(WEAKLY) n-NIL CLEANNESS OF THE RING \mathbb{Z}_{m}

HANI A. KHASHAN AND ALI H. HANDAM

Abstract

Let R be an associative ring with identity. For a positive integer $n \geqslant 2$, an element $a \in R$ is called n-potent if $a^{n}=a$. We define R to be (weakly) n-nil clean if every element in R can be written as a sum (a sum or a difference) of a nilpotent and an n-potent element in R. This concept is actually a generalization of weakly nil clean rings introduced by Danchev and McGovern, 6]. In this paper, we completely determine all $n, m \in \mathbb{N}$ such that the ring of integers modulo m, \mathbb{Z}_{m} is (weakly) n-nil clean.

1. Introduction

Let R be an associative ring with identity. Throughout this text, the notations $U(R), J(R), I d(R)$ and $N(R)$ will stand for the set of units, the Jacobson radical, the set of idempotents and the set of nilpotents of R, respectively. Following [14, we define an element r of a ring R to be clean if there is an idempotent $e \in R$ and a unit $u \in R$ such that $r=u+e$. A clean ring is defined to be one in which every element is clean. Similarly, an element r in a ring R is said to be nil clean if $r=e+b$ for some idempotent $e \in R$ and a nilpotent element $b \in R$. A ring R is nil clean if each element of R is nil clean. In [2], Breaz, Danchev and Zhou defined a ring R to be weakly nil clean if each element $r \in R$ can be written as $r=b+e$ or $r=b-e$ for $b \in N(R)$ and $e \in I d(R)$. We refer the reader to [8, 1, 3, 5, 7, 4, 2, for a survey on nil clean and weakly nil clean rings.

For $a \in R$ and a positive integer $n \geqslant 2$, we say that a is n-potent if $a^{n}=a$. Moreover, a is called (weakly) n-nil clean if it is a sum (a sum or a difference) of n-potent element and a nilpotent element in R. We define R to be (weakly) $n-$ nil clean if every element in R is (weakly) n-nil clean. Weakly n-clean rings are defined in a similar way. Obviously, the (weakly) 2 -nil clean rings are the same as the (weakly) nil clean rings. R is called a generalized nil clean if every element in R is $n-$ nil clean for some $n \in \mathbb{N}$. The class of $n-$ nil clean and generalized nil clean rings were firstly defined and studied in [9] by Hirano, Tominaga and Yaqub

Received by the editors: February 18, 2017; Accepted: June 05, 2017.
2010 Mathematics Subject Classification. Primary 16U60; Secondary 16U90.
Key words and phrases. Nil clean ring, n-nil clean ring, weakly n-nil clean ring.
(C) 2018 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics.
Communications de la Faculté des Sciences de l'Université d'Ankara-Séries A1 Mathematics and Statistics.
in 1988. Some Other authors called generalized nil clean rings as weak periodic rings. A ring R is called periodic if for every $x \in R$, there are distinct integers m and k such that $x^{m}=x^{k}$. It is proved that a periodic ring is weak periodic and that the converse is true if in any expansion $r=b+s$ for potent s and $b \in N(R)$, we have $b s=s b$.

In this paper, we focus our attention on the ring \mathbb{Z}_{m} of integers modulo a positive integer m. We use the well Known Hensel's Lemma to completely determine when the ring \mathbb{Z}_{m} is (weakly) n-nil clean ring for any $m, n \in \mathbb{N}$. Moreover, we determine all $m, n \in \mathbb{N}$ such that every element $r \in \mathbb{Z}_{m}$ is of the form $r=b \pm s$ where $b \in N(R)$ and $s^{n}=-s$. Next, we apply our results for some special values of m and n.

In the next section, we study weakly n-nil clean rings and introduce some fundamental facts and examples concerning this class of rings. Among many other properties, we determine some conditions on n, R and G under which the group ring $R G$ is (weakly) n-nil clean.

2. Weakly n-Nil Clean Rings

In this section, we study some of the basic properties of weakly n-nil clean rings. Moreover, we give some necessarily examples.

Definition 1. Let R be a ring and $n \in \mathbb{N}$ where $n \geqslant 2$. An element $r \in R$ is called weakly n-nil clean if there exist $b \in N(R)$ and an n-potent element s of R such that $r=b+s$ or $r=b-s$. A ring R is called weakly $n-n i l$ clean if all of its elements are weakly $n-$ nil clean.

