
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 67, Number 2, Pages 64—81 (2018)
DOI: 10.1501/Commua1_0000000862
ISSN 1303—5991

Available online: September 15, 2017

http://communications.science.ankara.edu.tr/index.php?series=A1

MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR
INTEGER AND BINARY SEQUENCES

ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

Abstract. Generating random numbers and random sequences that are in-
distinguishable from truly random sequences is an important task for cryptog-
raphy. To measure the randomness, statistical randomness tests are applied to
the generated numbers and sequences. Knuth test suite is the one of the first
statistical randomness suites. This suite, however, is mostly for real number
sequences and the parameters of the tests are not given explicitly.

In this work, we review the tests in Knuth Test Suite. We give test para-
meters in order for the tests to be applicable to integer and binary sequences
and make suggestions on the choice of these parameters. We clarify how the
probabilities used in the tests are calculated according to the parameters and
provide formulas to calculate the probabilities. Also, some tests, like Per-
mutation Test and Max-of-t-test, are modified so that the test can be used
to test integer sequences. Finally, we apply the suite on some widely used
cryptographic random number sources and present the results.

1. Introduction

Random numbers have an important role in various areas. From daily life cryp-
tographic applications like cell phone, SSL [1] to military communication random
numbers are vital. The quality of the random number generator is vital for the
security level of the application. For example, if the key used in an encryption
algorithm is not random, that is some bits of the key can be guessed with a proba-
bility higher than 1

2 , then the complexity for obtaining the ciphertext will be easier
than the claimed security of the algorithm. Therefore, generating random numbers
and random sequences that are indistinguishable from a truly random sequence
is an important task. Random numbers are generated either from a determinis-
tic or an non-deterministic generator. The term random number generator(RNG)
generally refers to the non-deterministic random number generators. There are
various true random number generators actively sold in the market [2, 3]. The

Received by the editors: August. 06, 2016; Accepted: June 12, 2017.
2010 Mathematics Subject Classification. 65C10.
Key words and phrases. Knuth test suite, Statistical randomness testing .

c©2018 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics.

Communications de la Facu lté des Sciences de l’Université d’Ankara-Séries A1 Mathematics and Statistics.

64

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 65

deterministic random number generators are called pseudo-random number genera-
tors (PRNGs) [4,5]. For some reasons like regenerating the random number or the
effi ciency of the generator, the PRNGs are preferred over RNGs. Among with the
advantages PRNGs are weaker than RNGs in terms of randomness of the output
as they are deterministic. Therefore, the PRNGs should be tested to measure how
their outputs are close to the the outputs of the RNGs. For this purpose, PRNGs
are subject to statistical randomness tests.
A statistical randomness test compares a specific property of the sequence to

that of a truly random sequence and produces an output value which indicates the
randomness of the sequence. For example, in a random bit sequence, the number
of ones and the number of zeros should be equal or close to each other. Frequency
test [6] checks if the number of occurrences of ones and zeros within the sequence
are as expected from a truly random sequence.
A single test is not enough to conclude randomness of a PRNG. The generator

should be tested by various statistical randomness tests, each of which inspects
a different aspect of a random sequence. Therefore, various tests are gathered
together to form a test suite and applied to sequences. Knuth [7], NIST [6], Diehard
[8], Dieharder [9], TestU01 [10] are examples of tests suites in the literature.
Knuth is one of the first researchers who published a test suite consisting of 11

tests in his book [7]. In this suite, the underlying theory of tests for real number
sequences are given. Some of these tests are intended to be applicable to integer
sequences as well. However, assumptions for real number sequences are not suit-
able for integer sequences and causes problems when testing these sequences. For
example, Permutation Test assumes any successive terms cannot be equal and all
the test probabilities are given under this assumption but the equality occurs with
a non-negligible probability for integer sequences. In order to the make the suite
suitable for integer and binary sequences, new combinatorial calculations should
be made. Moreover, even if one tests a real number sequence, the test parameters
like sequence length, alphabet size, block size and the like, are not given for most
of the tests in the suite. Therefore, besides new calculations, corresponding test
parameters should be given for each test for the suite to be applicable.
In this paper, we calculate the test probabilities for binary and integer sequences

by considering the abovementioned problems. Moreover, we calculate χ2 probabil-
ities for all tests to have a similar evaluation approach with Knuth. We also give
test parameters, necessary sequence lengths and corresponding probability values,
regarding effi ciency and applicability. As a result, we modify 9 tests of Knuth Test
Suite so that the modified tests are applicable to binary sequences.
The paper is organized as follows. In Section 2 the notation used in the paper

and preliminary information about the primitives used in the calculations are given.
Then, in Section 3, the details of the tests are given. In Section 4 the application
results are presented. Finally, Section 5 concludes the paper.

