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(WEAKLY) n−NIL CLEANNESS OF THE RING Zm

HANI A. KHASHAN AND ALI H. HANDAM

Abstract. Let R be an associative ring with identity. For a positive integer
n > 2, an element a ∈ R is called n−potent if an = a . We define R to be
(weakly) n−nil clean if every element in R can be written as a sum (a sum
or a difference) of a nilpotent and an n−potent element in R. This concept is
actually a generalization of weakly nil clean rings introduced by Danchev and
McGovern, [6]. In this paper, we completely determine all n,m ∈ N such that
the ring of integers modulo m, Zm is (weakly) n−nil clean.

1. Introduction

Let R be an associative ring with identity. Throughout this text, the notations
U(R), J(R), Id(R) and N(R) will stand for the set of units, the Jacobson radical,
the set of idempotents and the set of nilpotents of R, respectively. Following [14],
we define an element r of a ring R to be clean if there is an idempotent e ∈ R
and a unit u ∈ R such that r = u + e. A clean ring is defined to be one in which
every element is clean. Similarly, an element r in a ring R is said to be nil clean if
r = e + b for some idempotent e ∈ R and a nilpotent element b ∈ R . A ring R is
nil clean if each element of R is nil clean. In [2], Breaz, Danchev and Zhou defined
a ring R to be weakly nil clean if each element r ∈ R can be written as r = b + e
or r = b− e for b ∈ N(R) and e ∈ Id(R). We refer the reader to [8, 1, 3, 5, 7, 4, 2]
for a survey on nil clean and weakly nil clean rings.
For a ∈ R and a positive integer n > 2, we say that a is n−potent if an = a.

Moreover, a is called (weakly) n−nil clean if it is a sum (a sum or a difference)
of n−potent element and a nilpotent element in R. We define R to be (weakly)
n−nil clean if every element in R is (weakly) n−nil clean. Weakly n−clean rings
are defined in a similar way. Obviously, the (weakly) 2−nil clean rings are the same
as the (weakly) nil clean rings. R is called a generalized nil clean if every element
in R is n−nil clean for some n ∈ N. The class of n−nil clean and generalized nil
clean rings were firstly defined and studied in [9] by Hirano, Tominaga and Yaqub
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in 1988. Some Other authors called generalized nil clean rings as weak periodic
rings. A ring R is called periodic if for every x ∈ R, there are distinct integers m
and k such that xm = xk. It is proved that a periodic ring is weak periodic and
that the converse is true if in any expansion r = b+ s for potent s and b ∈ N(R),
we have bs = sb.
In this paper, we focus our attention on the ring Zm of integers modulo a positive

integer m. We use the well Known Hensel’s Lemma to completely determine when
the ring Zm is (weakly) n−nil clean ring for any m,n ∈ N. Moreover, we determine
allm,n ∈ N such that every element r ∈ Zm is of the form r = b±s where b ∈ N(R)
and sn = −s. Next, we apply our results for some special values of m and n.
In the next section, we study weakly n−nil clean rings and introduce some

fundamental facts and examples concerning this class of rings. Among many other
properties, we determine some conditions on n, R and G under which the group
ring RG is (weakly) n−nil clean.

2. Weakly n−Nil Clean Rings

In this section, we study some of the basic properties of weakly n−nil clean rings.
Moreover, we give some necessarily examples.

Definition 1. Let R be a ring and n ∈ N where n > 2. An element r ∈ R is called
weakly n−nil clean if there exist b ∈ N(R) and an n−potent element s of R such
that r = b + s or r = b − s. A ring R is called weakly n−nil clean if all of its
elements are weakly n−nil clean.

For n > 2, let s be an n−potent and b be a nilpotent. For r ∈ R, we write
r = b ± s if r is either a sum b + s or a difference b − s. Obviously, every n−nil
clean ring is weakly n−nil clean. Since the ring Z6 is a weakly nil clean ring that
is not nil clean, then trivially Z6 is a weakly 2−nil clean ring which is not 2−nil
clean. For a non trivial example, one can easily verify that the ring Z3 is weakly
4−nil clean but not 4−nil clean. Moreover, if a ring R is a weakly n-nil clean, then
it is weakly n-clean. Indeed, if we let x ∈ R, then x − 1 = b ± s where b ∈ N(R)
and sn = s. So, x = (b + 1) ± s where b + 1 ∈ U(R). The converse is not true
in general. For example, simple computations show that the ring R = T2(Z3) is
weakly 5-clean which is not weakly 5-nil clean.
Next, we give some properties of the class of weakly n−nil clean rings. The proof

of the following proposition is straightforward.