For $n \geqslant 2$, let s be an n-potent and b be a nilpotent. For $r \in R$, we write $r=b \pm s$ if r is either a sum $b+s$ or a difference $b-s$. Obviously, every n-nil clean ring is weakly n-nil clean. Since the ring \mathbb{Z}_{6} is a weakly nil clean ring that is not nil clean, then trivially \mathbb{Z}_{6} is a weakly 2 -nil clean ring which is not 2 -nil clean. For a non trivial example, one can easily verify that the ring \mathbb{Z}_{3} is weakly $4-$ nil clean but not $4-$ nil clean. Moreover, if a ring R is a weakly n-nil clean, then it is weakly n-clean. Indeed, if we let $x \in R$, then $x-1=b \pm s$ where $b \in N(R)$ and $s^{n}=s$. So, $x=(b+1) \pm s$ where $b+1 \in U(R)$. The converse is not true in general. For example, simple computations show that the ring $R=T_{2}\left(\mathbb{Z}_{3}\right)$ is weakly 5 -clean which is not weakly 5 -nil clean.

Next, we give some properties of the class of weakly $n-$ nil clean rings. The proof of the following proposition is straightforward.

Proposition 1. Let R and S be two rings, $\mu: R \rightarrow S$ be a ring epimorphism and $n \geqslant 2$. If R is weakly n-nil clean, then S is weakly $n-n i l$ clean.

The following Properties (2), (3) and (4) in Corollary 1 are direct consequences of Proposition 1. The proofs of Properties (1) and (5) are similar to that of (weakly) $g(x)$-nil clean appeared in [10, 11, 12].

Corollary 1. Let R and S be ring and let $n \geqslant 2$. The following hold:
(1) If I is an ideal in R and R is weakly $n-n i l$ clean, then R / I is weakly $n-n i l$ clean. Moreover, the converse holds if I is nil and potent elements lift modulo I.
(2) If the upper triangular matrix ring $T_{n}(R)$ is weakly $n-$ nil clean, then R is weakly $n-n i l$ clean.
(3) If the skew formal power series $R[[x, \alpha]]$ (or in particular $R[[x]]$) over R is weakly $n-n i l$ clean, then R is weakly $n-n i l$ clean.
(4) Let M be an (R, S)-bimodule and $T=\left[\begin{array}{cc}A & M \\ 0 & B\end{array}\right]$ be the formal triangular matrix ring. If T is weakly $n-$ nil clean, then R and S are weakly $n-$ nil clean.
(5) If R is commutative and M an R-module. Then the idealization $R(M)$ of R and M is weakly $n-n i l$ clean if and only if R is weakly $n-n i l$ clean.
Proposition 2. Let $R=\prod_{i \in I} R_{i}$ be a direct product of rings with I is finite and $|I| \geq 2$ and let $n \geqslant 2$. R is weakly $n-$ nil clean if and only if there exist $k \in I$ such that R_{k} is weakly $n-$ nil clean and R_{j} is $n-$ nil clean for $j \neq k$.
Proof. $\Rightarrow)$: For each $i \in I, R_{i}$ is a homomorphic image of $\prod_{i \in I} R_{i}$ under the projection homomorphism. Hence, R_{i} is weakly $n-$ nil clean by Proposition 1 . Without loss of generality, assume that neither R_{1} nor R_{2} are n-nil clean. Then there exist $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ such that r_{1} is not a sum of a nilpotent and an n-potent and r_{2} is not a difference of a nilpotent and an n-potent. Thus (r_{1}, r_{2}) is not weakly $n-$ nil clean in $R_{1} \times R_{2}$, a contradiction.
$\Leftarrow)$: Assume that R_{k} is weakly n-nil clean for a fixed index $k \in I$. Thus R_{j} is $n-$ nil clean for all $j \neq k$. Let $r=\left(r_{i}\right) \in R$. Then there exist $b_{k} \in N\left(R_{k}\right)$ and an n-potent s_{k} such that $r_{k}=b_{k}+s_{k}$ or $r_{k}=b_{k}-s_{k}$. If $r_{k}=b_{k}+s_{k}$, then for each $i \in I-\{k\}$, write $r_{i}=b_{i}+s_{i}$ where $b_{i} \in N\left(R_{i}\right)$ and $s_{i}^{n}=s_{i}$. Therefore, $r=\left(b_{i}\right)+\left(s_{i}\right)$ is a sum of a nilpotent and an n-potent. If $r_{k}=b_{k}-s_{k}$, then for each $i \in I-\{k\}$, write $r_{i}=b_{i}-s_{i}$ where $b_{i} \in N\left(R_{i}\right)$ and $s_{i}^{n}=s_{i}$. Consequently, $r=\left(b_{i}\right)-\left(s_{i}\right)$ is a difference of a nilpotent and an n-potent. Therefore, R is weakly $n-$ nil clean.

Definition 2. Let R be a ring and let $m \in \mathbb{N}$. Then R is said to have the nil m-involution property if for every $r \in R$, we have $r=u+v$ where $u \in 1 \pm N(R)$ and $v^{m}=1$.

We now justify the relation between weakly n-nil clean rings and rings with nil $(n-1)$-involution property for an odd $n \in \mathbb{N}$.
Proposition 3. Let R be a ring and let n be an odd integer with $n \geq 2$. If R has the nil $(n-1)$-involution property, then R is (weakly) n-nil clean. If moreover, $a R$ (or $R a$) contains no non trivial idempotent for every non unit $a \in R$, then the two statements are equivalent.