66 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

2. Preliminaries

In Knuth Test Suite, integer valued sequences are considered. However, in order
to use Knuth Test suite for cryptographic purposes we consider binary sequences
in the following manner. Assume that a binary sequence, S of length l, and a
block size b are given. Then, partition the sequence into non-overlapping blocks
of size b, and discard the remaining terms, if any. Each block is considered as
base 2 representation of an integer in {0, 1, . . . , 2b − 1}. In this way, we obtain an

integer sequence of length lb =
⌊
l

2b

⌋
where the elements are from an alphabet of

size d = 2b. In other words,

S = s1s2 . . . sl, si ∈ A, for 1 ≤ i ≤ l, and A = {0, 1, . . . , d− 1}.

For instance if the binary sequence

S = 10010100100111101

is given and the alphabet size for the test is 8 (or block size b is 3), then the sequence
should be converted to 3-bit integer sequence:

S′ = (100)2(101)2(001)2(001)2(111)201 = 4, 5, 1, 1, 7.

Note that the partitioning is non-overlapping for all the tests mentioned in this
paper. It is also trivial to convert any integer sequence to the d-bit integer sequence.
Some tests partition the sequence into blocks of t consecutive elements and con-

sider the distribution of the blocks. In this case, n denotes the number of blocks.

S = (s1s2 . . . st)(st+1 . . . s2t) . . . (s(n−1)t+1 . . . snt)

= b1b2 . . . bn

Moreover, some tests need to apply operations on the sequence multiple times.
Knuth evaluates the sequences using χ2 goodness-of-fit test which compares the

observations to the expected values using k bins [7]. The observed number of
elements in each bin is compared to the expected number of elements. In order
to apply χ2 properly, each bin should have at least 5 elements. The test outputs
a p-value which is the probability of getting the observed results given that the
sequence is random. To decide if a sequence passes a test or fails, a limit called
significance level, α, is specified. If the p-value is greater than or equal to α, the
sequence is said to pass the test. In statistical randomness testing, generally, α is
chosen to be 0.01 or 0.05.
In the probability calculations of some tests, the Stirling numbers of the second

kind is used. Stirling numbers of the second kind is the number of ways to partition

a set of g elements into h non-empty subsets and denoted by
{
g
h

}
. The Stirling

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 67

number of the second kind
{
g
h

}
can be computed as

{
g
h

}
=
1

h!

h∑
j=0

(−1)h−j
(
h

j

)
jn.

3. Knuth’s Statistical Randomness Tests

In this chapter, the tests in the Knuth test suite is investigated in details. For
some tests, major changes are proposed without changing the approach followed by
Knuth. Moreover, we propose test parameters that are not given in [7] for all the
tests mentioned in this work.
We cover all the tests in Knuth test suite except the Run Test and the Serial

Correlation Test. In the Run Test, it is assumed that the successive elements
cannot be equal. For real number sequences this assumption is reasonable, however,
for integer sequences the successive elements can be equal with a non-negligible
probability. Without this assumption, the required computations are quite diffi cult
and the modification of run test, unlike other tests, is beyond the scope of this
paper. Yet, there is an ongoing work to modify the run test for integer and binary
sequences. The Serial Correlation Test, on the other hand, does not output a p-
value and the output of this test is not comparable to the outputs of the other
tests.

3.1. Equidistribution (Frequency) Test. Equidistribution test checks if num-
ber of occurrences of each element a ∈ A are as expected from a random sequence.
Knuth proposed two methods to apply this test;

(1) Use the Kolmogorov-Smirnov test with F (x) = x for 0 ≤ x < d.
(2) For each element a, 0 ≤ a < d, count the number of times a appeared in

the sequence and then apply the χ2 test with degree of freedom k = d− 1,
where the expected probability of each bin is pa = 1

d .

