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FIRST AND SECOND ACCELERATION POLES IN
LORENTZIAN HOMOTHETIC MOTIONS

HASAN ES

Abstract. In this paper, using matrix methods, we obtained rotation pole
in one-parameter motion on the Lorentzian plane homothetic motions and
pole orbits, accelerations and combinations of accelerations, first and second
in acceleration poles. Moreover, some new theorems are given.

1. Introduction

In Lorentzian plane, a general planar motion as given by

y1 = x coshϕ+ y sinhϕ+ a (1.1)

y2 = x sinhϕ+ y coshϕ+ b

If θ, a and b are given by the functions of time parameter t, then this motions is
called as one parameter motion [2] . One parameter planar motion given by (1.1)
can be written in the form(

Y
1

)
=

(
A C
0 1

)(
X
1

)
or

Y = AX + C, Y = [y1 y2]T , X = [x y]T , C = [a b]T (1.2)

where A ∈ SO(2), and Y and X are the position vectors of the same point B,
respectively, for the fixed and moving systems, and C is the translation vector [2].
By taking the derivatives with respect to t in (1.2), we get

Ẏ = ȦX +AẊ + Ċ (1.3)

Va = Vf + Vr (1.4)

where the velocities Va = Ẏ , Vf = ȦX + Ċ, Vr = AẊ are called absolute, sliding,
and relative velocities of the points B, respectively [1]. the solution of the equation
Vf = 0 gives us the pole points on the moving plane. The locus of these points is
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called the moving pole curve, and correspondingly the locus of pole points on the
fixed plane is called the fixed pole curve [1]. by taking the derivatives with respect
to t in (1.3),we get

Ÿ = ÄX + 2ȦẊ +AẌ + C̈ (1.5)

ba = br + bc + bf , (1.6)

where the velocities
ba = Ÿ , (1.7)

bf = ÄX + C̈, (1.8)

br = AẌ, (1.9)

bc = 2ȦẊ, (1.10)

are called absolute acceleration, sliding acceleration, relative acceleration and Cori-
olis accelerations, respectively [1]. The solution of the equation

ÄX + C̈ = 0 (1.11)

gives the acceleration pole of the motion [1]

2. HOMOTHETIC MOTION IN LORENTZIAN PLANE

Definition 2.1. The transformation given by the matrix

F =

(
hA C
0 1

)
is called Homothetic motion in L2 here h = hI2 is a scalar matrix, A ∈ SO(2) and
C ∈ R2

1 [1].

Definition 2.2. Let J ⊂ R be an open interval let O ∈ J . The transformation
F (t) : L2 −→ L2 given by

F (t) =

(
h(t)A C(t)

0 1

)
is called one-parameter homothetic motion in L2,where the function h : J −→
R,the matrix A ∈ SO(2) and the 2 × 1 type matrix C are differentiable with
respect to [1].Since h is scalar we have B−1 = h−1A−1 = 1

hA
T for X ∈ L2, the

geometric plane of the points is a curve in L2. We will denote this curve by

Y (t) = B(t)X(t) + C(t) (2.1)

differentiating with respect to t we obtain

dY

dt
=
dB

dt
X +B

dX

dt
+
dC

dt
. (2.2)
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Definition 2.3. Equation of the general motion in L2

Y (t) = B(t)X(t) + C(t) (2.3)

where A = A(t) ∈ SO(2) and C = C(t) ∈ R2
1 [1].Differentiating this equation with

respect to t we have
dY

dt
=
dB

dt
X +B

dX

dt
+
dC

dt
. (2.4)

Here Va = dY
dt , Vr = B dX

dt and Vf = dB
dt X+ dC

dt are called absolute velocity, relative
velocity and sliding velocity of the motion, respectively[3]. We denote motions in
L2 by L

Ĺ
where Ĺ is fixed plane and L is the moving plane with respect to Ĺ. If the

matrix A and C are the functions of the parameter t ∈ R this motion is called a
one parameter motion and denoted by B1 = L

Ĺ
[1].

Definition 2.4. The velocity vector of the point X with respect to the Lorentzian
plane L (moving space) i.e. the vectorial velocity of X while it is drawing its orbit
in L is called relative velocity of the point X and denoted by Vr [1].

