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ON LOCALLY UNIT REGULARITY CONDITIONS FOR
ARBITRARY LEAVITT PATH ALGEBRAS

TUFAN OZDIN

ABSTRACT. Let I' be a graph, K be any field and S be the endomorphism
ring of L := Li(T") considered as a right L-module. In this paper, we give
defination of the left locally unit regular ring. We show that (1) if S is locally
unit regular, then L is locally unit regular, (2) if L is morphic and image
projective then S is left morphic, (3) S is a directly finite ring then L is
directly finite, (4) if S is an exchange ring then L is directly finite and if L is
a directly finite ring then L is an exchange ring.

1. INTRODUCTION

Throughout this article I' will denote a directed graph, K will denote an arbitrary
field and the Leavitt path algebras (shortly LPAs) of T' with coefficients in K will
denoted L := Lk (T).

LPAs can be regarded as the algebraic counterparts of the graph C*-algebras,
the descendants from the algebras investigated by Cuntz in [6]. LPAs can be viewed
as a broad generalization of the algebras constructed by Leavitt in [11] to produce
rings without the Invariant Basis Number property. LPAs associated to directed
graphs were introduced in [4, [T]. These L (I") are algebras associated to directed
graphs and are the algebraic analogs of the Cuntz-Krieger graph C*-algebras [15].

Let T be a graph and K a field. In [3], G. Abrams and K. M. Rangaswamy
showed how definition of von Neumann regular ring (recall that a ring R is von
Neumann regular if for every a € R there exists b € R such that a = aba) is
extended to locally unit regular ring and in [3|, Theorem 2] if T is arbitrary graph,
Lk (T) is locally unit regular if and only if T' is acyclic. This article is organized
as follows. In Section 2, we recall some preliminaries about LPAs which we need
in the next section. In Section 3, for the ring S of endomorphism ring of Lg(T)
(viewed as a right Lk (I")-module), we prove that: (1) if S is locally unit regular,
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then L is locally unit regular, (2) if L is morphic and image projective then S is
left morphic, (3) if S is a directly finite ring then L is directly finite, (4) if S is an
exchange ring then L is directly finite and if L is a directly finite ring then L is an
exchange ring.

2. DEFINITIONS AND PRELIMINARIES

We recall some graph-theoretic concepts, the definition and standard examples
of LPAs.

Definition 1. A (directed) graph T = (V, E,r,s) consist of two set V and E (with
no restriction on their cardinals) together with maps r,s : E — V. The elements of
V' are called vertices and the elements of E edges. For e € E, the vertices s(e) and
r(e) are called the source and range of e. If s~1(v) is a finite set for everyv € V,
then the graph is called row-finite. If V is finite and I' is row finite, then E must
necessarily be finite as well; in this case we say simply that T is finite.

A vertex which emits (receives) no edges is called a sink (source). A vertex v is
called an infinite emitter if s~1(v) is an infinite set. A vertex v is a bifurcation if
s71(v) has at least two elements. A path p in a graph T is a finite sequence of edges
p = ey...en such that r(e;) = s(ejy1) for 1 < i <n—1. In this case, s(p) = s(ey)
and r(p) = r(e,) are the source and range of p, respectively, and n is the length of
p. We view the elements of V' as paths of length 0.

A path p = ej...e, is said to be closed path based at v if s(p) =v = r(p). If p
is an closed path in T' and s(e;) # s(e;) for all i # j, then p is said to be a cycle.
A cycle consisting of just one edge is called a loop. A graph which contains no
cycles is called acyclic. A graph T is said to be no-exit if no vertex of any cycle is
a bifurcation.

Definition 2. (LPAs of Arbitrary Graph)

For an arbitrary graph I' and a field K, the Leavitt path K-algebra of ', denoted
by Lk (1), is the K-algebra generated by the set VUEU{e*|e € E} with the following
relations,

(1) vivj = du, w;vi for every vi,v; €V

(2) s(e)e=e=cer(e) foralle € E.

(3) r(e)e* =e* =e€*s(e) foralle € E.

(4) (CK1) e*f = ¢ yr(e) foralle, f € E.

(5) (CK2)v =31 cp s(e)—v) €€ for every v € V that is neither a sink nor an
infinite emitter.