Proposition 1. Let R and S be two rings, µ : R→ S be a ring epimorphism and
n > 2. If R is weakly n−nil clean, then S is weakly n−nil clean.

The following Properties (2), (3) and (4) in Corollary 1 are direct consequences
of Proposition 1. The proofs of Properties (1) and (5) are similar to that of (weakly)
g(x)-nil clean appeared in [10, 11, 12].

Corollary 1. Let R and S be ring and let n > 2. The following hold:
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(1) If I is an ideal in R and R is weakly n−nil clean, then R/I is weakly n−nil
clean. Moreover, the converse holds if I is nil and potent elements lift modulo I.
(2) If the upper triangular matrix ring Tn(R) is weakly n−nil clean, then R is

weakly n−nil clean.
(3) If the skew formal power series R[[x, α]] (or in particular R[[x]]) over R is

weakly n−nil clean, then R is weakly n−nil clean.
(4) Let M be an (R,S)-bimodule and T =

[
A M
0 B

]
be the formal triangular

matrix ring. If T is weakly n−nil clean, then R and S are weakly n−nil clean.
(5) If R is commutative and M an R-module. Then the idealization R(M) of R

and M is weakly n−nil clean if and only if R is weakly n−nil clean.

Proposition 2. Let R =
∏
i∈I Ri be a direct product of rings with I is finite and

|I| ≥ 2 and let n > 2. R is weakly n−nil clean if and only if there exist k ∈ I such
that Rk is weakly n−nil clean and Rj is n−nil clean for j 6= k.

Proof. ⇒) : For each i ∈ I, Ri is a homomorphic image of
∏
i∈I Ri under the

projection homomorphism. Hence, Ri is weakly n−nil clean by Proposition 1.
Without loss of generality, assume that neither R1 nor R2 are n−nil clean. Then
there exist r1 ∈ R1 and r2 ∈ R2 such that r1 is not a sum of a nilpotent and an
n−potent and r2 is not a difference of a nilpotent and an n−potent. Thus (r1, r2)
is not weakly n−nil clean in R1 ×R2, a contradiction.
⇐) : Assume that Rk is weakly n−nil clean for a fixed index k ∈ I. Thus Rj

is n−nil clean for all j 6= k. Let r = (ri) ∈ R. Then there exist bk ∈ N(Rk) and
an n−potent sk such that rk = bk + sk or rk = bk − sk. If rk = bk + sk, then for
each i ∈ I − {k}, write ri = bi + si where bi ∈ N(Ri) and sni = si. Therefore,
r = (bi) + (si) is a sum of a nilpotent and an n−potent. If rk = bk − sk, then for
each i ∈ I − {k}, write ri = bi − si where bi ∈ N(Ri) and sni = si. Consequently,
r = (bi)−(si) is a difference of a nilpotent and an n−potent. Therefore, R is weakly
n−nil clean. �
Definition 2. Let R be a ring and let m ∈ N. Then R is said to have the nil
m-involution property if for every r ∈ R, we have r = u + v where u ∈ 1 ± N(R)
and vm = 1.

We now justify the relation between weakly n−nil clean rings and rings with nil
(n− 1)-involution property for an odd n ∈ N.

Proposition 3. Let R be a ring and let n be an odd integer with n ≥ 2. If R has
the nil (n − 1)-involution property, then R is (weakly) n−nil clean. If moreover,
aR (or Ra) contains no non trivial idempotent for every non unit a ∈ R, then the
two statements are equivalent.

Proof. Suppose R has the nil (n − 1)-involution property and let r ∈ R. Write
r + 1 = u + v where u ∈ 1 ± N(R) and vn−1 = 1. Then r = (u − 1) + v where
u− 1 ∈ N(R) and v is clearly an n−potent element in R.



