Available online: August 21, 2017

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 67, Number 2, Pages 11-18 (2018) DOI: 10.1501/Communi_0000000857 ISSN 1303-5991 http://communications.science.ankara.edu.tr/index.php?series=A1

ON LOCALLY UNIT REGULARITY CONDITIONS FOR ARBITRARY LEAVITT PATH ALGEBRAS

TUFAN ÖZDIN

ABSTRACT. Let Γ be a graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. In this paper, we give defination of the left locally unit regular ring. We show that (1) if S is locally unit regular, then L is locally unit regular, (2) if L is morphic and image projective then S is left morphic, (3) S is a directly finite ring then L is directly finite, (4) if S is an exchange ring then L is directly finite ring then L is an exchange ring.

1. INTRODUCTION

Throughout this article Γ will denote a directed graph, K will denote an arbitrary field and the Leavitt path algebras (shortly LPAs) of Γ with coefficients in K will denoted $L := L_K(\Gamma)$.

LPAs can be regarded as the algebraic counterparts of the graph C^* -algebras, the descendants from the algebras investigated by Cuntz in [6]. LPAs can be viewed as a broad generalization of the algebras constructed by Leavitt in [11] to produce rings without the Invariant Basis Number property. LPAs associated to directed graphs were introduced in [4, 1]. These $L_K(\Gamma)$ are algebras associated to directed graphs and are the algebraic analogs of the Cuntz-Krieger graph C^* -algebras [15].

Let Γ be a graph and K a field. In [3], G. Abrams and K. M. Rangaswamy showed how definition of von Neumann regular ring (recall that a ring R is von Neumann regular if for every $a \in R$ there exists $b \in R$ such that a = aba) is extended to locally unit regular ring and in [3, Theorem 2] if Γ is arbitrary graph, $L_K(\Gamma)$ is locally unit regular if and only if Γ is acyclic. This article is organized as follows. In Section 2, we recall some preliminaries about LPAs which we need in the next section. In Section 3, for the ring S of endomorphism ring of $L_K(\Gamma)$ (viewed as a right $L_K(\Gamma)$ -module), we prove that: (1) if S is locally unit regular,

Received by the editors: November 25, 2016, Accepted: May 05, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 16D50, 16E50; Secondary 16U60, 16W20. Key words and phrases. Leavitt path algebra, von Neumann regular ring, locally regular ring, endomorphism ring.

^{©2018} Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics. Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

TUFAN ÖZDIN

then L is locally unit regular, (2) if L is morphic and image projective then S is left morphic, (3) if S is a directly finite ring then L is directly finite, (4) if S is an exchange ring then L is directly finite and if L is a directly finite ring then L is an exchange ring.

2. Definitions and Preliminaries

We recall some graph-theoretic concepts, the definition and standard examples of LPAs.

Definition 1. A (directed) graph $\Gamma = (V, E, r, s)$ consist of two set V and E (with no restriction on their cardinals) together with maps $r, s : E \to V$. The elements of V are called vertices and the elements of E edges. For $e \in E$, the vertices s(e) and r(e) are called the source and range of e. If $s^{-1}(v)$ is a finite set for every $v \in V$, then the graph is called row-finite. If V is finite and Γ is row finite, then E must necessarily be finite as well; in this case we say simply that Γ is finite.

A vertex which emits (receives) no edges is called a sink (source). A vertex v is called an infinite emitter if $s^{-1}(v)$ is an infinite set. A vertex v is a bifurcation if $s^{-1}(v)$ has at least two elements. A path p in a graph Γ is a finite sequence of edges $p = e_1 \dots e_n$ such that $r(e_i) = s(e_{i+1})$ for $1 \leq i \leq n-1$. In this case, $s(p) = s(e_1)$ and $r(p) = r(e_n)$ are the source and range of p, respectively, and n is the length of p. We view the elements of V as paths of length 0.

A path $p = e_1...e_n$ is said to be closed path based at v if s(p) = v = r(p). If p is an closed path in Γ and $s(e_i) \neq s(e_i)$ for all $i \neq j$, then p is said to be a cycle. A cycle consisting of just one edge is called a loop. A graph which contains no cycles is called acyclic. A graph Γ is said to be no-exit if no vertex of any cycle is a bifurcation.