In this work, we proceed considering the second method. In [7], no parameters
are given for the alphabet size and the length of the sequence. In order to apply
the χ2 test properly, the size of the alphabet should be chosen accordingly with
the length of the sequence. For example, if S is 128 bits, then d, the size of the
alphabet, should be at most 4. Otherwise, the expected number of elements in each
bin cannot exceed 5 and χ2 test cannot be applied. In fact, for each bin to have
at least 5 elements, we should have l · 1d ≥ 5, ie. l ≥ 5d. Since each element is of
size log2d bit, the length of the sequence should be at least 5d log2d bits. Leaving
a safe distance, Table 1 can be used to decide on the alphabet size d for a given
sequence size.
The following is an example on how to apply the test and calculate the p-value.

Let S = 10001010110111110100100110110010, with lb = 32. According to Table 1,
the alphabet size should be 4 ie. each element is 2-bit. Then, the counters for 2-bit

68 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

lb lb ≤ 20 20 < lb ≤ 80 80 < lb ≤ 240 240 < lb ≤ 640 640 < lb ≤ 1600
d 2 4 8 16 32

Table 1. Sequence Bit Length-Alphabet Size Table for Equidis-
tribution Test

elements are #00 : 3,#01 : 3,#10 : 6,#11 : 4. Alternatively, one can convert the
sequence into a 2-bit integer sequence S′ = 2, 0, 2, 2, 3, 1, 3, 3, 1, 0, 2, 1, 2, 3, 0, 2 and
count the number of occurrences of each element. The test value can be computed
as

χ2 =

k∑
i=1

(Observedi − Expectedi)2
Expectedi

=

4∑
i=1

(Observedi − 4)2
4

= 0.25 + 0.25 + 1 + 0

= 1.5

The p-value for degree of freedom k = 3 and the test value 1.5 is 0.6822. As-
suming the significance level of α = 0.01, the sequence passes the Equidistribution
Test.

3.2. Serial Test. In Knuth test Suite, Serial test is an Equidistribution Test for
pairs and hence it is equivalent of Equidistribution Test with alphabet size d2.
It checks whether the pairs of elements are equally distributed within the tested
sequence or not. The test is proposed as follows: partition the sequence into non-
overlapping subsequences of size two: S2 = (s1, s2), (s3, s4) . . . (s2n−1, s2n). Then,
for each possible pair (q, r) with 0 ≤ q, r < d, count the number of occurrences
of the pair (q, r) and apply χ2 goodness-of-fit test with d2 − 1 degrees of freedom
and 1

d2 expected probability for each bin. Since there are
l
2 pairs and each bin has

the same probability, for χ2 to be applicable, the inequality l
2
1
d2 ≥ 5 should be

satisfied, which gives l ≥ 10d2. Therefore, the length of the sequence should be at
least 10d2 log2d bits.
The suggested parameters for the Serial Test are given in Table 2.

lb lb ≤ 80 80 < lb ≤ 480 480 < lb ≤ 2880 2880 < lb ≤ 15360
d 2 4 8 16
Table 2. Sequence Bit Length-Alphabet Size Table for Serial Test

This test can be extended to triples or quadruples easily, however, l should be
large enough or d should be taken small in order to get reasonable number of
triples/quadruples.

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 69

3.3. Gap Test. This test examines the distribution of the lengths of the gaps
among the elements of a specified set within the sequence. To apply the test, first,
a subset U of A is fixed. Then, the number of gaps between the elements of U in
the sequence S are counted according to their lengths. For example, assume A =
{0, 1, . . . , 7}, S = 7, 2, 4, 6, 2, 5, 2, 7, 4, 5, 6, 0, 7, 4, 1, 1, 7, 0, 4, 1 and let U = {a | a <
4, a ∈ A}. If we mark the elements of U we get S = 7,2, 4, 6,2, 5,2, 7, 4, 5, 6,0, 7, 4,
1,1, 7,0, 4,1, 6. The gaps between the elements of U are of length 2, 1, 4, 2, 0, 1, 1
in order. The number of gaps of size zero is 1, size one is 3, size two is 2 and size four
is 1. Finally, the observed distribution of the length of the gaps are compared to the
expected distribution applying χ2 goodness-of -fit test and a p-value is obtained.
The following algorithm gives the expected probabilities of the length of the

gaps.