Proof. Suppose R has the nil $(n-1)$-involution property and let $r \in R$. Write $r+1=u+v$ where $u \in 1 \pm N(R)$ and $v^{n-1}=1$. Then $r=(u-1)+v$ where $u-1 \in N(R)$ and v is clearly an n-potent element in R.

Now, we assume that for every non unit $a \in R, a R$ (or $R a$) contains no non trivial idempotents and suppose R is weakly n-nil clean. Let $a \in R$ and write $a-1=b \pm s$ where $b \in N(R)$ and $s^{n}=s$. Then $a s^{n-1}=(b+1) s^{n-1} \pm s$ and so $a\left(1-s^{n-1}\right)=(b+1)\left(1-s^{n-1}\right)=u\left(1-s^{n-1}\right)$ where $u \in U(R)$. Since clearly $u\left(1-s^{n-1}\right) u^{-1}=a\left(1-s^{n-1}\right) u^{-1} \in a R$ is an idempotent, then by assumption $u\left(1-s^{n-1}\right) u^{-1}=0$ or $u\left(1-s^{n-1}\right) u^{-1}=1$. Therefore $s^{n-1}=1$ or $s^{n-1}=0$. In the last case, we get $s=s^{n}=0$ and so $a=b+1$ is a unit, a contradiction. Thus, $a=(b+1)+(\pm s)$ where $(\pm s)^{n-1}=1$ since $n-1$ is even. The case when $R a$ contains no non trivial idempotent for every non unit $a \in R$ is similar. Therefore, R has the nil ($n-1$)-involution property.

It is easy to see that the ring \mathbb{Z}_{4} is a (weakly) 4 -nil clean ring with $a \mathbb{Z}_{4}$ contains no non trivial idempotent for every $a \in \mathbb{Z}_{4}$. But, \mathbb{Z}_{4} does not have the nil 3involution property. Therefore, the equivalence in Proposition 3 need not be hold for an even integer n.

Let R be a ring and G be a finite cyclic group. In the following Proposition, we determine conditions under which the group ring $R G$ is (weakly) n-nil clean. We recall that R is called an n-potent ring if $a^{n}=a$ for every $a \in R$.

Proposition 4. Let G any cyclic group of order p (prime).
(1) If R is a Boolean ring, then $R G$ is a 2^{p-1} - potent ring (and so is (weakly) $2^{p-1}-$ nil clean).
(2) If R is a commutative 3 -potent ring of characteristic 3 , and $p \neq 3$, then $R G$ is a 3^{p-1}-potent ring (and so is (weakly) $3^{p-1}-$ nil clean).

Proof. (1) See Proposition 3.17 in 10.
(2) Let $G=\left\{1, g, g^{2}, \ldots, g^{p-1}\right\}$ where $g^{p}=1$ and let $x=a_{0}+a_{1} g+a_{2} g^{2}+$ $\ldots+a_{p-1} g^{p-1} \in R G$. First, we prove by induction that $x^{3^{k}}=\sum_{i=0}^{p-1} a_{i} g^{i *\left(3^{k}\right)}$ for all $k \in \mathbb{N}$. Let $k=1$. Since R is 3 -potent ring of characteristic 3 , one can see that $x^{3}=a_{0}+a_{1} g^{3}+a_{2} g^{6}+\ldots+a_{p-1} g^{3(p-1)}=\sum_{i=0}^{p-1} a_{i} g^{3 i}$. Suppose the result is true for k. Then $x^{3^{k+1}}=\left(x^{3}\right)^{3^{k}}=\sum_{i=0}^{p-1} a_{i}\left(g^{3}\right)^{i *\left(3^{k}\right)}=\sum_{i=0}^{p-1} a_{i} g^{i *\left(3^{k+1}\right)}$. By Fermat Theorem, $3^{p-1}=1+n p$ for some integer n. Thus, $x^{3^{p-1}}=\sum_{i=0}^{p-1} a_{i} g^{i *\left(3^{p-1}\right)}=\sum_{i=0}^{p-1} a_{i} g^{i *(1+n p)}=$ $\sum_{i=0}^{p-1} a_{i} g^{i}=x$. Therefore, $R G$ is a 3^{p-1}-potent ring.

By Proposition 4, we conclude that the ring $\mathbb{Z}_{2}\left(C_{3}\right)$ is (weakly) 4 -nil clean and $\mathbb{Z}_{3}\left(C_{2}\right)$ is (weakly) 3 -nil clean.
Proposition 5. Let R be a ring and let $n \geqslant 2$. If R is (weakly) n-nil clean, then $J(R)$ is nil.