The first three relations are the path algebra relations. The last two are the
so-called Cuntz-Krieger relations. We let r(e*) denote s(e), and we let s(e*) denote
r(e). If p = ej...e, is a path in ', we write p* for the element e ...e; of L (T).
With this notation, the LPA Lk (T') can be viewed as a K —vector space span of
{pg* | p, q are paths in I'}. (Recall that the elements of V' are viewed as paths of
length 0, so that this set includes elements of the form v with v € V)



ON LOCALLY UNIT REGULARITY CONDITIONS FOR ARBITRARY LPAs 13

If T' is a finite graph, then L (T) is unital with ) i, v = 11, (r); otherwise,
Li(T) is a ring with a set of local units consisting of sums of distinct vertices of
the graph.

Many well-known algebras can be realized as the LPAs of a graph. The most
basic graph configuration is shown below (the isomorphism for can be found in [I]).

Example 1. The ring of Laurent polynomials K|x,z1] is the LPA of the graph
giwen by a single loop graph.

We will now outline some easily derivable basic facts about the endomorphism
ring S of L := Lg(T"). Let " be any graph and K be any field. Denote by S the
unital ring End(Lr). Then we may identify L with subring of S, concretely, the
following is a monomorphism of rings:

¢: L — End(Lp)
T Ay

where A\, : L — L is the left multiplication by x, i.e., for every y € L, A, (y) = a2y
which is a homomorphism of right L—module. The map ¢ is also a monomorphism
because given a nonzero x € L there exists an idempotent u € L such that xu = =z,
hence 0 # x = A\, (u).

3. RESULTS

According to Abrams and Rangaswamy [3]:

e A (possibly nonunital) ring R is called a ring with local units if, for each finite
subset S of R, there exists an idempotent e of R such that S C eRe;

o If R is a ring with local units then R is called locally unit regular if for each
a € R there is an idempotent (a local unit) v and local inverses u,u’ such that
wu' = v =u'u, va =a = av and aua = a (see [3, Definition 6]).

Theorem 1. Let T be an arbitrary graph, K be any field and S be the endomorphism
ring of L := Lk (T).
(1) If S is locally unit regular, then L is locally unit reqular. Moreover L is
regular.
(2) If L is locally unit regular, then vLv is locally unit regular for every non
zero idempotent v of L.

Proof. (1) Take € L. Since S is local unit regular, there exists an idempotent
e € S such that A, € eSe and elements f,g € eSe such that fg = e = gf and
Az fAz = Az. Choose an idempotent u € L such that zA.,) = T = AT s0
T € )\e(u)[)\e(u). Note that,

Af)Ag(u) = Ae(u) = Ag(u) A f(u)

and
Ao = AaAf(@) = AaAf(uz) = Ao Ap(u) Aa-
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Since f € eSe, there exists h € S such that f = ehe. Then f(u) = e(u)h(u)e(u), so

Af(u) = Ae(wh(u)e(u) = Ae(u) Mh(uw)Ae(u)

and we get Afy) € Ae(u)LAe(u). Similarly Mg,y € Aeu)LAe(u). Hence L is locally
unit regular.

(2) Take any a € vLv. Since L is locally unit regular, there exist an idempotent
e and local inverses u,u’ such that ea = a = ae, uv’ = ¢ = v'u and aua = a. As
ea = a and av = a which imply vea = va = a = ea and eav = ea respectively, we
get ea = eav = vea. Now ea € vLv, which implies e € vLv. Then ve = e = ev. Let
e* = vev, h = vuv and b/ = veu'ev. Note that

e*e* = (vev)(vev) = vevev = veevv = vev = €* € vLv
hh' = (vuv)(veu'ev) = vuveu'ev = vueu'ev = veuu'*
h'h = (veu'ev)(vuv) = veu' evuv = veu'euv = veu'™
aha = a(vuv)a = vauav = vav = a,

which imply vLv is locally unit regular. (]

Definition 3. A ring R is dependent if, for each a,b € R, there are s,t € R, not
both zero, such that sa + tb = 0.

Let T" be an arbitrary graph, K be any field and S be the endomorphism ring
of L := Lk (T) considered as a right L-module. If S is dependent so is L. In
fact, suppose S is dependent and a,b € L. Then there are elements f,g € S, not
both zero, such that fA, + gA\p = 0. If u; and uy are local units in L satisfying
u1a = a = auy and usb = b = bug, then

f)\a = f>\u1a = f)\ul)\a = >\f(u1))\a
and
g)\b = g)\U2b = g)‘uz)‘b = )\g(uQ))\lr
Now
0 = f)\a + g)‘b
= /\f(u1)>\a + )\g(uz))\b,
and hence L is dependent.