Definition 2. (LPAs of Arbitrary Graph)

For an arbitrary graph Γ and a field K, the Leavitt path K-algebra of Γ , denoted by $L_K(\Gamma)$, is the K-algebra generated by the set $V \cup E \cup \{e^* | e \in E\}$ with the following relations,

- (1) $v_i v_j = \delta_{v_i, v_j} v_i$ for every $v_i, v_j \in V$
- (2) s(e)e = e = er(e) for all $e \in E$.
- (3) $r(e)e^* = e^* = e^*s(e)$ for all $e \in E$.
- (4) (CK1) $e^*f = \delta_{e,f}r(e)$ for all $e, f \in E$.
- (5) $(CK2)v = \sum_{\{e \in E, s(e)=v\}} ee^*$ for every $v \in V$ that is neither a sink nor an infinite emitter.

The first three relations are the path algebra relations. The last two are the so-called Cuntz-Krieger relations. We let $r(e^*)$ denote s(e), and we let $s(e^*)$ denote r(e). If $p = e_1...e_n$ is a path in Γ , we write p^* for the element $e_n^*...e_1^*$ of $L_K(\Gamma)$. With this notation, the LPA $L_K(\Gamma)$ can be viewed as a K-vector space span of $\{pq^* \mid p, q \text{ are paths in } \Gamma\}$. (Recall that the elements of V are viewed as paths of length 0, so that this set includes elements of the form v with $v \in V$.)

If Γ is a finite graph, then $L_K(\Gamma)$ is unital with $\sum_{v \in V} v = \mathbb{1}_{L_K(\Gamma)}$; otherwise, $L_K(\Gamma)$ is a ring with a set of local units consisting of sums of distinct vertices of the graph.

Many well-known algebras can be realized as the LPAs of a graph. The most basic graph configuration is shown below (the isomorphism for can be found in [1]).

Example 1. The ring of Laurent polynomials $K[x, x^{-1}]$ is the LPA of the graph given by a single loop graph.

We will now outline some easily derivable basic facts about the endomorphism ring S of $L := L_K(\Gamma)$. Let Γ be any graph and K be any field. Denote by S the unital ring $End(L_L)$. Then we may identify L with subring of S, concretely, the following is a monomorphism of rings:

$$\phi: L \to End(L_L)$$
$$x \mapsto \lambda_x$$

where $\lambda_x : L \to L$ is the left multiplication by x, i.e., for every $y \in L$, $\lambda_x(y) = xy$ which is a homomorphism of right L-module. The map ϕ is also a monomorphism because given a nonzero $x \in L$ there exists an idempotent $u \in L$ such that xu = x, hence $0 \neq x = \lambda_x(u)$.

3. Results

According to Abrams and Rangaswamy [3]:

• A (possibly nonunital) ring R is called a *ring with local units* if, for each finite subset S of R, there exists an idempotent e of R such that $S \subseteq eRe$;

• If R is a ring with local units then R is called *locally unit regular* if for each $a \in R$ there is an idempotent (a local unit) v and local inverses u, u' such that uu' = v = u'u, va = a = av and aua = a (see [3, Definition 6]).

Theorem 1. Let Γ be an arbitrary graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$.

- (1) If S is locally unit regular, then L is locally unit regular. Moreover L is regular.
- (2) If L is locally unit regular, then vLv is locally unit regular for every non zero idempotent v of L.

Proof. (1) Take $x \in L$. Since S is local unit regular, there exists an idempotent $e \in S$ such that $\lambda_x \in eSe$ and elements $f, g \in eSe$ such that fg = e = gf and $\lambda_x f \lambda_x = \lambda_x$. Choose an idempotent $u \in L$ such that $x \lambda_{e(u)} = x = \lambda_{e(u)} x$ so $x \in \lambda_{e(u)} L \lambda_{e(u)}$. Note that,

$$\lambda_{f(u)}\lambda_{g(u)} = \lambda_{e(u)} = \lambda_{g(u)}\lambda_{f(u)}$$

and

$$\lambda_x = \lambda_x \lambda_{f(x)} = \lambda_x \lambda_{f(ux)} = \lambda_x \lambda_{f(u)} \lambda_x.$$