Proof. Let $a \in J(R)$. Then $a=b \pm s$ where $b \in N(R)$ and $s^{n}=s$. If $a=b-s$, then $a+s \in N(R)$. If we choose $m \in \mathbb{N}$ such that $(a+s)^{m}=0$, then clearly $s^{m} \in J(R)$. If $m \nsupseteq n$, then $s^{n-1} \in J(R)$. Since also $s\left(1-s^{n-1}\right)=0$ and $1-s^{n-1} \in U(R)$, then $s=0$. If $m \geq n$, then we can similarly see that $s=0$. Hence $a=b \in N(R)$. Similarly, the case $a=b+s$ gives $a \in N(R)$ and so $J(R)$ is nil.

3. When the ring \mathbb{Z}_{m} IS (Weakly) n-Nil clean

In the main Theorem of this section, we completely determine all $n, m \in \mathbb{N}$ such that the ring \mathbb{Z}_{m} is (weakly) n-nil clean. We recall that for $m \in \mathbb{N}$, the set of all positive integers less than or equal m that are relatively prime to m is a group under multiplication modulo m. it is denoted by \mathbb{Z}_{m}^{\times}and is called the group of units modulo m. This group is cyclic if and only if m is equal to $2,4, p^{k}$, or $2 p^{k}$ where p^{k} is a power of an odd prime. A generator of this cyclic group is called a primitive root modulo m. The order of \mathbb{Z}_{m}^{\times}is given by Euler's totient function $\varphi(m)$. It is easy to see that for any prime integer p and any $k \in \mathbb{N}, \varphi\left(p^{k}\right)=p^{k-1}(p-1)$. For more details one can see 13 .

Lemma 1. For any $n, k \in \mathbb{N}$, the ring $\mathbb{Z}_{2^{k}}$ is n-nil clean.
Proof. For any $n \in \mathbb{N}$, at least 0 and 1 are n-potent elements in $\mathbb{Z}_{2^{k}}$. Since $N\left(\mathbb{Z}_{2^{k}}\right)=\left\{0,2,4, \ldots, 2\left(2^{k-1}-1\right)\right\}$, then clearly any element in $\mathbb{Z}_{2^{k}}$ is a sum of a nilpotent and an n-potent.

The following lemma is a special case of the well known Hensel's Lemma.
Lemma 2. Let $n, k \in \mathbb{N}$ and p be an odd prime integer. Consider the congruence $f(x) \equiv 0(\bmod p)$ where $f(x) \in \mathbb{Z}[x]$. If r is a solution of the congruence with $f^{\prime}(r)$ is not congruent to $0(\bmod p)$, then there exists a unique integer s such that $f(s) \equiv 0\left(\bmod p^{k}\right)$ and $r \equiv s(\bmod p)$.

In particular, for a prime integer p and $1 \leq m \leq p-1$, let r be a solution of $x^{m}-1 \equiv 0(\bmod p)$. Then $m r^{m-1}$ is not congruent to $0(\bmod p)$. Hence, r corresponds to a unique solution s of $x^{m}-1 \equiv 0\left(\bmod p^{k}\right)$ such that $r \equiv s(\bmod p)$.

The following Lemma is well known in number theory. However, we give the proof for the sake of completeness.

Lemma 3. Let $n, k \in \mathbb{N}$ and p be any prime integer and let $d=\operatorname{gcd}\left(n, p^{k-1}(p-1)\right)$. Then
(1) The polynomial $x^{n}-1 \in \mathbb{Z}_{p^{k}}[x]$ has d solutions in $\mathbb{Z}_{p^{k}}$.
(2) If $\frac{p^{k-1}(p-1)}{d}$ is even, then the polynomial $x^{n}+1 \in \mathbb{Z}_{p^{k}}[x]$ has d solutions in $\mathbb{Z}_{p^{k}}$. Otherwise, it has no solutions.