In the literature on von-Neumann regular rings, various conditions have been
shown to characterize the subclass of unit regular rings. In [8, Theorem 6], Ehrlich
showed that every unit regular ring R is dependent. In [I0, Corollary 10|, Hen-

riksen shows that not all dependent regular rings are unit regular. The following
observation gives one more such condition for dependent rings.

Theorem 2. If Lk (T) is locally unit regular, then it is dependent.
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Proof. Let Lk (T) be locally unit regular and let some elements provide locally unit
regular condition in the definition. Take a,b € Lk (I"). If both a and b have local
inverses in Ly (I"), then there exist u; and ug in Lk (') such that uia = v and
ugb = v for local unit v in Li(T"). So, we get sa + tb = 0, where s = u; and
t = —us. If one of the elements, say a, has no local inverse in Lk (T'), by definition
of locally unit regularity, then we can write aua = a = aua = va = (au —v)a = 0.
Now we get au —v # 0. Assume au—v = 0. So au = v, it is a contradiction. Then,
for s = (au — v) # 0 and t = 0, which implies sa + tb = 0. O

Definition 4. Let R be a ring with local units. We call R left (right) locally unit
regqular ring if for each a € R there exist an idempotent v € R and left (right) local
inverses u,u’ such that v'u = v (uu’ =v), va =a (av = a) and aua = a.

Definition 5. ([12]) Let M be a right R-module, and let S = Endg(M). Then M
is called is a d-Rickart (or dual Rickart) module if the image in M of any single
element of S is a direct summand of M. Clearly, Rr a d-Rickart module iff R is a
regular ring.

Definition 6. Given paths p,q € T', we say that q is an initial segment of p if
p = gm for some path m € I'. It is well known that, given non-zero paths pq* and
mn* in Li(T'), q is an initial segment of m if and only if (pg*)(mn*) # 0.

Theorem 3. Let I" be a graph, K be any field and S be the endomorphism ring of
L := Lk (T) considered as a right L-module. The following conditions are equiva-
lent.

(1) S is left locally unit regular.

(2) S is regular and, for all paths x,y € L, Sz = Sy implies x is an initial
segment of y.

(3) L is dual-Rickart and, for all paths x,y € L, Sz = Sy implies x is an initial
segment of y.

Proof. (1) = (2) Assume that S is left locally unit regular. Hence S is regular

and L is left locally unit regular by Theorem |1} Let z,y € L be two paths. Then

there exist an idempotent v € L and left local inverses vy, vs € L such that vy =y,

vov1 = v and y = yvyy. If Sz = Sy, then x = f(y) for some f € S. Now y = yv1y

implies f(y) = f(yv1y), and so x = f(yv1)y. Hence x is an initial segment of y.
——

€L
(2) = (3) This follows from [I7, Corollary 3.2].
(3) = (1) Assume that L is dual-Rickart. Then f(L) is a direct summand of L,
where f € S. Let e be an idempotent in S with f(L) = eL. Let z € L. Then there
exists y € L such that f(z) = e(y). Now

(ef)(@) = e(f(z)) = ele(y)) = e(y) = f(2),
which implies ef = f. Let h be the left inverse of f and ¢ = fe. Then gh = e and
fhf=1Ff. O
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Definition 7. ([13]) An endomorphism o« of a module M is called morphic if
M/Ma = Ker(a), equivalently there exists f € End(M) such that M = Ker(a)
and Ker(8) = M« by [13, Lemma 1]. The module M is called a morphic module
if every endomorphism is morphic. If R is a ring, an element a in R is called left
morphic if right multiplication -a :g R —gr R is a morphic endomorphism, that is
if R/Ra = 1(a). The ring itself is called a left morphic ring if every element is left
morphic, that is if RR is a morphic module.

Note that if S is dependent then Lg (I') is morphic by [14, Corollary 3.5].

Theorem 4. Let T be any graph and let K be any field. If Lk (T) is left morphic
and regular ring then Ly (T') is left locally unit regular ring.

Proof. Let Ly (I") = L be left morphic and regular ring. Then each a € L is both
regular and morphic. So, there exist an x € L such that a = axa and for some
be L, La = ann(b) and Lb = ann(a). Let w = xzax +b. Then a = aua. To see that
u is left local inverse, since L has local units, choose an idempotent v € L such that
va = a. Then we get, 0 = va — a = va — aza = (v — ax)a, so v — ax € ann(a) = Lb
and there exists an element y € L such that v—ax = yb. We take v’ = a+y(v—ax).
We show that vw'u = v:

vu = (a+y(v—ax))(zax +b)
= azazx+ ab+ y(v — ax)zax + y(v — ax)b
= ax + ab+ yvrar — yraraxr + yvb — yrab
= ar+yb=v

Hence L = L (T) is left locally regular ring. O

Theorem 5. Let I' be a graph, K be any field and S be the endomorphism ring
of L := Lk (') considered as a right L-module. If Lk (T') is morphic and image
projective then S is left morphic.