Definition 2.5. The velocity vector of the point X with respect to the fixed plane
Ĺ is called the absolute velocity of X and denoted by Va. Thus we obtain the
relation

Va = Vf + Vr

If X is a fixed point in the moving plane L , since Vr = 0, then we have Va = Vf .
The quality (??) is said to be the velocity law the motion B1 = L

Ĺ
[1].

3. POLES OF ROTATING AND ORBIT

The point in which the sliding velocity Vf at each moment t of a fixed point X
in L in the one-parameter homothetic motion B1 = L

Ĺ
are fixed points in moving

and fixed plane. These points are called the pole points of the motion.

Theorem 3.1. In a motion B1 = L
Ĺ
whose angular velocity is non zero, there exists

a unique point which is fixed in both planes at every moment t.

Proof. Since the point X ∈ L is fixed in L then Vr = 0 and since X is also fixed
in Ĺ then Vf = 0. Hence for this type of points if Vf = 0 then

ḂX + Ċ = 0 (3.1)

and
X = −Ḃ−1Ċ (3.2)

Indeed,since

B =

(
h coshϕ h sinhϕ
h sinhϕ h coshϕ

)



22 HASAN ES

and

Ḃ =

(
ḣ coshϕ+ hϕ̇ sinhϕ ḣ sinhϕ+ hϕ̇ coshϕ

ḣ sinhϕ+ hϕ̇ coshϕ ḣ coshϕ+ hϕ̇ sinhϕ

)
then

C = [a b]T , (3.3)

implies that
Ċ = [ȧ ḃ]T (3.4)

and
detḂ = ḣ2 − h2ϕ̇2 6= 0. (3.5)

Thus Ḃ is regular and

Ḃ−1 =
1

ḣ2 − h2ϕ̇2

(
ḣ coshϕ+ hϕ̇ sinhϕ −(ḣ sinhϕ+ hϕ̇ coshϕ)

−(ḣ sinhϕ+ hϕ̇ coshϕ) ḣ coshϕ+ hϕ̇ sinhϕ

)
Hence there exists a unique solution X of the equation Vf = 0. This point X is
called pole point in moving plane. For this reason (3.2) leads to

X = −Ḃ−1Ċ (3.6)

P = X =
1

h2ϕ̇2 − ḣ2

(
ȧ(ḣ coshϕ+ hϕ̇ sinhϕ)− ḃ(ḣ sinhϕ+ hϕ̇ coshϕ)

−ȧ(ḣ sinhϕ+ hϕ̇ coshϕ) + ḃ(ḣ coshϕ+ hϕ̇ sinhϕ)

)
P =

1

M

(
(ȧḣ− ḃhϕ̇) coshϕ+ (ȧhϕ̇− ḃḣ) sinhϕ

(−ȧhϕ̇+ ḃḣ) coshϕ) + (−ȧḣ+ ḃhϕ̇) sinhϕ

)
where h2ϕ̇2 − ḣ2 = M and the pole point in the fixed plane is

Ṕ = BP + C

setting these values in their planes and calculating we have

Y = Ṕ =
1

M

(
hḣȧ− h2ḃϕ̇

hḣḃ− h2ȧϕ̇

)
+

(
a
b

)
or as a vector

Y = Ṕ = (
1

M
(hḣȧ− h2ḃϕ̇) + a,

1

M
(hḣḃ− h2ȧϕ̇) + b) (3.7)

Here we assume that ˙ϕ(t) 6= 0 for all t. That is, angular velocity is not zero. In
this case there exists a unique pole points in each of the moving and fixed planes
of each moment t.