32 HANI A. KHASHAN AND ALI H. HANDAM

Now, we assume that for every non unit a ∈ R, aR (or Ra) contains no non
trivial idempotents and suppose R is weakly n−nil clean. Let a ∈ R and write
a − 1 = b ± s where b ∈ N(R) and sn = s. Then asn−1 = (b + 1)sn−1 ± s and
so a(1 − sn−1) = (b + 1)(1 − sn−1) = u(1 − sn−1) where u ∈ U(R). Since clearly
u(1 − sn−1)u−1 = a(1 − sn−1)u−1 ∈ aR is an idempotent, then by assumption
u(1 − sn−1)u−1 = 0 or u(1 − sn−1)u−1 = 1. Therefore sn−1 = 1 or sn−1 = 0. In
the last case, we get s = sn = 0 and so a = b+ 1 is a unit, a contradiction. Thus,
a = (b + 1) + (±s) where (±s)n−1 = 1 since n − 1 is even. The case when Ra
contains no non trivial idempotent for every non unit a ∈ R is similar. Therefore,
R has the nil (n− 1)-involution property. �

It is easy to see that the ring Z4 is a (weakly) 4−nil clean ring with aZ4 contains
no non trivial idempotent for every a ∈ Z4. But, Z4 does not have the nil 3-
involution property. Therefore, the equivalence in Proposition 3 need not be hold
for an even integer n.
Let R be a ring and G be a finite cyclic group. In the following Proposition, we

determine conditions under which the group ring RG is (weakly) n−nil clean. We
recall that R is called an n−potent ring if an = a for every a ∈ R.

Proposition 4. Let G any cyclic group of order p (prime).
(1) If R is a Boolean ring, then RG is a 2p−1−potent ring (and so is (weakly)

2p−1−nil clean).
(2) If R is a commutative 3−potent ring of characteristic 3, and p 6= 3, then RG

is a 3p−1−potent ring (and so is (weakly) 3p−1−nil clean).

Proof. (1) See Proposition 3.17 in [10].
(2) Let G =

{
1, g, g2, ..., gp−1

}
where gp = 1 and let x = a0 + a1g + a2g

2 +

... + ap−1g
p−1 ∈ RG. First, we prove by induction that x3k =

p−1∑
i=0

aig
i∗(3k) for all

k ∈ N. Let k = 1. Since R is 3−potent ring of characteristic 3, one can see that

x3 = a0+ a1g
3+ a2g

6+ ...+ ap−1g
3(p−1) =

p−1∑
i=0

aig
3i. Suppose the result is true for

k. Then x3
k+1

= (x3)3
k

=
p−1∑
i=0

ai(g
3)i∗(3

k) =
p−1∑
i=0

aig
i∗(3k+1). By Fermat Theorem,

3p−1 = 1+np for some integer n. Thus, x3
p−1

=
p−1∑
i=0

aig
i∗(3p−1) =

p−1∑
i=0

aig
i∗(1+np) =

p−1∑
i=0

aig
i = x. Therefore, RG is a 3p−1−potent ring. �

By Proposition 4, we conclude that the ring Z2(C3) is (weakly) 4−nil clean and
Z3(C2) is (weakly) 3−nil clean.

Proposition 5. Let R be a ring and let n > 2. If R is (weakly) n−nil clean, then
J(R) is nil.
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Proof. Let a ∈ J(R). Then a = b±s where b ∈ N(R) and sn = s. If a = b−s, then
a+ s ∈ N(R). If we choose m ∈ N such that (a+ s)m = 0, then clearly sm ∈ J(R).
If m � n, then sn−1 ∈ J(R). Since also s(1 − sn−1) = 0 and 1 − sn−1 ∈ U(R),
then s = 0. If m ≥ n, then we can similarly see that s = 0. Hence a = b ∈ N(R).
Similarly, the case a = b+ s gives a ∈ N(R) and so J(R) is nil. �

3. When the ring Zm is (weakly) n−nil clean

In the main Theorem of this section, we completely determine all n,m ∈ N such
that the ring Zm is (weakly) n-nil clean. We recall that for m ∈ N, the set of
all positive integers less than or equal m that are relatively prime to m is a group
under multiplication modulom. it is denoted by Z×m and is called the group of units
modulo m. This group is cyclic if and only if m is equal to 2, 4, pk, or 2pk where
pk is a power of an odd prime. A generator of this cyclic group is called a primitive
root modulo m. The order of Z×m is given by Euler’s totient function ϕ(m). It is
easy to see that for any prime integer p and any k ∈ N, ϕ(pk) = pk−1(p − 1). For
more details one can see [13].

Lemma 1. For any n, k ∈ N, the ring Z2k is n−nil clean.

