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PORTFOLIO OPTIMIZATION UNDER PARAMETER
UNCERTAINTY USING THE RISK AVERSION FORMULA

SIBEL ACIK KEMALOGLU, GULTAC EROGLU INAN, AND AYSEN APAYDIN

Abstract. The Markowitz portfolio optimization model has certain diffi cul-
ties in practise since real data are rarely certain. The robust optimization is
a recently developed method that is used to overcome the uncertainty situ-
ation. The technique has been recently suggested in the portfolio selection
problems. In this study, two kinds of portfolio optimization problems are pre-
sented: (i) the risk aversion portfolio optimization problem based on the clas-
sical Markowitz framework, and (ii) the max-min counterpart problem based
on the robust optimization framework. In the application, the two models are
performed on a real-world data set obtained from BIST (Borsa Istanbul). Nu-
merical results show that the objective function values of the classical solution
and the robust solution are similar to each other. It can be said that the robust
model, which works as well as the classical model in the uncertainty situations,
can be used instead of the classical model and also that the optimal solution
obtained in the uncertainty situation is robust to parameter perturbation.

1. INTRODUCTION

The main objective of the portfolio optimization problem is to choose the optimal
portfolio with minimum variance from the set of all possible portfolios for any given
level of expected return. Markowitz [22] formulated the first mathematical model
for portfolio selection in the literature. After Markowitz, Sharpe [26] developed the
Capital Asset Pricing Model (CAPM) and then Linter [19] and Mossin [24] used
the Markowitz theory in their studies. In the literature, there are various other
portfolio optimization methods developed in the context of the portfolio theory
besides Markowitz, such as safety-first models, elliptical distributions, value at risk-
based optimization, maximizing the performance measures EVA and RAROC and
modelling the uncertainty of input parameters [10].
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The Markowitz mean-variance portfolio optimization is a well-known investment
theory that is widely used in allocating the assets. Its biggest influence can be seen
on the practice of portfolio management. The theory is focused on evaluating and
managing the risks and returns of a portfolio of investments. This is highly advan-
tageous as the resulting “optimized”portfolio will either have the same expected
return with fewer risks than before or a higher expected return with the same level
of risk. The Markowitz mean-variance optimization problem has several alterna-
tive formulations that are used in practical applications. One of these alternative
formulations is using a risk aversion coeffi cient in the model, which is called the
risk aversion formulation. This study handles the risk aversion formulation of the
classical Markowitz model.
Although the Markowitz model is successful in the theory, there are various

challenges of the model. The parameter uncertainty is an important issue in the
optimization problems. In the Markowitz model, the uncertainty in the market
parameters affects the optimal solution of the problem. Thus, the results cannot
be reliable enough. There are numerous studies in the literature to overcome the
diffi culties of the Markowitz model: Chopra and Ziemba [8] studied the estimated
parameters. Broadie and Chopra [6] used the estimation errors in their study.
Chopra [7] and Frost and Savarino [12, 13] presented a method related to the
portfolio weights. Chopra et al. [9] used the James-Stein estimator for the means,
Klein and Bawa [16], Frost and Savarino [12], and Black and Litterman [5] used the
Bayesian estimation of means and covariances [19].
An underlying assumption of Markowitz’s model is that the precise estimates

of µi and σij have been obtained. Consequently, µi and σij are treated as known
constants; however, asset returns are variable. It is reasonable to conclude that
a model which treats returns as known constants will produce a portfolio whose
realized return is different from the optimal portfolio return given by the objective
function value. In particular, when the realized asset returns are less than the es-
timates used to optimize the model, the realized portfolio return will be less than
the optimal portfolio return given by the objective. Therefore, it is worthwhile ex-
ploring the alternative frameworks, such as the robust optimization, for application
to the portfolio selection problem. Although the distributions of asset returns are
uncertain, in the robust optimization framework, it may be asserted that µand σ,
or both, belong to an uncertainty set, the bounds of which can be defined [15].
The aim of the method is to obtain a solution that is robust to the parameter

uncertainty and estimation errors. In this framework, the robust counterpart of
the original problem is handled. The robust problem is in fact the worst-case
formulation of the original problem.
The first studies in the robust optimization framework are given in the studies of