Proof. (1) Consider the cyclic group of units $\mathbb{Z}_{p^{k}}^{\times}$with order $\varphi\left(p^{k}\right)=p^{k-1}(p-1)$. Let g be a generator for $\mathbb{Z}_{p^{k}}^{\times}$and let $a=g^{m} \in \mathbb{Z}_{p^{k}}^{\times}$be a solution of $x^{n} \equiv 1\left(\bmod p^{k}\right)$. Then $a^{n}=g^{m n} \equiv 1\left(\bmod p^{k}\right)$ and so $p^{k-1}(p-1)$ divides $m n$. If we let $d=$
$\operatorname{gcd}\left(n, p^{k-1}(p-1)\right)$, then $\frac{p^{k-1}(p-1)}{d}$ divides m. Therefore, the solution set of $x^{n}-1$ in $\mathbb{Z}_{p^{k}}$ forms a subgroup generated by $g^{\frac{p^{k-1}(p-1)}{d}}$. The result follows since this subgroup is clearly of order d.
(2) Consider again the generator g of the cyclic group of units $\mathbb{Z}_{p^{k}}^{\times}$. Since $g^{p^{k-1}(p-1)} \equiv 1\left(\bmod p^{k}\right)$, then g must satisfy $g^{\frac{p^{k-1}(p-1)}{2}} \equiv-1\left(\bmod p^{k}\right)$. Hence, $x=g^{m}$ is a solution of $x^{n} \equiv-1\left(\bmod p^{k}\right)$ if and only if $p^{k-1}(p-1)$ divides $2 m n$ and so $\frac{p^{k-1}(p-1)}{d}$ must divides $2 m$. If $\frac{p^{k-1}(p-1)}{d}$ is not even, then $x^{n} \equiv-1\left(\bmod p^{k}\right)$ has no solutions. However, if $\frac{p^{k-1}(p-1)}{d}$ is even, then $g^{\frac{p^{k-1}(p-1)}{2 d}}$ is one solution of $x^{n} \equiv-1\left(\bmod p^{k}\right)$. The other solutions can be obtained by multiplying by the d solutions of $x^{n} \equiv 1\left(\bmod p^{k}\right)$.

Theorem 1. Let $n, k \in \mathbb{N}$ and p be any odd prime integer. If $d=\operatorname{gcd}\left(n-1, p^{k-1}(p-\right.$ $1)$, then $\mathbb{Z}_{p^{k}}$ is $n-$ nil clean if and only if $d=p^{t}(p-1)$ for some $0 \leq t \leq k-1$.

Proof. To be brief, let S denotes the set of all zeros of $x^{n}-x$ in $\mathbb{Z}_{p^{k}}$ and T denotes the set of sums of every element in $N\left(\mathbb{Z}_{p^{k}}\right)$ to every element in S.
$\Leftarrow)$: Suppose $d=\operatorname{gcd}\left(n, p^{k-1}(p-1)\right)=p-1$. By Lemma 3. The multiplicative group G of roots of unity modulo p^{k} is of order $p-1$ and so $a^{p-1} \equiv 1\left(\bmod p^{k}\right)$ for all $a \in G$. Now, By Fermat Theorem, any $a \in G$ is also a solution of $x^{p-1} \equiv 1(\bmod p)$. By Lemma 2 , the $p-1$ solutions of $x^{p-1} \equiv 1(\bmod p)$ correspond uniquely to the $p-1$ solutions of $x^{p-1} \equiv 1\left(\bmod p^{k}\right)$. Hence, the $p-1$ solutions of $x^{p-1} \equiv 1\left(\bmod p^{k}\right)$ are congruent to $1,2, \ldots, p-1$ in some order. Now, $N\left(\mathbb{Z}_{p^{k}}\right)=\left\{0, p, 2 p, \ldots,\left(p^{k-1}-1\right) p\right\}$ is of order p^{k-1}. If $n_{1}+a=n_{2}+b$ for some $a, b \in S$ and $n_{1}, n_{2} \in N\left(\mathbb{Z}_{p^{k}}\right)$, then $a-b \equiv n_{n}-n_{1} \equiv 0(\bmod p)$. Thus, $a \equiv b(\bmod p)$ which is true only if $a=b=0$. Therefore, T has exactly $p p^{k-1}=p^{k}$ distinct elements and $\mathbb{Z}_{p^{k}}$ is n-nil clean. Next, suppose $d=p^{t}(p-1)$ for some $1 \leq t \leq p^{k}$. If $a^{p^{t}(p-1)} \equiv 1\left(\bmod p^{k}\right)$, then $a^{p-1} \equiv\left(a^{p-1}\right)^{p^{t}} \equiv 1(\bmod p)$. Again, by Lemma 2, the $p-1$ solutions corresponds uniquely to $p-1$ distinct solutions of $x^{p^{t}(p-1)} \equiv 1\left(\bmod p^{k}\right)$. Hence, similar to the above argument, we conclude that $\mathbb{Z}_{p^{k}}$ is n-nil clean.
$\Rightarrow)$: Suppose $d=m p^{t}$ for some $m \mid(p-1)$ with $m \neq p-1$ and $0 \leq t \leq p^{k-1}$. If $t=0$, then T has at $\operatorname{most}(m+1) p^{k-1} \supsetneqq p^{k}$ elements and so $\mathbb{Z}_{p^{k}}$ is not $n-$ nil clean. Let $t \nsupseteq 0$ and consider $x^{m p^{t}} \equiv 1\left(\bmod p^{k}\right)$. Then $x^{m} \equiv\left(x^{m}\right)^{p^{t}} \equiv 1(\bmod p)$ has at most m solutions $(\bmod p)$. By Lemma 2 , any solution of $x^{m p^{t}} \equiv 1\left(\bmod p^{k}\right)$ is congruent to one of the m solutions of $x^{m} \equiv 1(\bmod p)$. Choose $1 \leq c \leq p-1$ such that c is not a solution of $x^{m} \equiv 1(\bmod p)$ and suppose $c=a+f$ for some $a \in S$ and $f \in N\left(\mathbb{Z}_{p^{k}}\right)$. If $a=0$, then $c \in N\left(\mathbb{Z}_{p^{k}}\right)$, a contradiction. Suppose $a \neq 0$ and let $1 \leq r \leq p-1$ such that $r^{m} \equiv 1(\bmod p)$ and $a \equiv r(\bmod p)$. Then $c \equiv r+f \equiv r(\bmod p)$ which is a contradiction. Hence, again $\mathbb{Z}_{p^{k}}$ is not n-nil clean.