Proof. For any n ∈ N, at least 0 and 1 are n−potent elements in Z2k . Since
N(Z2k) =

{
0, 2, 4, ..., 2(2k−1 − 1)

}
, then clearly any element in Z2k is a sum of a

nilpotent and an n−potent. �

The following lemma is a special case of the well known Hensel’s Lemma.

Lemma 2. Let n, k ∈ N and p be an odd prime integer. Consider the congruence
f(x) ≡ 0(mod p) where f(x) ∈ Z[x]. If r is a solution of the congruence with
f ′(r) is not congruent to 0(mod p), then there exists a unique integer s such that
f(s) ≡ 0(mod pk) and r ≡ s(mod p).

In particular, for a prime integer p and 1 ≤ m ≤ p − 1, let r be a solution
of xm − 1 ≡ 0(mod p). Then mrm−1 is not congruent to 0(mod p). Hence, r
corresponds to a unique solution s of xm − 1 ≡ 0(mod pk) such that r ≡ s(mod p).
The following Lemma is well known in number theory. However, we give the

proof for the sake of completeness.

Lemma 3. Let n, k ∈ N and p be any prime integer and let d = gcd(n, pk−1(p−1)).
Then
(1) The polynomial xn − 1 ∈ Zpk [x] has d solutions in Zpk .
(2) If p

k−1(p−1)
d is even, then the polynomial xn + 1 ∈ Zpk [x] has d solutions in

Zpk . Otherwise, it has no solutions.

Proof. (1) Consider the cyclic group of units Z×
pk
with order ϕ(pk) = pk−1(p − 1).

Let g be a generator for Z×
pk
and let a = gm ∈ Z×

pk
be a solution of xn ≡ 1(mod pk).

Then an = gmn ≡ 1(mod pk) and so pk−1(p − 1) divides mn. If we let d =
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gcd(n, pk−1(p− 1)), then pk−1(p−1)
d divides m. Therefore, the solution set of xn− 1

in Zpk forms a subgroup generated by g
pk−1(p−1)

d . The result follows since this
subgroup is clearly of order d.
(2) Consider again the generator g of the cyclic group of units Z×

pk
. Since

gp
k−1(p−1) ≡ 1(mod pk), then g must satisfy g

pk−1(p−1)
2 ≡ −1(mod pk). Hence,

x = gm is a solution of xn ≡ −1(mod pk) if and only if pk−1(p − 1) divides 2mn
and so pk−1(p−1)

d must divides 2m. If p
k−1(p−1)

d is not even, then xn ≡ −1(mod pk)
has no solutions. However, if p

k−1(p−1)
d is even, then g

pk−1(p−1)
2d is one solution of

xn ≡ −1(mod pk). The other solutions can be obtained by multiplying by the d
solutions of xn ≡ 1(mod pk). �

Theorem 1. Let n, k ∈ N and p be any odd prime integer. If d = gcd(n−1, pk−1(p−
1)), then Zpk is n−nil clean if and only if d = pt(p− 1) for some 0 ≤ t ≤ k − 1.

Proof. To be brief, let S denotes the set of all zeros of xn−x in Zpk and T denotes
the set of sums of every element in N(Zpk) to every element in S.
⇐) : Suppose d = gcd(n, pk−1(p− 1)) = p− 1. By Lemma 3, The multiplicative

group G of roots of unity modulo pk is of order p−1 and so ap−1 ≡ 1(mod pk) for all
a ∈ G. Now, By Fermat Theorem, any a ∈ G is also a solution of xp−1 ≡ 1(mod p).
By Lemma 2, the p−1 solutions of xp−1 ≡ 1(mod p) correspond uniquely to the p−1
solutions of xp−1 ≡ 1(mod pk). Hence, the p− 1 solutions of xp−1 ≡ 1(mod pk) are
congruent to 1, 2, ..., p− 1 in some order. Now, N(Zpk) =

{
0, p, 2p, ..., (pk−1 − 1)p

}
is of order pk−1. If n1 + a = n2 + b for some a, b ∈ S and n1, n2 ∈ N(Zpk), then
a − b ≡ nn − n1 ≡ 0(mod p). Thus, a ≡ b(mod p) which is true only if a = b = 0.
Therefore, T has exactly ppk−1 = pk distinct elements and Zpk is n−nil clean.
Next, suppose d = pt(p − 1) for some 1 ≤ t ≤ pk. If ap

t(p−1) ≡ 1(mod pk), then
ap−1 ≡ (ap−1)pt ≡ 1(mod p). Again, by Lemma 2, the p− 1 solutions corresponds
uniquely to p− 1 distinct solutions of xpt(p−1) ≡ 1(mod pk). Hence, similar to the
above argument, we conclude that Zpk is n−nil clean.
⇒) : Suppose d = mpt for some m | (p − 1) with m 6= p − 1 and 0 ≤ t ≤ pk−1.