Corollary 1. If ϕ(t) = t,then we obtain

X = P =
1

h2 − ḣ2

(
(ȧḣ− ḃḣ) coshϕ+ (ȧh− ḃḣ) sinhϕ)

(−ȧh+ ḃḣ) coshϕ) + (−ȧḣ+ ḃh)sinhϕ)

)
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Corollary 2. If ϕ(t) = t and h(t) = 1 ,then we obtain

X = P =

(
ȧ sinhϕ− ḃ coshϕ)

−ȧ coshϕ+ ḃ sinhϕ)

)
Corollary 3. If ϕ(t) = t,then we obtain

Ṕ = (
1

h2 − ḣ2
(hḣȧ− h2ḃϕ̇) + a,

1

h2 − ḣ2
(hḣḃ− h2ȧϕ̇) + b) (3.8)

Corollary 4. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ = (−ḃ+ a,−ȧ+ b) (3.9)

Definition 3.2. The point P = (p1, p2) is called the instantaneous rotation center
or the pole at moment t of the one parameter Euclidean motion B1 = L

Ĺ
[2]

Theorem 3.3. The following relation exists between the pole ray from the pole P
to the point X, and the sliding velocity vector Vf at each moment t.

h < Vf , Ṕ Y >= ḣ‖Ṕ Y ‖ (3.10)

Proof. The pole point in the moving plane

Y = BX + C. (3.11)

implies that
X = B−1(Y − C) (3.12)

Vf = ḂX + Ċ (3.13)

and
ḂX + Ċ = 0, (3.14)

Leads to
X = P = −Ḃ−1Ċ, (3.15)

Now Let’s find pole points in the fixed plane. Then we have from equation Y =
BX + C

Y = BX + C, (3.16)

Y = Ṕ = B(−Ḃ−1Ċ) + C, (3.17)

Hence, we get
Ṕ − C = −BḂ−1Ċ, (3.18)

Ċ = −ḂB−1(Ṕ − C). (3.19)

If we substitute this values in the equation Vf = ḂX+ Ċ, we have Vf = ḂB−1Ṕ Y .
Now let us calculate the value of ḂB−1Ṕ Y here since Ṕ Y = (y1− p1, y2− p2) then

Vf = (
ḣ

h
(y1 − p1)− ϕ̇(y2 − p2), ϕ̇(y1 − p1) +

ḣ

h
(y2 − p2)), (3.20)
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hence we obtain

< Vf , Ṕ Y >=
ḣ

h
[(y1 − p1)2 − (y2 − p2)2], (3.21)

< Vf , Ṕ Y >=
ḣ

h
‖Ṕ Y ‖2, (3.22)

on the other hand we know that

h < Vf , Ṕ Y >= ḣ‖Ṕ Y ‖2 (3.23)

Corollary 5. The pole ray from the pole P to the point X, when the scalar matrix h
is constant, is perpendicular to the sliding velocity vector Vf at each instant moment
t.

Corollary 6. There is a relation among the pole ray from the pole P to the point
X, the sliding velocity vector Vf , and angular velocity ˙ϕ(t) 6= 0 at each moment t.

h(t) = exp

(∫
< Vf , Ṕ Y >

‖Ṕ Y ‖
dt

)
. (3.24)

Theorem 3.4. The length of the sliding velocity vector Vf is

‖Vf‖ =

√
|(
( ḣ
h

)2

− ϕ̇2)|‖P ′Y ‖ (3.25)

Proof.

Vf = (
ḣ

h
(y1 − p1) + ϕ̇(y2 − p2), ϕ̇(y1 − p1) +

ḣ

h
(y2 − p2)), (3.26)

hence

‖Vf‖ =

√
|(
( ḣ
h

)2

− ϕ̇2)|‖P ′Y ‖. (3.27)

Corollary 7. If the scalar matrix is h is constant, then the length of the sliding
velocity vector is

‖Vf‖ = |ϕ̇|‖P ′Y ‖ (3.28)

Corollary 8. There is a relation among the pole ray from the pole P to the point
X, the sliding velocity vector Vf , and angular velocity ˙ϕ(t) 6= 0 at each moment t.

h(t) = exp

(∫ √
|(
( ‖Vf‖
|‖P ′Y ‖

)2

+ ϕ̇2)|dt
)
. (3.29)

Definition 3.5. In Lorentzian motion B1 = L
Ĺ
, the geometric place of the pole

points P in the moving plane L is called the moving pole curve of the motion
B1 = L

Ĺ
and is denoted by (P ). the geometric place of the pole points P in the

fixed plane Ĺ is called fixed and is denoted by Ṕ [2] .
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Theorem 3.6. The velocity on the curve (P ) and ´(P ) of every moment t of the
rotating pol P which draws the pole curves in the fixed and moving planes are equal
to each other. In other words, two curves are always tangent to each other [2] .