Corollary 2. For any even integer n and odd prime p, the ring $\mathbb{Z}_{p^{k}}$ is not n-nil clean.
Definition 3. Let R be a ring and $n \geqslant 2 . R$ is called $\left(x^{n}+x\right)$-nil clean if for every $r \in R, r=b+s$ where $b \in N(R)$ and $s^{n}=-s$.

By direct computations one can easily verify that for any even integer n, R is $\left(x^{n}+x\right)$-nil clean if and only if R is $n-$ nil clean. However for any odd integer n and odd prime integer p, we prove in the following lemma that $\mathbb{Z}_{p^{k}}$ is never $\left(x^{n}+x\right)$-nil clean.

Lemma 4. For any $k \in \mathbb{N}$ and $n \geqslant 2$, the ring $\mathbb{Z}_{2^{k}}$ is $\left(x^{n}+x\right)$-nil clean if and only if $\operatorname{gcd}\left(n-1,2^{k}\right) \neq 2^{k}$.

Proof. The proof follows directly by (2) in Lemma 3 .
Theorem 2. Let p be a prime integer and $k, n \in \mathbb{N}$ where n is odd. Then $\mathbb{Z}_{p^{k}}$ is never $\left(x^{n}+x\right)$-nil clean.
Proof. $\Leftarrow)$: By lemma 3, $x^{n-1} \equiv-1\left(\bmod p^{k}\right)$ has a solution if $\frac{p^{k-1}(p-1)}{d}$ is even where $d=\operatorname{gcd}\left(n-1, p^{k-1}(p-1)\right)$. Hence, clearly if $d=p^{t}(p-1)$ for some $0 \leq$ $t \leq k-1$, then $\mathbb{Z}_{p^{k}}$ is not $\left(x^{n}+x\right)$-nil clean. Suppose $d=m p^{t}$ for some $m \mid p-1$ with $m \neq p-1$ and $0 \leq t \leq k-1$. Then $x^{m} \equiv\left(x^{m}\right)^{p^{t}} \equiv-1(\bmod p)$. Clearly, this congruence has less than $p-1$ solutions. Thus, as in the proof of the similar case in Theorem 1, we conclude that $\mathbb{Z}_{p^{k}}$ is not $\left(x^{n}+x\right)$-nil clean.

Corollary 3. Let $m, n, k \in \mathbb{N}$ and write $m=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{t}$ where $p_{1}, p_{2}, \ldots, p_{t}$ are distinct prime integers. Then the ring \mathbb{Z}_{m} is $n-n i l$ clean if and only if for all $i=1,2, \ldots, t, \operatorname{gcd}\left(n-1, p_{i}^{r_{i}-1}\left(p_{i}-1\right)\right)=p_{i}^{l}\left(p_{i}-1\right)$ for some $0 \leq l \leq r_{i}-1$.
Proof. We have $\mathbb{Z}_{m} \simeq \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \ldots \times \mathbb{Z}_{p_{t}^{r_{t}}}$. By Proposition (2.6) in [10], \mathbb{Z}_{m} is n-nil clean if and only if $\mathbb{Z}_{p_{i}^{r_{i}}}$ is n-nil clean for all $i=1,2, \ldots, t$. Hence, the result follows by Theorem 1 and Lemma 1 .

As special cases, we have
Corollary 4. Let $n \in \mathbb{N}$ and consider the $\operatorname{ring} \mathbb{Z}_{n}$. Then
(1) For any $m \in \mathbb{N}, \mathbb{Z}_{n}$ is $2 m$-nil clean if and only if $n=2^{k}$ for $k \in \mathbb{N} \cup\{0\}$.
(2) \mathbb{Z}_{n} is 3 -nil clean if and only if $n=2^{k} \times 3^{m}$ for $k, m \in \mathbb{N} \cup\{0\}$.
(3) \mathbb{Z}_{n} is 5 -nil clean if and only if $n=2^{k} \times 3^{m} \times 5^{l}$ for $k, m, l \in \mathbb{N} \cup\{0\}$.
(4) \mathbb{Z}_{n} is 7 -nil clean if and only if $n=2^{k} \times 3^{m} \times 7^{l}$ for $k, m, l \in \mathbb{N} \cup\{0\}$.