Ben-Tal and Nemirovski [2], [3], [4]. The first study handled the robust approach
for linear programming. The other studies introduced the robust framework for
convex programming. In these studies, it is assumed that the model parameters are
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unknown, but they are bounded and belong to the specific uncertainty sets defined
by historical knowledge. The aim of the robust (worst-case) approach is to obtain
the optimal solution of the model which is robust to the parameter uncertainty
and the worst-case situation. The robust counterpart of the original problem is
handled in the robust model.
Goldfarb and Iyengar handled various robust portfolio selection problems in

their study, such as the robust mean-variance portfolio selection, the robust mini-
mum variance problem, the robust maximum return problem, the robust maximum
Sharpe Ratio problem, and the robust value at risk problem [14].
There are many latest references in the literature about the robust portfolio

selection problem. Wang and Cheng [28] considered the robust portfolio selection
problem which has a data uncertainty described by the (p, w)-norm in the objective
function. Balbás A., Balbás B. and Balbás R. [1] handled portfolio selection prob-
lems under risk and ambiguity. Yu X. [29] developed a multi-period mean-variance
model where the model parameters change according to a market with Markov
random regime switching. Nalan G. and Canakoglu E. [25] considered a portfo-
lio selection problem under temperature uncertainty. They introduced stochastic
and robust portfolio optimization models using weather derivatives. LotfiS., Salahi
M. and Mehrdoust F. [20] used the robust optimization approach to address the
ambiguity in the conditional value-at-risk minimization model.
The aim of this study is to introduce the risk aversion portfolio selection prob-

lem under the input parameter µ uncertainty. This problem is called the (maxmin)
robust counterpart of the risk aversion problem. Moreover, it is aimed to obtain
the optimal portfolio (the optimal solution of the robust problem) under this un-
certainty and to compare the solution with the classical risk aversion solution.
In Inan [16] and Inan [17], the robust optimization approach is studied on the

portfolio optimization problem. Numerical results showed that the classical optimal
solution and the robust optimal solution gave similar values to the objective func-
tion. As a result, the optimal solution obtained in the uncertainty case is robust to
the uncertainty case. The finding in the study is consistent with these studies.
The rest of this paper is organized as follows: In Section 2, the Markowitz port-

folio optimization model and another alternative model, the risk aversion problem,
is introduced. Section 3 presents the robust portfolio optimization method. The
(max-min) robust counterpart of the problem is given. Finally, the max-min prob-
lem is converted into the classical maximum problem by the Lagrange method. In
Section 4, a numerical example of the model with a real data set is handled. The
data is taken from BIST (Borsa Istanbul). In Section 5, some conclusions in certain
and uncertain situations are given.
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2. MARKOWITZ MEAN-VARIANCE PORTFOLIO OPTIMIZATION
PROBLEM

Harry Markowitz published his study and formed the basis for themean-variance
optimization “Portfolio Selection” in 1952. He suggested that investors should
create the optimal portfolio based on the balance between the expected return and
the risk. In the Markowitz portfolio model, the returns are defined as the mean
vector, and the risk is defined as the variance of return. The model uses the opti-
mization and probability methods together under uncertainty. The model comprises
the return matrix, the mean vector and variance-covariance matrix components.
Suppose that an investor has a portfolio comprised of n risky assets, denoted as

Si The return of the security Si is defined as Ri, and the weight of the i.security
in the portfolio is defined as Xi.
The model can be created in two frameworks: (i) minimizing the risk of the

portfolio for a certain level of expected return, (ii) maximizing the return of the
portfolio for a certain level of risk.
The first model is given as,

minXtΣX

µtX ≥ α
n∑
i=1

Xi = 1

Xi ≥ 0, i = 1, ..., n (2.1)

The second model is given as,

maxµtX

XtΣX ≤ β
n∑
i=1

Xi = 1

Xi ≥ 0, i = 1, ..., n (2.2)

where α, β are constant, which are called the level degree. The descriptions of the
model components are given as follows:

(Rk1, ..., Rkn)
t represents the n kinds of returns at time k (k = 1, ...,m), where

Rki is the return of i.securities, i = 1, ..., n, k = 1, ...,m. The total data matrix is
represented as,  R11 ... R1n

...
...

Rm1 ... Rmn

 (2.3)
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The return vector is denoted as R = [R1...Rn]
t inm period, it contains the expected

value (mean) of each security. The expected vector of R is denoted as;

µ = [µ1...µn]
t

The input parameters µ and Σ are not certain. It is very diffi cult to estimate the
correct values of these parameters. In the Markowitz model, the estimates of these
parameters are used as follows:

µ = [µ1...µn]
t (2.4)

µ =
[∑m

k=1
Rk1
m ...

