

IV - - - 173.7041 289.4424 228.9433
V 205.464 175.9475 207.196 126.7179 108.5138 127.7861
VI 506.8283 349.5334 506.8432 140.9939 100.52 140.9981

where

MSE(T1)d =
1

M

M∑
j=1

((T1)dj − Ȳ )2
and MSE(T2)d =

1

M

M∑
j=1

((T1)dj − Ȳ )2

The simulated percent relative e�ciencies and percent relative losses in e�ciencies are
calculated based on above procedures and shown in Tables 4-8.
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Table 5. Percent relative e�ciencies of the proposed methods of impu-
tation with respect to mean, ratio and regression method of imputation
under design II

Population E
′
11 E

′
12 E

′
13 E

′
21 E

′
22 E

′
23

IV - - - 155.1734 258.3963 211.1557
V 173.3455 147.891 174.7788 127.5409 108.8125 128.5955
VI 381.6525 241.0568 380.0000 144.9563 91.55637 144.9668

-15.00000

-10.00000

-5.00000

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

2
0
.3

1

1
9
.5

3

1
8
.7

5

1
7
.9

7

1
7
.1

9

1
6
.4

1

1
5
.6

3

1
4
.8

4

1
4
.0

6

1
3
.2

8

1
2
.5

0

1
1
.7

2

1
0
.9

4

1
0
.1

6

9
.3

8

8
.5

9

7
.8

1

7
.0

3

6
.2

5

5
.4

7

4
.6

9

3
.9

1

3
.1

3

2
.3

4

1
.5

6

0
.7

8

0
.0

0

lo
ss

e
s 

in
 p

e
rc

e
n
t 
re

la
te

iv
e
 e

ff
ic

ie
n
ci

e
s

Non-response in percentage

l1 l2

Figure 1. Losses in percent relative e�ciencies under design I
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Figure 2. Losses in percent relative e�ciencies under design II

7. Interpretations of empirical and simulation results

The following interpretation may be read out form Tables 1-8:
(i) From Tables 1-3, it is observed that the percent relative e�ciencies of proposed
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Table 6. Percent relative loss in e�ciencies of τ1 and τ2 for population V

Non-response in % r

Design I Design II

l2 l2 l1 l2
20.3 204 6.738448 19.049 13.18855 24.30093
19.9 205 6.315109 19.14454 12.80147 23.99295
19.5 206 6.283373 19.05152 12.9035 23.23099
19.1 207 5.962236 18.66599 13.10664 23.79613
18.8 208 6.270402 17.58639 12.82047 23.06341
18.4 209 5.790674 17.42059 12.97248 23.06357
18.0 210 5.564397 16.51768 12.61629 22.12348
17.6 211 6.363046 16.863 12.75619 21.68164
17.2 212 5.750825 16.84358 12.86379 22.14718
16.8 213 5.723142 15.79454 11.93683 21.2754
16.4 214 5.500086 15.18455 12.56029 21.13391
16.0 215 5.843917 15.52531 12.30851 21.43517
15.6 216 6.389317 15.39993 12.48369 20.8473
15.2 217 5.984728 14.96542 12.33151 20.29694
14.8 218 5.349957 13.77993 12.87342 20.4612
14.5 219 5.261716 13.58861 12.20178 19.41079
14.1 220 5.089062 13.17031 12.18518 19.01089
13.7 221 5.070957 12.7577 12.49638 19.13461
13.3 222 5.762905 12.69329 11.92084 17.93317
12.9 223 5.176182 12.20109 12.25472 18.31218
12.5 224 4.886793 11.7032 11.68878 17.67413
12.1 225 4.217542 11.28505 12.30389 17.43272
11.7 226 4.373402 10.80997 12.00183 17.10713
11.3 227 5.049754 10.7548 12.13982 17.12418
10.9 228 4.909434 9.748253 11.62635 16.22706
10.5 229 4.00887 9.851719 11.78288 16.19699
10.2 230 4.169912 9.51624 11.83367 16.2959
9.8 231 4.529166 10.00129 11.47569 14.9603
9.4 232 4.433875 8.768917 11.6888 15.73379
9.0 233 3.440972 8.133471 11.76249 15.54029
8.6 234 4.324173 8.013786 11.87108 14.3585
8.2 235 3.254098 7.184638 11.32712 13.88087
7.8 236 3.940143 7.466224 11.89467 14.45966
7.4 237 3.838422 7.294342 11.28833 13.76234
7.0 238 4.442985 6.638862 11.62683 13.358
6.6 239 3.443305 6.22834 11.70273 13.60147
6.3 240 3.850916 5.305388 11.65415 13.17198
5.9 241 3.491468 5.494705 11.39383 12.55725
5.5 242 3.951612 5.372038 11.15704 12.54276

estimators τ1 and τ2 with respect to the estimators ȳm, ȳrat and ȳreg are more than
100 for all the cases when empirical studies have been performed under both types of
two-phase sampling designs on real data sets considered under study. This shows the
superiority of the proposed method of imputations and resultant estimators over the
classical method of imputations.
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Table 6 (continued)