Since $f \in eSe$, there exists $h \in S$ such that f = ehe. Then f(u) = e(u)h(u)e(u), so

$$\lambda_{f(u)} = \lambda_{e(u)h(u)e(u)} = \lambda_{e(u)}\lambda_{h(u)}\lambda_{e(u)}$$

and we get $\lambda_{f(u)} \in \lambda_{e(u)} L \lambda_{e(u)}$. Similarly $\lambda_{g(u)} \in \lambda_{e(u)} L \lambda_{e(u)}$. Hence L is locally unit regular.

(2) Take any $a \in vLv$. Since L is locally unit regular, there exist an idempotent e and local inverses u, u' such that ea = a = ae, uu' = e = u'u and aua = a. As ea = a and av = a which imply vea = va = a = ea and eav = ea respectively, we get ea = eav = vea. Now $ea \in vLv$, which implies $e \in vLv$. Then ve = e = ev. Let $e^* = vev$, h = vuv and h' = veu'ev. Note that

$$e^{*}e^{*} = (vev)(vev) = vevev = veevv = vev = e^{*} \in vLv$$

$$hh' = (vuv)(veu'ev) = vuveu'ev = vueu'ev = veuu'^{*}$$

$$h'h = (veu'ev)(vuv) = veu'evuv = veu'euv = veu'^{*}$$

$$aha = a(vuv)a = vauav = vav = a,$$

which imply vLv is locally unit regular.

Definition 3. A ring R is dependent if, for each $a, b \in R$, there are $s, t \in R$, not both zero, such that sa + tb = 0.

Let Γ be an arbitrary graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right *L*-module. If S is dependent so is L. In fact, suppose S is dependent and $a, b \in L$. Then there are elements $f, g \in S$, not both zero, such that $f\lambda_a + g\lambda_b = 0$. If u_1 and u_2 are local units in L satisfying $u_1a = a = au_1$ and $u_2b = b = bu_2$, then

$$f\lambda_a = f\lambda_{u_1a} = f\lambda_{u_1}\lambda_a = \lambda_{f(u_1)}\lambda_a$$

and

$$g\lambda_b = g\lambda_{u_2b} = g\lambda_{u_2}\lambda_b = \lambda_{g(u_2)}\lambda_b.$$

Now

$$0 = f\lambda_a + g\lambda_b = \lambda_{f(u_1)}\lambda_a + \lambda_{g(u_2)}\lambda_b$$

and hence L is dependent.

In the literature on von-Neumann regular rings, various conditions have been shown to characterize the subclass of unit regular rings. In [8, Theorem 6], Ehrlich showed that every unit regular ring R is dependent. In [10, Corollary 10], Henriksen shows that not all dependent regular rings are unit regular. The following observation gives one more such condition for dependent rings.

Theorem 2. If $L_K(\Gamma)$ is locally unit regular, then it is dependent.

Proof. Let $L_K(\Gamma)$ be locally unit regular and let some elements provide locally unit regular condition in the definition. Take $a, b \in L_K(\Gamma)$. If both a and b have local inverses in $L_K(\Gamma)$, then there exist u_1 and u_2 in $L_K(\Gamma)$ such that $u_1a = v$ and $u_2b = v$ for local unit v in $L_K(\Gamma)$. So, we get sa + tb = 0, where $s = u_1$ and $t = -u_2$. If one of the elements, say a, has no local inverse in $L_K(\Gamma)$, by definition of locally unit regularity, then we can write $aua = a \Rightarrow aua = va \Rightarrow (au - v)a = 0$. Now we get $au - v \neq 0$. Assume au - v = 0. So au = v, it is a contradiction. Then, for $s = (au - v) \neq 0$ and t = 0, which implies sa + tb = 0.

Definition 4. Let R be a ring with local units. We call R left (right) locally unit regular ring if for each $a \in R$ there exist an idempotent $v \in R$ and left (right) local inverses u, u' such that u'u = v (uu' = v), va = a (av = a) and aua = a.