Proof. Let L := Lk(T) be morphic and image projective. Given any « € S, since
L is morphic, we may choose an 8 € S such that, La = ker(8) and LB = ker(«).
Since af = 0, Sa C ann®(B). Conversely, if v € ann®(B) then v8 = 0 so Ly C
ker(B) = La and hence v € Sa because L is image projective. Thus Sa = ann” ().
We may see S = ann”(a) in the same way. Hence S is left morphic. O

Definition 8. ([I6, Definition 4.1]) If R is a ring with local units then R is called
directly finite if for each x,y € R there is an idempotent u such that xu = x = ux
and yu = y = uy, we have that xy = u implies yr = u.

Theorem 6. Let I be a graph, K be any field and S be the endomorphism ring
of L := Lg(T') considered as a right L-module. If S is a directly finite ring then
Lk (T) is directly finite.
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Proof. Take any x,y in Lk (T). Since S is a direct finite ring, there is an idempotent
€ in S such that A\;e = Ay = €)Xy and A\ye = Ay = €Ay, we have that A\, A\, = ¢
implies AyA; = ¢. For an idempotent v with zu = x = ux and yu = y = uy,

Azdy =€ = XAy =ede = Ap =y = Ap = /\E(U))‘x

Az = EAx = Ac(z) = Ac(zu) = Ac(a) Ae(u) = EAzAc(u)
S0, Aedc(u) = Az = Acu)Ae- Similarly AyAc) = Ay = ANy Assume that,
AzAy = Ag(u)- We then see that AyAy = Ao(y)-

AyAz = AyAc(u) Az = AyAzAc(u) = EAc(u) = Ac2(w) = Ae(u)>
as desired. (]

Ones hopes that if Lg(I") is directly finite then Lg(I") is locally unit regular
but this is not true. Because K|[x,z!] is a commutative Leavitt path algebra (of
the graph with one vertex and one loop) clearly directly finite. But it is not von
Neumann regular ring.

Corollary 1. Let T' be a graph, K be any field and S be the endomorphism ring of
L := Lk () considered as a right L-module. If S is a directly finite ring, then I is
no exit.

Proof. Let S be a directly finite ring. Then Lg (T") is a directly finite ring. So, by
[16, Proposition 4.3], I' is no exit. O

Definition 9. R is said to be a (left) exchange ring if for any direct decomposition
A=M@®N = Bic1A; of any left R-module A, where R = M as left R-modules and
1 is a finite set, there always exist submodules B; of A; such that A = M ®(®;e1B;).

Theorem 7. Let ' be an infinite graph, K be any field and S be the endomorphism
ring of L := L (') considered as a right L-module. Then

(1) If S is an exchange ring then L is directly finite.
(2) If L is a directly finite ring then L is an exchange ring.

Proof. (1) Let S be an exchange ring. Then, by [, Proposition 2.10], Lg(T)
is an exchange ring. For every z,y € L and an idempotent v € L such that
zu =z = ux and yu = y = uy we have that zy = u. We show that yx = u. Since
L is an exchange ring, there exist r,s € L such that v = rz = s +x — sx. So,
U=Tr=uy =rry =y =ru=yr =rur =rx = u, as desired.

(2) Let L be a directly finite ring. For any z,y € L and an idempotent v € L
such that zu = z = uz and yu = y = uy we have that xy = u implies yx = u. We
show that L is an exchange ring. For any z € L taking r = y and s = u, we get
u=rr=s+x— sr. So, L is an exchange ring. O

Corollary 2. Let I' be infinite graph, K be any field and S be the endomorphism
ring of L :== Lk (I") considered as a right L-module. Then the following conditions
are equivalent.
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(1) S is an exchange ring.
(2) Li(T) is an exchange ring.
(3) Lx(T) is a directly finite ring.
(4) T is no exit

1

Proof. (1) < (2) This is [5, Proposition 2.10].
(2) < (3) This follows from Theorem [7| (1) and Theorem (7] (2).
(3) < (4) This is [16, Teorem 4.12]. O
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