∑m
k=1

Rkn
m

]t
and the covariance matrix is given by,

Σ =

 σ11 ... σ1N
· · · · · ·
σN1 · · · σNN

 (2.5)

Here; σij is the covariance between asset i and asset j.
The corresponding variance is given as,

σij
2 =

m∑
k=1

(Rki − µi)
(
Rkj − µj

)
m− 1

(2.6)

Thus, the random return vector R is represented by the (µ,Σ), [25].
There are two different definitions of R. One of them is the random vector. In

finance applications, one should use the adjusted (from splits and dividends) stock
prices to make calculations. However, it is diffi cult to obtain the adjusted stock
prices from the splits and dividends, so only the closing prices are used in the study.
The alternative model that combines the risk and the return of the objective

function can be created using the coeffi cient of risk aversion. The risk aversion
formulation problem is defined as,

max
(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1] (2.7)

where, λ is the risk aversion coeffi cient. When the investor is exposed to the uncer-
tainty situation, the risk aversion coeffi cient can be used to reduce that uncertainty.
If λ is large, the aversion to the risk is high. For example, the risk-averse investor
might make an investment in treasury bonds that have low but guaranteed expected
returns. Otherwise, if λ is small, the aversion to the risk is low. For example, the
risk-loving investor might make an investment in stocks, the options of which have
high expected returns but also high risks.
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3. ROBUST PORTFOLIO OPTIMIZATION PROBLEM

In spite of the theoretical success of the mean-variance model, practitioners have
shied away from this model. The solution of optimization problems is often very
sensitive to perturbations in the parameters of the problem. Since the estimates
of the market parameters are subject to statistical errors, they are very sensitive
to the perturbations in the inputs. The results of the optimization problems may
not be very reliable. There are a number of discussions on how to decrease or
eliminate the possibility of using incorrect inputs for the optimization problem.
Various aspects of this phenomenon have been extensively studied in the literature
on portfolio selection.
Michaud [23] proposed to use the technique of resampling. In his study, he

suggested resampling the input parameters from a confidence region and then aver-
aging the cumulative portfolios that were obtained by each pair of sampling data.
The main idea is that if resampling was performed enough times, the averaged op-
timal portfolio would be more stable and less sensitive to the perturbations in the
inputs. But when the amount of assets becomes large, this method is not useful
and effi cient [21].
The robust optimization is the one of the aspects in the portfolio selection prob-

lems [14]. In the robust approach, the worst-case formulation of the original
optimization problem, called the robust counterpart of the problem, is handled.
The robust counterpart of the classical risk aversion model is used in this study.
In [11], the (maxmin) robust counterpart of the risk aversion model is given

as

max
X

min
µ∈Uδ(µ̂)

(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1] (3.1)

In the problem, it is assumed that the expected return vector µis unknown but belongs
to the specific uncertainty set Uδ (µ̂). Many special uncertainty sets are defined for
the uncertain parameters in the literature. In this study, the uncertainty set for µ
is taken as

Uδ (µ̂) = {µ/(µ− µ̂)′(Σµ)
−1

(µ− µ̂ ) ≤ δ2} (3.2)

where the parameters of the model are defined as follows:
µ̂ :The estimated expected return vector
µ :The true expected return vector
Σµ = 1

T Σ , Estimation error covariance matrix
T : Return data observations for N assets.
δ : small number (δ > 0)
The aim of the problem is to determine the weight vector X, which is robust to

the uncertainty and the worst-case realization of the µ parameter.
For solving the robust (maxmin) problem easily, the problem is converted to the

standard maximum optimization problem as follows:
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Firstly, the uncertainty set is written as a constraint, then the problem can be
written as

minµ

(
µ
′
X − λX

′
ΣX

)
(µ− µ̂)

′
(Σµ)

−1
(µ− µ̂) ≤ δ2 (3.3)

To solve this problem, the Lagrangian method can be used. The Lagrangian of the
problem takes the form,

L (µ, γ) = µ
′
X − λX

′
ΣX − γ

(
δ2 − (µ− µ̂)

′
(Σµ)

−1
(µ− µ)

)
(3.4)

The optimal values of µ and γ are obtained by the first order condition as

µ∗ = µ̂− 1

2γ
ΣµX (3.5)

γ∗ =
1

2δ

√
X ′ΣµX (3.6)

Finally, by substituting the expressions in the Lagrangian form, the robust problem
is obtained as

max

(
µ
′
X − λX

′
ΣX − δ

√
X ′ΣµX

)
X

′
l = 1. (3.7)

4. APPLICATION

In this section, the robust portfolio selection approach, which was originally
presented in the study by Fabozzi et al., is suggested. The data set is taken as the
daily closing prices of nine securities that cycled in BIST 100 between 20.08.2013
and 20.08.2015. In the study, the daily stock price is chosen instead of the monthly
stock price because the number of monthly stock price, which is 24 (for two years),
may not be enough for the application.
The securities taken from the automotive sector belong to Balat, Asuzu, Daos,