Theorem 1. Let A be an alphabet of size d and U be any nonempty subset of A.
Let S be a random sequence of elements of A and let si ∈ U for some i. Then, the
probability that si+k /∈ U for k = 1, 2, .., r is

pr =

(
1− |U|

d

)r |U|
d
.

Proof. In order for a gap of length r to occur, after an element of U, r elements from
the set A\U should follow and to terminate the gap there must follow an element
from U:

u v . . . v︸ ︷︷ ︸
r

u, u ∈ U, v ∈ A\U

Since an element from U will appear in the sequence with probability |U|d the prob-
ability of the length of the gap to be r is (1− pu)rpu. �

For the example above, pu = 4
8 . Therefore, the probabilities of the length of the

gaps being 0, 1, 2 and 3 are 1
2 ,

1
4 ,

1
8 and

1
16 respectively. So, since the number of

total gaps is 7, the expected number of gaps are 7
2 ,

7
4 ,

7
8 and

17
16 for 0, 1, 2 and 3.

Applying the χ2 test with the expected and observed values we get the p-value as
0.183255.
For short sequences as above the probability of long gaps will be very small. On

the other hand, for long sequences the number of lengths will be too many to handle.
Therefore, it is a good idea to limit the number of lengths as r = 0, 1, . . . j − 1 and
r ≥ j for a proper j. The probability of the length of a gap to be greater than or
equal to j is (1 − pu)j as after the first j elements from the set A\U, no matter
next element belongs to U or not the size of the gap will be greater than or equal
to j.
One should choose j, U and l so that, pj and pr, for r = 0, 1, . . . , j−1, enables the

application of χ2 test. That is, the number of gaps of length r, for r = 0, 1, . . . , j−1
and r ≥ j should be at least 5.

70 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

For example, considering d = 256, if one chooses |U| = 4, then the probability
of a gap of length 0 becomes 4

256 = 0.015625. In order to expect at least 5 gaps
of length 0, the total number of total gaps should be at least 5 · 1

0.015625 = 320. g
gaps require g+1 elements from U, therefore, for 320 gaps one needs 321 elements
from U. Since |U| = 4, on average 4 elements from U will occur in 256 elements in
the sequence. Therefore, for 320 gaps one needs a sequence of 19968 elements that
is 159744 bits. Since the probabilities for longer gaps will be smaller, the required
sequence length will be longer.
However, considering |U| = 16 with d = 256 one gets more applicable results. In

this case

p =
16

256
=
1

16

p0 =
1

16
= 0.062500

p1 =
1

16

240

256
= 0.058593

p2 =
1

16

(240
256

)2
= 0.054931

p3 =
1

16

(240
256

)3
= 0.051498

p4 =
1

16

(240
256

)4
= 0.048279

p>4 =
(240
256

)5
= 0.724196.

Since the lowest probability is p4, about d 5
0.048279e = 104 gaps needed for χ

2 to be
applicable. This makes 1680 elements and a 13440 bit sequence will be long enough
which is more feasible than |U| = 4 case. So, one can use the gap test with d = 256,
l > 13440 bits, |U| = 16, for instance U = {x|x < 16}, and given probabilities
above.
For shorter sequences, one may take |U| larger and consider less χ2 bins. For

instance, for a sequence of 1200 bits, take |U| = 64, and consider the bins for
r = 0, 1, 2, 3 and r > 3.

p =
64

256
=
1

4

p0 =
1

4
= 0.25

p1 =
1

4

192

256
= 0.187500

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 71

p2 =
1

4

(192
256

)2
= 0.140625

p3 =
1

4

(192
256

)3
= 0.105468

p>3 =
(240
256

)4
= 0.316406.

3.4. Poker Test. This test checks if the distribution of the number of distinct
elements in a t-tuple is as expected from a random sequence. In [7], Knuth considers
n groups of non-overlapping t successive elements and counts the number of t-tuples
containing exactly r distinct elements where r = 1, 2, . . . , t. The probability of a
t-tuple to have exactly r distinct elements is as follows.

Theorem 2. Let A be an alphabet of size d and a1a2 . . . at be a randomly chosen
t-tuple from At. Let U = {a1, . . . , at} ⊇ A. Then for each r, 1 < r ≤ t, the
probability that U contains r distinct elements is

Pr(|U| = r) =
d(d− 1) · · · (d− r + 1)

dt

{
t
r

}

where
{
a
b

}
is the Stirling number of the second kind.