For $n, m \in \mathbb{N}$, we next clarify when the ring \mathbb{Z}_{m} is weakly $n-$ nil clean.
Theorem 3. Let $n, k \in \mathbb{N}$, p be any odd prime integer and $d=\operatorname{gcd}\left(n-1, p^{k-1}(p-\right.$ 1)). Then
(1) $\mathbb{Z}_{p^{k}}$ is weakly $n-$ nil clean if and only if $d=p^{t}(p-1)$ or $d=\frac{p^{t}(p-1)}{2}$ for some $0 \leq t \leq k-1$.
(2) $\mathbb{Z}_{p^{k}}$ is weakly $\left(x^{n}+x\right)-$ nil clean if and only if $d=\frac{p^{t}(p-1)}{2}$ for some $0 \leq t \leq$ $k-1$.

Proof. $(1) \Leftarrow)$: Let $0 \leq t \leq k-1$. If $d=p^{t}(p-1)$, then $\mathbb{Z}_{p^{k}}$ is (weakly) $n-$ nil clean by Theorem 1. Suppose $d=\frac{p^{t}(p-1)}{2^{2}}$, then for any solution a of $x^{n-1} \equiv 1\left(\bmod p^{k}\right)$, we have $a^{\frac{p-1}{2}} \equiv\left(a^{\frac{(p-1)}{2}}\right)^{p^{t}}=a^{\frac{p^{t}(p-1)}{2}} \equiv 1(\bmod p)$. Clearly, the congruence $x^{\frac{p-1}{2}} \equiv$ $1(\bmod p)$ has $\frac{p-1}{2}$ solutions. By Lemma 2 those $\frac{p-1}{2}$ solutions correspond uniquely to $\frac{p-1}{2}$ solutions of $x^{\frac{p^{t}(p-1)}{2}} \equiv 1\left(\bmod p^{k}\right)$. Let T_{1} (respectively $\left.T_{2}\right)$ be the set of all sums (respectively, differences) of each of the $\frac{p-1}{2}$ solutions of $x^{\frac{p^{t}(p-1)}{2}} \equiv 1\left(\bmod p^{k}\right)$ and each nilpotent in $\mathbb{Z}_{p^{k}}$. By imitating the proof of Theorem 1 , we can see that T_{1} (respectively T_{2}) has $\left(\frac{p-1}{2}\right) p^{k-1}$ distinct elements. Moreover, if $a^{\frac{p^{t}(p-1)}{2}} \equiv 1\left(\bmod p^{k}\right)$ and $b \in N\left(\mathbb{Z}_{p^{k}}\right)$ such that $b+a=b-a$, then $2 a=0$ which is a contradiction. Thus, $N\left(\mathbb{Z}_{p^{k}}\right) \cup T_{1} \cup T_{2}$ contains exactly $\left(2\left(\frac{p-1}{2}\right)+1\right) p^{k-1}=p^{k}$ distinct elements and so $\mathbb{Z}_{p^{k}}$ is weakly n-nil clean.
$\Rightarrow)$: Suppose $d \neq p^{t}(p-1)$ and $d \neq \frac{p^{t}(p-1)}{2}$ for all $0 \leq t \leq k-1$. Then $d=m p^{t}$ for some $m \mid p-1$ where $m \neq p-1$. Hence, either $m=\frac{p-1}{2}$ or $m \supsetneqq \frac{p-1}{2}$. If $m=\frac{p-1}{2}$, then we get a contradiction. Suppose $m \supsetneqq \frac{p-1}{2}$ and consider $x^{m p^{t}} \equiv 1\left(\bmod p^{k}\right)$. Then $x^{m} \equiv\left(x^{m}\right)^{p^{t}} \equiv 1(\bmod p)$ has at most m solutions. Since $m \supsetneqq \frac{p-1}{2}$, then similar to the above argument, the set of all sums or difference of each nilpotent and each solution of $x^{n}-x$ will not cover $\mathbb{Z}_{p^{k}}$. Thus, $\mathbb{Z}_{p^{k}}$ is not weakly n-nil clean.
$(2) \Rightarrow)$: If $d=p^{t}(p-1)$ for some $0 \leq t \leq k-1$, then $x^{n-1} \equiv-1\left(\bmod p^{k}\right)$ has no solution and so $\mathbb{Z}_{p^{k}}$ is not weakly $\left(x^{n}+x\right)$-nil clean. Suppose $d=m p^{t}$ where $0 \leq t \leq k-1, m \neq p-1$ and $m \mid p-1$. If $m \nsupseteq \frac{p-1}{2}$, then similar to the proof of (1), $\mathbb{Z}_{p^{k}}$ is also not weakly $\left(x^{n}+x\right)$-nil clean. Hence, we must have $m=\frac{p-1}{2}$ and $d=\frac{p^{t}(p-1)}{2}$ for some $0 \leq t \leq k-1$.
$\Leftarrow)$: Suppose $d=\frac{p^{t}(p-1)}{2}$ then clearly $x^{\frac{p-1}{2}} \equiv\left(x^{\frac{p-1}{2}}\right)^{p^{t}} \equiv-1(\bmod p)$ has $\frac{p-1}{2}$ solutions each of which corresponds uniquely to a solution of $x^{\frac{p^{t}(p-1)}{2}} \equiv-1\left(\bmod p^{k}\right)$. Define T_{1} and T_{2} as in (1) for the congruence $x^{\frac{p^{t}(p-1)}{2}} \equiv-1\left(\bmod p^{k}\right)$, we can similarly see that $N\left(\mathbb{Z}_{p^{k}}\right) \cup T_{1} \cup T_{2}$ contains exactly p^{k} distinct elements and so $\mathbb{Z}_{p^{k}}$ is weakly $\left(x^{n}+x\right)$-nil clean.