Definition 5. ([12]) Let M be a right R-module, and let $S = End_R(M)$. Then M is called is a d-Rickart (or dual Rickart) module if the image in M of any single element of S is a direct summand of M. Clearly, R_R a d-Rickart module iff R is a regular ring.

Definition 6. Given paths $p, q \in \Gamma$, we say that q is an initial segment of p if p = qm for some path $m \in \Gamma$. It is well known that, given non-zero paths pq^* and mn^* in $L_K(\Gamma)$, q is an initial segment of m if and only if $(pq^*)(mn^*) \neq 0$.

Theorem 3. Let Γ be a graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. The following conditions are equivalent.

- (1) S is left locally unit regular.
- (2) S is regular and, for all paths $x, y \in L$, Sx = Sy implies x is an initial segment of y.
- (3) L is dual-Rickart and, for all paths $x, y \in L$, Sx = Sy implies x is an initial segment of y.

Proof. (1) \Rightarrow (2) Assume that *S* is left locally unit regular. Hence *S* is regular and *L* is left locally unit regular by Theorem 1. Let $x, y \in L$ be two paths. Then there exist an idempotent $v \in L$ and left local inverses $v_1, v_2 \in L$ such that vy = y, $v_2v_1 = v$ and $y = yv_1y$. If Sx = Sy, then x = f(y) for some $f \in S$. Now $y = yv_1y$ implies $f(y) = f(yv_1y)$, and so $x = \underbrace{f(yv_1)}_{\in L} y$. Hence *x* is an initial segment of *y*.

 $(2) \Rightarrow (3)$ This follows from [17, Corollary 3.2].

(3) \Rightarrow (1) Assume that *L* is dual-Rickart. Then f(L) is a direct summand of *L*, where $f \in S$. Let *e* be an idempotent in *S* with f(L) = eL. Let $x \in L$. Then there exists $y \in L$ such that f(x) = e(y). Now

$$(ef)(x) = e(f(x)) = e(e(y)) = e(y) = f(x)$$

which implies ef = f. Let h be the left inverse of f and g = fe. Then gh = e and fhf = f.

TUFAN ÖZDIN

Definition 7. ([13]) An endomorphism α of a module M is called morphic if $M/M\alpha \cong \text{Ker}(\alpha)$, equivalently there exists $\beta \in \text{End}(M)$ such that $M\beta = \text{Ker}(\alpha)$ and $\text{Ker}(\beta) = M\alpha$ by [13, Lemma 1]. The module M is called a morphic module if every endomorphism is morphic. If R is a ring, an element a in R is called left morphic if right multiplication $\cdot a :_R R \to_R R$ is a morphic endomorphism, that is if $R/Ra \cong l(\alpha)$. The ring itself is called a left morphic ring if every element is left morphic, that is if $_RR$ is a morphic module.

Note that if S is dependent then $L_K(\Gamma)$ is morphic by [14, Corollary 3.5].

Theorem 4. Let Γ be any graph and let K be any field. If $L_K(\Gamma)$ is left morphic and regular ring then $L_K(\Gamma)$ is left locally unit regular ring.

Proof. Let $L_K(\Gamma) = L$ be left morphic and regular ring. Then each $a \in L$ is both regular and morphic. So, there exist an $x \in L$ such that a = axa and for some $b \in L$, La = ann(b) and Lb = ann(a). Let u = xax + b. Then a = aua. To see that u is left local inverse, since L has local units, choose an idempotent $v \in L$ such that va = a. Then we get, 0 = va - a = va - axa = (v - ax)a, so $v - ax \in ann(a) = Lb$ and there exists an element $y \in L$ such that v - ax = yb. We take u' = a + y(v - ax). We show that u'u = v:

$$u'u = (a + y(v - ax))(xax + b)$$

= $axax + ab + y(v - ax)xax + y(v - ax)b$
= $ax + ab + yvxax - yxaxax + yvb - yxab$
= $ax + yb = v$

Hence $L = L_K(\Gamma)$ is left locally regular ring.

Theorem 5. Let Γ be a graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. If $L_K(\Gamma)$ is morphic and image projective then S is left morphic.