If t = 0, then T has at most (m + 1)pk−1 � pk elements and so Zpk is not n−nil
clean. Let t 	 0 and consider xmpt ≡ 1(mod pk). Then xm ≡ (xm)pt ≡ 1(mod p)
has at most m solutions (mod p). By Lemma 2, any solution of xmp

t ≡ 1(mod pk)
is congruent to one of the m solutions of xm ≡ 1(mod p). Choose 1 ≤ c ≤ p − 1
such that c is not a solution of xm ≡ 1(mod p) and suppose c = a + f for some
a ∈ S and f ∈ N(Zpk). If a = 0, then c ∈ N(Zpk), a contradiction. Suppose
a 6= 0 and let 1 ≤ r ≤ p − 1 such that rm ≡ 1(mod p) and a ≡ r(mod p). Then
c ≡ r + f ≡ r(mod p) which is a contradiction. Hence, again Zpk is not n−nil
clean. �
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Corollary 2. For any even integer n and odd prime p, the ring Zpk is not n−nil
clean.

Definition 3. Let R be a ring and n > 2. R is called (xn+x)-nil clean if for every
r ∈ R, r = b+ s where b ∈ N(R) and sn = −s.

By direct computations one can easily verify that for any even integer n, R is
(xn+x)-nil clean if and only if R is n−nil clean. However for any odd integer n and
odd prime integer p, we prove in the following lemma that Zpk is never (xn+x)-nil
clean.

Lemma 4. For any k ∈ N and n > 2, the ring Z2k is (xn+x)-nil clean if and only
if gcd(n− 1, 2k) 6= 2k.

Proof. The proof follows directly by (2) in Lemma 3. �
Theorem 2. Let p be a prime integer and k, n ∈ N where n is odd. Then Zpk is
never (xn + x)-nil clean.

Proof. ⇐) : By lemma 3, xn−1 ≡ −1(mod pk) has a solution if p
k−1(p−1)

d is even
where d = gcd(n − 1, pk−1(p − 1)). Hence, clearly if d = pt(p − 1) for some 0 ≤
t ≤ k − 1, then Zpk is not (xn + x)-nil clean. Suppose d = mpt for some m | p− 1
with m 6= p− 1 and 0 ≤ t ≤ k − 1. Then xm ≡ (xm)pt ≡ −1(mod p). Clearly, this
congruence has less than p− 1 solutions. Thus, as in the proof of the similar case
in Theorem 1, we conclude that Zpk is not (xn + x)-nil clean. �
Corollary 3. Let m,n, k ∈ N and write m = pr1

1
pr22 ...p

t
t where p1, p2, ..., pt are

distinct prime integers. Then the ring Zm is n−nil clean if and only if for all
i = 1, 2, ..., t, gcd(n− 1, pri−1i (pi − 1)) = pli(pi − 1) for some 0 ≤ l ≤ ri − 1.

Proof. We have Zm ' Zpr11 × Zpr22 × ...× Zprtt . By Proposition (2.6) in [10], Zm is
n−nil clean if and only if Zprii is n−nil clean for all i = 1, 2, ..., t. Hence, the result
follows by Theorem 1 and Lemma 1. �
As special cases, we have

Corollary 4. Let n ∈ N and consider the ring Zn. Then
(1) For any m ∈ N, Zn is 2m−nil clean if and only if n = 2k for k ∈ N ∪ {0}.
(2) Zn is 3−nil clean if and only if n = 2k × 3m for k,m ∈ N ∪ {0}.
(3) Zn is 5−nil clean if and only if n = 2k × 3m × 5l for k,m, l ∈ N ∪ {0}.
(4) Zn is 7−nil clean if and only if n = 2k × 3m × 7l for k,m, l ∈ N ∪ {0}.

For n,m ∈ N, we next clarify when the ring Zm is weakly n−nil clean.

Theorem 3. Let n, k ∈ N, p be any odd prime integer and d = gcd(n−1, pk−1(p−
1)). Then

(1) Zpk is weakly n−nil clean if and only if d = pt(p−1) or d = pt(p−1)
2 for some

0 ≤ t ≤ k − 1.
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(2) Zpk is weakly (xn + x)−nil clean if and only if d = pt(p−1)
2 for some 0 ≤ t ≤

k − 1.