Karsn, Tmsn, Froto, Toaso, Ttrak, and Otkar. The returns of the securities
were calculated according to the expression ln (Pt/Pt−1) of the closing prices. Here;
Pt : Closing prices of t. day
The average vector µ, the variance covariance matrix Σ, and the estimation error

covariance matrix ΣM are calculated on the returns. Here;

ΣM =
1

T
Σ

T :Return data observations for N assets
In this study, T is given as 502 days between the designated dates (20.08.2013—

20.08.2015). The return vector µ, the Σ variance covariance matrix Σ and the
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estimation error covariance matrix Σµ are obtained as follows. Note that the values
in the variance covariance matrix Σµ are multiplied by 1000.

µ =



0.00000620
−0.00157000

0.00088650
0.00018563
0.00063045
0.00069976
0.00043500
0.00091629
0.00054343



Σ=

0.000623 0.000047 0.000363 0.000214 0.000249 0.000291 0.000283 0.000238 0.000200
0.000047 0.000804 0.000076 0.000024 0.000119 0.000047 0.000102 0.000053 0.000039
0.000363 0.000076 0.000869 0.000306 0.000324 0.000338 0.000340 0.000396 0.000213
0.000214 0.000024 0.000306 0.000429 0.000146 0.000216 0.000226 0.000281 0.000137
0.000249 0.000119 0.000324 0.000146 0.000607 0.000254 0.000297 0.000188 0.000158
0.000291 0.000047 0.000338 0.000216 0.000254 0.000674 0.000337 0.000243 0.000213
0.000283 0.000102 0.000340 0.000226 0.000297 0.000337 0.000765 0.000239 0.000177
0.000238 0.000053 0.000396 0.000281 0.000188 0.000243 0.000239 0.000598 0.000149
0.000200 0.000039 0.000213 0.000137 0.000158 0.000213 0.000177 0.000149 0.000378

Σµ=

0.001246 0.000093 0.000725 0.000429 0.000497 0.000582 0.000566 0.000476 0.000400
0.000093 0.001607 0.000152 0.000048 0.000239 0.000094 0.000204 0.000105 0.000077
0.000725 0.000152 0.001739 0.000611 0.000648 0.000676 0.000680 0.000791 0.000426
0.000429 0.000048 0.000611 0.000858 0.000293 0.000433 0.000451 0.000562 0.000275
0.000497 0.000239 0.000648 0.000293 0.001215 0.000507 0.000595 0.000376 0.000315
0.000582 0.000094 0.000676 0.000433 0.000507 0.001348 0.000675 0.000486 0.000426
0.000566 0.000204 0.000680 0.000451 0.000595 0.000675 0.001529 0.000479 0.000354
0.000476 0.000105 0.000791 0.000562 0.000376 0.000486 0.000479 0.001195 0.000298
0.000400 0.000077 0.000426 0.000275 0.000315 0.000426 0.000354 0.000298 0.000756

The classical model and the robust model, which have been defined in Section 2
and Section 3, are handled in the application. The models are given as follows:
The classical risk aversion portfolio optimization problem

max
(
µ
′
X − λX

′
ΣX

)
X

′
l = 1, l = [1, 1, ..., 1]

The robust problem

max

(
µ
′
X − λX

′
ΣX − δ

√
X ′ΣµX

)
X

′
l = 1

In the first case, the problem (2.7) is solved for the different 20 values of λ, which
is chosen by the information given in the Risk Aversion Formula by Fabozzi et al.
[11]. The λ is chosen with an increase of 0.2. The [0,4] interval can be divided into
smaller pieces so the number of λ can be increased.
For the different values of λ, the movement of the expected return, the variance

and the objective function value are seen in the related Figure 1, Figure 2 and
Figure 3.The figures show that when the value of λ increases (The aversion to risk
is high—the risk-aversion investor), the values of the expected return, the variance
and the objective function decrease. For the small values of λ (the aversion to risk



58 SIBEL ACIK KEMALOGLU, GULTAC EROGLU INAN, AND AYSEN APAYDIN

Figure 1. The movement of E : Expected V alue and V : V ariance

for the classical problem

Figure 2. The movement of E and V for the robust problem

is low—the risk-lover investor), the values of the expected return, the variance and
the objective function increase. In this case, it can be said that if the investor
prefers the high expected return, the high risk must be considered.
In the robust case, when the expected return µ parameter is robust, the aim is

to show the movement of the optimal solution to the parameter uncertainty. For
this aim, the robust problem, which is given in (3.7), is solved for different λ and δ
values.
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Figure 3. The movements of the objective functions for the classical
problem and the robust problem