Non-response in % r

Design I Design II

l2 l2 l1 l2
5.1 243 3.017611 4.422548 11.16313 11.64909
4.7 244 3.905949 4.333714 11.02844 11.13706
4.3 245 3.404598 3.825242 11.42924 11.66585
3.9 246 3.599311 3.78506 11.41769 11.39881
3.5 247 3.067483 3.261728 11.18086 10.94894
3.1 248 3.171295 3.101585 10.69743 9.935909
2.7 249 2.545809 2.593258 11.48213 10.17303
2.3 250 2.983233 2.544756 10.84646 9.800666
2.0 251 2.983484 1.877075 10.81191 9.52276
1.6 252 3.505469 1.26265 10.25957 9.014482
1.2 253 3.127518 1.048233 11.02678 8.899926
0.8 254 3.123058 1.074864 11.00791 8.456403
0.4 255 2.355589 0.174147 10.86018 8.174894

Table 7. Percent relative loss in e�ciencies of τ1 and τ2 for population VI

Non-response in % r

Design I Design II

l2 l2 l1 l2

20.0 40 22.30938 1.739497 23.37739 4.200539
18.0 41 21.56071 1.568621 22.29878 3.605785
16.0 42 20.50628 1.061113 21.57173 3.089424
14.0 43 19.49287 0.973014 22.34788 2.673905
12.0 44 19.29077 0.886344 21.46281 2.318591
10.0 45 19.85086 0.947506 20.41931 1.887504
8.0 46 19.46533 0.626492 20.7704 1.549975
6.0 47 19.07529 0.579968 20.46932 1.250937
4.0 48 17.87705 0.336925 20.07944 0.667618
2.0 49 18.32976 0.16658 20.54352 0.361967

Table 8. Percent relative loss in e�ciencies of τ1 and τ2 for population VII

Non-response in % r

Design I Design II

l2 l2 l1 l2

33.3 8 38.52201 44.0893 44.27092 42.10602
25.0 9 29.9925 35.00111 37.35181 32.33551
16.7 10 21.25204 25.28531 30.44306 21.77402
8.3 11 12.29272 14.87456 23.54467 10.32147

(ii) From Tables 4-5, it is seen that the simulated percent relative e�ciencies of proposed
estimators τ1 and τ2 with respect to the estimators ȳm, ȳrat and ȳreg are more than 100
in most of the cases when simulation studies have been performed under both types of
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two-phase sampling designs on arti�cial data sets considered under study.
(iii) From Tables 6-8, it is clear that the percent relative losses in e�ciencies l1 and l2
of the proposed estimators under two types of two-phase sampling designs are not more
than 30% for both arti�cial and real populations.
(iv)From Tables 7-8, it is also observe that the percent relative losses in e�ciencies l1
and l2 of the proposed estimators under both types of two-phase sampling designs are

decreasing as the values of r increase for �xed values of N,n
′
, r

′
and n. This implies that

the percent relative losses in e�ciencies are decreasing as percentage of non-response in
second-phase sample decreases.
In Table 6, the impact of percent relative losses in e�ciencies of the proposed estimators
are observed very closely taking into consideration of minor change in percentage of non-
response in second-phase sample and results are shown graphically in the �gures 1-2 to
get more visible pattern under sampling designs I and II separately.
From Figures 1-2, it is easily seen that the percent relative losses in e�ciencies of proposed
estimators under both types of designs are showing decreasing pattern as the percentage
of non-response decreases..

8. Conclusions and recommendations

The proposed methods of imputations are rewarding in terms of percent relative e�-
ciencies when study has been performed on real data sets as well as on arti�cial data sets
and the percent relative losses in e�ciency of proposed estimators is less than 30% when-
ever non-response is considered as 20% or less of sample size. These results advocates
that the proposed methods of imputations described in this work are highly favorable
in reducing the adverse e�ect of missing values on inference to a greater extend as com-
pare to the mean, ratio and regression methods of imputation. Hence, looking on the
encourage behavior of the suggested imputation methods, survey practitioner may be
encouraged for their practical applications, if non-response is non-ignorable in the survey
data.
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