Proof. Let $L := L_K(\Gamma)$ be morphic and image projective. Given any $\alpha \in S$, since L is morphic, we may choose an $\beta \in S$ such that, $L\alpha = ker(\beta)$ and $L\beta = ker(\alpha)$. Since $\alpha\beta = 0$, $S\alpha \subset ann^S(\beta)$. Conversely, if $\gamma \in ann^S(\beta)$ then $\gamma\beta = 0$ so $L\gamma \subset ker(\beta) = L\alpha$ and hence $\gamma \in S\alpha$ because L is image projective. Thus $S\alpha = ann^S(\beta)$. We may see $S\beta = ann^S(\alpha)$ in the same way. Hence S is left morphic.

Definition 8. ([16, Definition 4.1]) If R is a ring with local units then R is called directly finite if for each $x, y \in R$ there is an idempotent u such that xu = x = ux and yu = y = uy, we have that xy = u implies yx = u.

Theorem 6. Let Γ be a graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. If S is a directly finite ring then $L_K(\Gamma)$ is directly finite.

16

Proof. Take any x, y in $L_K(\Gamma)$. Since S is a direct finite ring, there is an idempotent ε in S such that $\lambda_x \varepsilon = \lambda_x = \varepsilon \lambda_x$ and $\lambda_y \varepsilon = \lambda_y = \varepsilon \lambda_y$, we have that $\lambda_x \lambda_y = \varepsilon$ implies $\lambda_y \lambda_x = \varepsilon$. For an idempotent u with xu = x = ux and yu = y = uy,

$$\begin{split} \lambda_x \lambda_y &= \varepsilon \Rightarrow \lambda_x \lambda_y \lambda_x = \varepsilon \lambda_x \Rightarrow \lambda_x = \varepsilon \lambda_{uv} \Rightarrow \lambda_x = \lambda_{\varepsilon(u)} \lambda_x \\ \lambda_x &= \varepsilon \lambda_x = \lambda_{\varepsilon(x)} = \lambda_{\varepsilon(xu)} = \lambda_{\varepsilon(x)} \lambda_{\varepsilon(u)} = \varepsilon \lambda_x \lambda_{\varepsilon(u)} \end{split}$$

So, $\lambda_x \lambda_{\varepsilon(u)} = \lambda_x = \lambda_{\varepsilon(u)} \lambda_x$. Similarly $\lambda_y \lambda_{\varepsilon(u)} = \lambda_y = \lambda_{\varepsilon(u)} \lambda_y$. Assume that, $\lambda_x \lambda_y = \lambda_{\varepsilon(u)}$. We then see that $\lambda_y \lambda_x = \lambda_{\varepsilon(u)}$.

$$\lambda_y \lambda_x = \lambda_y \lambda_{\varepsilon(u)} \lambda_x = \lambda_y \lambda_x \lambda_{\varepsilon(u)} = \varepsilon \lambda_{\varepsilon(u)} = \lambda_{\varepsilon^2(u)} = \lambda_{\varepsilon(u)},$$

as desired.

Ones hopes that if $L_K(\Gamma)$ is directly finite then $L_K(\Gamma)$ is locally unit regular but this is not true. Because $K[x, x^{-1}]$ is a commutative Leavitt path algebra (of the graph with one vertex and one loop) clearly directly finite. But it is not von Neumann regular ring.

Corollary 1. Let Γ be a graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. If S is a directly finite ring, then Γ is no exit.

Proof. Let S be a directly finite ring. Then $L_K(\Gamma)$ is a directly finite ring. So, by [16, Proposition 4.3], Γ is no exit.

Definition 9. *R* is said to be a (left) exchange ring if for any direct decomposition $A = M \oplus N = \bigoplus_{i \in I} A_i$ of any left *R*-module *A*, where $R \cong M$ as left *R*-modules and *I* is a finite set, there always exist submodules B_i of A_i such that $A = M \oplus (\bigoplus_{i \in I} B_i)$.

Theorem 7. Let Γ be an infinite graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. Then

- (1) If S is an exchange ring then L is directly finite.
- (2) If L is a directly finite ring then L is an exchange ring.