Table 1. The differences between the objective function values for the classical
and the robust problem

λ f_classical(x)− f_robust(x)
0.2 0.0004380
0.4 0.0004408
0.6 0.0004546
0.8 0.0004869
1.0 0.0003630
1.2 0.0002022
1.4 0.0006047
1.6 0.0006361
1.8 0.0006652
2.0 0.0005666
2.2 0.0007187
2.4 0.0007442
2.6 0.0007688
2.8 0.0007929
3.0 0.0008167
3.2 0.0008400
3.4 0.0008634
3.6 0.0008103
3.8 0.0009110
4.0 0.0009252

If there is a need to compare the solution of the robust problem with the solution
of the classical problem, it is observed that for the same λ values, the expected
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return of the classical problem is larger than that of the robust problem. At the
same time, its variance is smaller than the variance of the robust problem. In this
situation, an investor should prefer the classical model.
On the other hand, the performances of portfolio models are measured by the

Sharpe Ratio (SR) method. The Sharpe Ratio is defined as

SR =
E (rp)√
V ar (rp)

.

High SR values mean high performance. The Sharpe Ratio values obtained for
the classical and the robust problem are presented in Table 2.

Table 2. The Sharpe ratio values for the classical and the robust problem.
Sharpe ratio (Classical) Sharpe ratio (Robust)

0.039004 0.020146
0.039332 0.020146
0.041081 0.020146
0.042440 0.020146
0.042931 0.020017
0.043053 0.018400
0.043017 0.017066
0.042916 0.015955
0.042789 0.015024
0.042655 0.014241
0.042526 0.013568
0.042404 0.012994
0.042285 0.012495
0.042081 0.012059
0.041943 0.011673
0.042081 0.011328
0.041514 0.011022
0.041113 0.010750
0.040747 0.010504
0.040390 0.010279

It is seen that the classical Sharpe Ratio values are higher than the robust Sharpe
Ratio values. Therefore, it can be said that the performance of the classical problem
is better than the performance of the robust problem. However, in the uncertainty
situations, it is recommended that the robust problem be used, which works as well
as the classical problem.

5. CONCLUSION

The portfolio optimization model of Harry Markowitz can be created in two
frameworks, which minimize the risk of the portfolio for a certain level of expected
return and maximize the return of the portfolio for a certain level of risk. In spite
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of the theoretical success of the mean-variance model, practitioners have avoided
this model. The alternative model that combines the risk and the return of the
objective function can be created using the coeffi cient of risk aversion. The solution
of optimization problems is often very sensitive to perturbations in the parameters
of the problem. In the literature, there are many alternative methods suggested to
overcome the parameter perturbations. The robust optimization is one of the most
commonly used models in the uncertainty case.
The results show that when the value of λ increases, the values of the expected

return, the variance and the objective function decrease. It means that the aversion
to risk is high here, so it can be said that the investor is the risk-aversion investor.
For the small values of λ, on the other hand, the values of the expected return, the
variance and the objective function increase. Here, the aversion to risk is low, so it
means that the investor is the risk-lover investor. In this case, it can be said that
if the investor prefers the high expected return, the high risk must be taken into
consideration.
If the solution of the robust problem is to be compared with the solution of the

classical problem, it is observed that for the same λ values, the expected return
of the classical problem is larger than the robust problem. At the same time, its
variance is smaller than the robust problem variance. In this situation, an investor
should prefer the classical model. The classical solution obtained in the certainty
situation and the solution obtained in the uncertainty situation give similar values
at the objective function. Consequently, it can be said that the optimal solution
in the uncertainty situation is robust to ambiguity of the parameter µ. The robust
model, which works as well as the classical model in the uncertainty situations, can
be used instead of the classical model.
Finally, the performances of portfolio models are measured by the Sharpe Ratio

(SR) method. It is seen that the classical Sharpe Ratio values are higher than
the robust Sharpe ratio values; however, the robust problem, which works well to
overcome uncertainty, should be preferred in the uncertainty situations.
In the future studies, the problem can be solved for different values of λand δ.

The data was taken from the automotive sector in this study. In order to improve
the study, it is possible to investigate other sectors. In the modelling part, the
short-selling is forbidden. However, in theory it is possible to allow short-selling.
Hence, allowing the sort-selling will be studied in the future. The solutions can be
compared for all these situations.
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