Proof. (1)⇐) : Let 0 ≤ t ≤ k−1. If d = pt(p−1), then Zpk is (weakly) n−nil clean
by Theorem 1. Suppose d = pt(p−1)

2 , then for any solution a of xn−1 ≡ 1(mod pk),
we have a

p−1
2 ≡ (a

(p−1)
2 )p

t

= a
pt(p−1)

2 ≡ 1(mod p). Clearly, the congruence x p−1
2 ≡

1(mod p) has p−12 solutions. By Lemma 2, those p−1
2 solutions correspond uniquely

to p−1
2 solutions of x

pt(p−1)
2 ≡ 1(mod pk). Let T1 (respectivelyT2) be the set of all

sums (respectively, differences) of each of the p−1
2 solutions of x

pt(p−1)
2 ≡ 1(mod pk)

and each nilpotent in Zpk . By imitating the proof of Theorem 1, we can see that T1
(respectivelyT2) has (

p−1
2 )p

k−1 distinct elements. Moreover, if a
pt(p−1)

2 ≡ 1(mod pk)
and b ∈ N(Zpk) such that b + a = b − a, then 2a = 0 which is a contradiction.
Thus, N(Zpk) ∪ T1 ∪ T2 contains exactly (2(p−12 ) + 1)p

k−1 = pk distinct elements
and so Zpk is weakly n−nil clean.
⇒) : Suppose d 6= pt(p− 1) and d 6= pt(p−1)

2 for all 0 ≤ t ≤ k− 1. Then d = mpt

for somem | p−1 wherem 6= p−1. Hence, eitherm = p−1
2 orm � p−1

2 . Ifm = p−1
2 ,

then we get a contradiction. Suppose m � p−1
2 and consider xmp

t ≡ 1(mod pk).
Then xm ≡ (xm)p

t ≡ 1(mod p) has at most m solutions. Since m � p−1
2 , then

similar to the above argument, the set of all sums or difference of each nilpotent
and each solution of xn−x will not cover Zpk . Thus, Zpk is not weakly n−nil clean.
(2) ⇒) : If d = pt(p − 1) for some 0 ≤ t ≤ k − 1, then xn−1 ≡ −1(mod pk) has

no solution and so Zpk is not weakly (xn + x)-nil clean. Suppose d = mpt where
0 ≤ t ≤ k − 1, m 6= p − 1 and m | p − 1. If m � p−1

2 , then similar to the proof of
(1), Zpk is also not weakly (xn + x)-nil clean. Hence, we must have m = p−1

2 and

d = pt(p−1)
2 for some 0 ≤ t ≤ k − 1.

⇐) : Suppose d = pt(p−1)
2 then clearly x

p−1
2 ≡ (x p−1

2 )p
t ≡ −1(mod p) has p−1

2

solutions each of which corresponds uniquely to a solution of x
pt(p−1)

2 ≡ −1(mod pk).
Define T1 and T2 as in (1) for the congruence x

pt(p−1)
2 ≡ −1(mod pk), we can

similarly see that N(Zpk)∪T1∪T2 contains exactly pk distinct elements and so Zpk
is weakly (xn + x)-nil clean. �

Corollary 5. Let n, k ∈ N, p be any odd prime integer and d = gcd(n−1, pk−1(p−
1)). Then Zpk is weakly n−nil clean that is not n−nil clean if and only if d = pt(p−1)

2
for some 0 ≤ t ≤ k − 1.

For example Z5k is a weakly 3−nil clean that is not 3−nil clean for any k ∈ N.
Now, we can use Theorem 3 and Proposition 2 to prove the following corollary.

Corollary 6. Let m,n, k ∈ N and write m = pr1
1
pr22 ...p

t
t where p1, p2, ..., pt are

distinct prime integers. Then the ring Zm is weakly n−nil clean if and only if there
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is at most 1 ≤ j ≤ t such that for some 1 ≤ lj ≤ rj − 1 gcd(n − 1, prj−1j (pj −

1)) = p
lj
j (pj − 1) or

p
lj
j (pj−1)

2 and gcd(n − 1, pri−1i (pi − 1)) = plii (pi − 1) for some
1 ≤ li ≤ ri − 1 for all i 6= j.
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