Proof. The velocity of the point X ∈ L while drawing the curve (P ) is Vr and
the velocity of this point while drawing the curve ´(P ) is Va. Since Vf = 0 then
Va = Vr.

Theorem 3.7. If two curves α and ά are tangent to each other of each moment
t and if length of the ways ds and ds′ of the point drawing these two curves at
moment dt on these curves are the same then α and ά are said to be revolving by
sliding on each other. Herehis the coeffi cient of rolling [2].

Theorem 3.8. In the one parameter planer Lorentzian motion B1 = L
Ĺ
the moving

pole curve (P ) of the plane L revolves by sliding on the fixed pole curve ´(P ) of the
plane Ĺ [1] .

Proof. Acording to the definition of ray element of a curve ray of (P ) is ds = ‖Vr‖
and those of (P ) is ds′ = ‖Va‖ .Since for (P ) and ´(P ) , Va = Vr then ds = hds′.
According to this theorem we way define a Lorentzian motion without mentioning
the time. A Lorentzian motion B1 = L

Ĺ
is obtained by a moving pol curve (P ) of

L revolving without sliding on a fixed pol curve ´(P ).

Definition 3.9. Absolute acceleration vector of the point X with respect to the
fixed Lorentzian plane Ĺ is Va. This vector is denoted by ba. Since Va = Ẏ then
ba = V̇ = Ÿ [2].

Definition 3.10. Let X be a fixed point the moving Lorentzian plane L. The
acceleration vector of the point X with respect to the fixed Lorentzian plane Ĺ is
called as sliding acceleration vector and denoted by bf . Since in the acceleration of
the sliding acceleration X is a fixed point of E,then bf = V̇f = B̈X + C̈ [2].

4. ACCELERATIONS AND UNION OF ACCELERATIONS

Assume that the Minkowski motion B1 = L
Ĺ
of the moving Lorentzian plane L

with respect to the fixed Lorentzian plane Ĺ exists. In this motion, let us consider
a point X moving with respect to the plane L,and thus moving respect to the plane
Ĺ . We had obtained the velocity formulas concerning the motion of X, now we
will obtain the acceleration formulas the acceleration of the point X.

Definition 4.1. The vector br = V̇r = B̈X which is obtained by differentiating the
relative velocity vector Vr = BẊ of the point X with respect to the moving plane
L is called the relative acceleration vector of X in L and denote by br.Since when
taking the derivative X is considered as a moving point in L,the matrix A is taken
as constant [2].
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Theorem 4.2. Let X be a point in the moving Lorentzian plane which moves with
respect to a parameter t. Hence we have that

Theorem 4.3.
ba = bf + bc + br (4.1)

Here bc = 2ḂẊ is called Corilois acceleration [1].

Corollary 9. If a point X ∈ L is constant,then the sliding acceleration of the point
X is equal to the absolute acceleration of X.

Proof. Note that
Va = ḂX +BẊ + Ċ (4.2)

differentiating the both sides we have

V̇a = B̈X + 2ḂẊ +BẌ + Ċ (4.3)

since the point X is constant its derivatives zero. Hence

V̇a = B̈X + C̈ = bf . (4.4)

Theorem 4.4. We have the following relation between the Coriolis acceleration
vector bc and relative velocity vector Vr.

< bc, Vr >= 2hḣ(ẋ1
2 − ẋ2

2) (4.5)

Proof. Since bc = 2ḂẊ =, Vr = BẊ. Then

< bc, Vr >= 2hḣ(ẋ1
2 − ẋ2

2) (4.6)

Corollary 10. If h is a constant,then Coriolis acceleration bc is perpendicular to
the relative velocity vector Vr at each instant moment t.