Corollary 5. Let $n, k \in \mathbb{N}$, p be any odd prime integer and $d=\operatorname{gcd}\left(n-1, p^{k-1}(p-\right.$ $1)$). Then $\mathbb{Z}_{p^{k}}$ is weakly $n-$ nil clean that is not $n-$ nil clean if and only if $d=\frac{p^{t}(p-1)}{2}$ for some $0 \leq t \leq k-1$.

For example $\mathbb{Z}_{5^{k}}$ is a weakly 3 -nil clean that is not 3 -nil clean for any $k \in \mathbb{N}$. Now, we can use Theorem 3 and Proposition 2 to prove the following corollary.

Corollary 6. Let $m, n, k \in \mathbb{N}$ and write $m=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{t}$ where $p_{1}, p_{2}, \ldots, p_{t}$ are distinct prime integers. Then the ring \mathbb{Z}_{m} is weakly $n-n i l$ clean if and only if there
is at most $1 \leq j \leq t$ such that for some $1 \leq l_{j} \leq r_{j}-1 \operatorname{gcd}\left(n-1, p_{j}^{r_{j}-1}\left(p_{j}-\right.\right.$ $1))=p_{j}^{l_{j}}\left(p_{j}-1\right)$ or $\frac{p_{j}^{l_{j}}\left(p_{j}-1\right)}{2}$ and $\operatorname{gcd}\left(n-1, p_{i}^{r_{i}-1}\left(p_{i}-1\right)\right)=p_{i}^{l_{i}}\left(p_{i}-1\right)$ for some $1 \leq l_{i} \leq r_{i}-1$ for all $i \neq j$.

References

[1] Badawi, A., Chin A. Y. M. and Chen, H. V., On rings with near idempotent elements, International J. of Pure and Applied Math 1 (3) (2002), 255-262.
[2] Breaz, S., Danchev P. and Zhou, Y., Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, preprint arXiv:1412.5544 [math.RA].
[3] Chen, H., Strongly nil clean matrices over $R[x] /\left(x^{2}-1\right)$, Bull. Korean Math. Soc, 49 (3)(2012), 589-599.
[4] Chen, H. and Sheibani, M., Strongly 2-nil-clean rings, J. Algebra Appl., 16 (2017) DOI: 10.1142/S021949881750178X.
[5] Chen, H., On Strongly Nil Clean Matrices, Comm. Algebra, 41 (3) (2013), 1074-1086.
[6] Danchev, P.V. and McGovern, W.Wm., Commutative weakly nil clean unital rings, J. Algebra 425 (2015), 410-422.
[7] Diesl, A. J., Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.
[8] Diesl, A. J., Nil clean rings, J. Algebra, 383 (2013), 197-211.
[9] Hirano, Y., Tominaga H. and Yaqub, A., On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element, Math. J. Okayama Univ. 30 (1988), 33-40.
[10] Khashan, H. A. and Handam, A. H., $g(x)$-nil clean rings, Scientiae Mathematicae Japonicae, 79, (2) (2016), 145-154.
[11] Khashan, H. A. and Handam, A. H., On weakly g(x)-nil clean rings, International J. of Pure and Applied Math, 114 (2) (2017), 191-202.
[12] Handam, A. H. and Khashan, H. A., Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute, Open Mathematics, 15 (1), (2017), 420-426.
[13] Nagell, T., Introduction to Number Theory. New York: Wiley, p. 157, 1951.
[14] Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269-278.

Current address: Department of Mathematics, Al al-Bayt University, Al Mafraq, Jordan
E-mail address: hakhashan@aabu.edu.jo
ORCID Address: http://orcid.org/0000-0003-2167-5245
Current address: Department of Mathematics, Al al-Bayt University, Al Mafraq, Jordan
E-mail address: ali.handam@windowslive.com
ORCID Address: http://orcid.org/0000-0001-5748-8025