Proof. (1) Let S be an exchange ring. Then, by [5, Proposition 2.10], $L_K(\Gamma)$ is an exchange ring. For every $x, y \in L$ and an idempotent $u \in L$ such that xu = x = ux and yu = y = uy we have that xy = u. We show that yx = u. Since L is an exchange ring, there exist $r, s \in L$ such that u = rx = s + x - sx. So, $u = rx \Rightarrow uy = rxy \Rightarrow y = ru \Rightarrow yx = rux = rx = u$, as desired.

(2) Let L be a directly finite ring. For any $x, y \in L$ and an idempotent $u \in L$ such that xu = x = ux and yu = y = uy we have that xy = u implies yx = u. We show that L is an exchange ring. For any $x \in L$ taking r = y and s = u, we get u = rx = s + x - sx. So, L is an exchange ring.

Corollary 2. Let Γ be infinite graph, K be any field and S be the endomorphism ring of $L := L_K(\Gamma)$ considered as a right L-module. Then the following conditions are equivalent.

- (1) S is an exchange ring.
- (2) $L_K(\Gamma)$ is an exchange ring.
- (3) $L_K(\Gamma)$ is a directly finite ring.
- (4) Γ is no exit

Proof. (1) \Leftrightarrow (2) This is [5, Proposition 2.10].

- $(2) \Leftrightarrow (3)$ This follows from Theorem 7 (1) and Theorem 7 (2).
- $(3) \Leftrightarrow (4)$ This is [16, Teorem 4.12].

References

- Abrams, G. and Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, (2005), 293(2), 319-334.
- [2] Abrams, G., Aranda Pino, G., Perera, F. and Siles Molina, M., Chain conditions for Leavitt path algebras, *Forum Mathematicum*, (2010), 22 (1), 95-114.
- [3] Abrams, G. and Rangaswamy, K. M., Regularity conditions for arbitrary Leavitt path algebras, Algebras and Representation Theory, (2010), 13 (3), 319-334.
- [4] Ara, P., Moreno, M. A. and Pardo, E., Nonstable K-theory for graph algebras, Algebras and Representation Theory, (2007), 10, 157-178.
- [5] Aranda Pino, G., Rangaswamy, K. M and Siles Molina, M., Endomorphism rings of Leavitt path algebras, *Journal of Pure and Applied Algebra*, (2015), 219(12), 5330-5343.
- [6] Cuntz, J., Simple C*-algebras generated by isometries, Commun. Math. Phys., (1977), 57, 173-185.
- [7] Goodearl, K. R., Von Neumann Regular Rings, Pitman, London, 1979.
- [8] Ehrlich, G., Unit regular rings, Portugal. Math., (1968), 27, 209-212.
- [9] Fuller, K. R., On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc., (1976), 54, 39-44.
- [10] Henriksen, M., On a class of regular rings that are elementary divisor rings, Archive der Mathematik, (1973), 24, 133-141.
- [11] Leavitt, W., The module type of a ring, Trans. Amer. Math. Soc., (1962), 103, 113-130.
- [12] Lee, G., Tariq, R. S. and Cosmin, S. R., Dual Rickart modules, Commun. in Algebra, (2011), 39, 4036-4058.
- [13] Nicholson, W. K. and Sanchez, C. E., Morphic Modules, Commun. in Algebra, (2005), 33, 2629-2647.
- [14] Özdin T., On endomorphism rings of Leavitt path algebras, Filomat (Submitted).
- [15] Raeburn, I., Graph algebras, CBMS Regional Conference Series in Mathematics, 103, Published for the Conference Board of the Mathematical Sciences, (Washington DC, USA, the AMS), 2005.
- [16] Vaš, L., Canonical traces and direct finite Leavitt path algebras, Algebras and Representation Theory, (2015), 18(3), 711 – 738.
- [17] Ware, R., Endomorphism rings of projective modules, Trans. Amer. Math. Soc., (1971), 155(1), 233-256.

Current address: Tufan ÖZDIN: Department of Mathematics, Faculty of Science and Art, Erzincan University, 24100 Erzincan, TURKEY.

E-mail address: tozdin@erzincan.edu.tr; tufan.ozdin@hotmail.com ORCID Address: http://orcid.org/0000-0001-8081-1871