5. FIRST AND SECOND ACCELERATION POLES

The solution of the equation V̇f = 0 gives the first order acceleration pole.
Vf = B̈X + C̈ = 0 implies X = −B̈−1C̈. Now calculating the matrices −B̈−1 and
C̈ and setting these in X = P1 = −B̈−1C̈ we obtain

X = P1 =
−1

k

(
ä(m coshϕ+ n sinhϕ)− b̈(m sinhϕ+ n coshϕ)

−ä(m sinhϕ+ n coshϕ) + b̈(m coshϕ+ n sinhϕ)

)
Let k = (ḧ+ hϕ̇2)2 − (2ḣϕ̇+ hϕ̈)2, k 6= 0, m = ḧ+ hϕ̇2, n = 2ḣϕ̇+ hϕ̈. Here P1

is called first order pole curve in the moving plane. Denoting the pole curve in the
fixed plane by Ṕ1 we get

Ṕ1 = BP1 + C (5.1)

Hence

Ṕ1 = (
1

k
(−ähm+ b̈hn) + a,

1

k
(ähn− b̈hm) + b) (5.2)
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Corollary 11. If ϕ(t) = t,then we obtain

X = P1 =
−1

(ḧ+ h)2 − 4(ḣ)2

(
(äḧ− 2b̈ḣ+ äh) coshϕ− (b̈ḧ− 2äḣ+ b̈h) sinhϕ)

(b̈ḧ− 2äḣ+ b̈h) coshϕ)− (äḧ− 2b̈ḣ+ äh)sinhϕ)

)
Corollary 12. If ϕ(t) = t and h(t) = 1, then we obtain

P1 = (−ä coshϕ+ b̈ sinhϕ,−b̈ coshϕ+ ä sinhϕ) (5.3)

Corollary 13. If ϕ(t) = t, then we obtain

Ṕ1 =
−1

(ḧ+ h)2 − 4(ḣ)2
(−äh(ḧ+ h) + b̈h(2ḣ), äh(2ḧ)− b̈h(ḧ+ h)) + (a, b) (5.4)

Corollary 14. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ1 = (−ä+ a,−b̈+ b) (5.5)

The solution of the equation V̈f = 0 gives the second order acceleration pole.
V̈f =

...
BX +

...
C = 0 implies X = −

...
B
−1 ...
C . Now calculating the matrices

...
B
−1 and

...
C and setting these in X = −

...
B
−1 ...
C we get

X = P2 =
−1

A2 −B2

( ...
a (A coshϕ+B sinhϕ)−

...
b (A sinhϕ+B coshϕ)...

−a(A sinhϕ+B coshϕ) +
...
b (A coshϕ+B sinhϕ)

)
The pole curve in the fixed plane is obtained as

Ṕ2 = (
−1

A2 −B2
(
...
ahA−

...
b hB) + a,

−1

A2 −B2
(−...ahB +

...
b hA) + b) (5.6)

Let us
A = (3hϕ̇ϕ̈+ 3ḣϕ̇2 +

...
h ), B = (hϕ̇3 + 3ḣϕ̈+ h

...
ϕ + 3ḧϕ̇) (5.7)

Corollary 15. If ϕ(t) = t, then we obtain

X = P2 =
−1

T

(
(
...
a
...
h − 3

...
b ḧ+ 3

...
a ḣ−

...
b h) coshϕ+ (−

...
b
...
h + 3

...
a ḧ− 3

...
b ḣ+

...
ah) sinhϕ

(−...a
...
h + 3

...
b ḧ− 3

...
a ḣ+

...
b h) sinhϕ+ (

...
b
...
h − 3

...
a ḧ+ 3

...
b ḣ−

...
ah) coshϕ)

)
where T = (3ḣ+

...
h )2 − (h+ 3ḧ)2.

Corollary 16. If ϕ(t) = t and h(t) = 1, then we obtain

P2 = (−
...
b coshϕ+

...
a sinhϕ,

...
b sinhϕ− ...a coshϕ) (5.8)

Corollary 17. If ϕ(t) = t, then we obtain

Ṕ2 = (
−1

T
(
...
ah(3ḣ+

...
h )−

...
b h(h+ 3ḧ),−...ah(h+ 3ḧ) +

...
b h(3ḣ+

...
h )) + (a, b) (5.9)

where T = (3ḣ+
...
h )2 − (h+ 3ḧ)2.

Corollary 18. If ϕ(t) = t and h(t) = 1, then we obtain

Ṕ2 = (−
...
b + a,−...a + b) (5.10)
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