Proof.

Pr(|U| = r) =
choosing r distinct elements out of d

All possible t-tuples

Number of ways topartition t-tuple
into r subsets


=

d(d− 1) · · · (d− r + 1)
dt

{
t
r

}
�

One should choose d and t carefully in order for the test to be applicable to variety
of sizes. If we choose d = 256 as the above tests, unless selecting t very large which
will result in need for a very long sequence, the probabilities for r = 1, 2, . . . , t− 2
will be very small. This will lead to small number of bins in χ2 test and, also, will
increase the necessary length of the sequence to have at least 5 elements in each bin.
In that case, for the alphabet size a divisor or a multiple of 8 will be a good choose
for implementation purposes since one byte corresponds to 8 bits. So, we choose
4-bit alphabet, ie. d = 16, with t = 8. Using these parameters, the probabilities pr

72 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

can be calculated as

p1 = 3.7× 10−9 ≈ 0 since the number of blocks will be smaller than 109

p2 = 0.000007

p3 = 0.000756

p4 = 0.017299

p5 = 0.128143

p6 = 0.357091

p7 = 0.375885

p8 = 0.120820.

The χ2 test will be applied with 5 bins where the first bin is “less than 5 distinct
elements”and other “r distinct elements”each composes a bin: second bin covers “5
distinct elements”, third bin is composed of “6 distinct elements”and so on. Since
the least probable case, “less than 5 distinct elements”, has probability 0.018062,
in order to apply χ2 one needs d 5

0.018062e = 277 blocks of 8 4-bit elements which
means one needs at least 8864 bit sequence.

3.5. Coupon Collector Test. Coupon Collector test examines the sequence by
the length of the subsequences that have a complete set of alphabet elements. Start-
ing from the first sequence element, one traces the sequence until all the alphabet
elements are covered and records the length of the subsequence. For example let
A = {0, 1, 2, 3} and S = 1, 0, 2, 1, 2, 0, 3, 3, Marking the first occurrences of
alphabet elements, S = 1,0, 1,2, 2, 0,3, 3, . . . , it is seen that the length of the
shortest subsequence containing all the alphabet elements is 7. Then, resuming
from the following element, again, finds the length of the subsequence covering all
the alphabet elements and so on. When all the sequence is traced, the length of
the subsequences are compared to those of a random sequence.The expected prob-
ability for a subsequence of length c that covers all the elements in the alphabet is
given below.

Theorem 3. Let A be an alphabet of size d. The probability that all elements of
A appears in a sequence a1a2 . . . ac, but not in a1a2 . . . ac1 is

pc =
d!

dc

{
c− 1
d− 1

}
,

and the probability that the subsequences is of length greater than or equal to c is

p≥c = 1−
d!

dc−1

{
c− 1
d

}
.

Proof. Now notice that, since the last element completes the collection, it should
not appear previously in the subsequence. That is, this element only occurs one and
its the last position. Fixing the last element, we left with a subsequence of length

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 73

c− 1, containing d− 1 distinct elements. The number of distinct such sequences is
equal to the number of onto functions from a set of size c− 1 to a set of size d− 1,
which is (d−1)!

{
c− 1
d− 1

}
. Considering the last element is chosen from a set of size d,

the number of distinct subsequences containing all d elements is d(d− 1)!
{
c− 1
d− 1

}
.

Since there are overall dc subsequences, the probability of such a subsequence is

pc =
d!

dc

{
c− 1
d− 1

}
.

The probability of a subsequence of length greater than or equal to c is the
complement of the probability that a sequence of length c − 1 containing all d
elements in any order. This includes all subsequences containing d distinct elements
from a subsequence of length d to a subsequence of length c − 1. The probability
of a subsequence of length c − 1 containing d distinct elements is equal to the
number of onto functions from a c − 1-element set to a d-element set. So, the
probability of such a subsequence is pc̃ = d!

dc−1

{
c− 1
d

}
. Therefore, the probability

of a subsequence of length greater than or equal to c containing d distinct elements

is 1− pc̃ = 1− d!
dc−1

{
c− 1
d

}
. �

When considering the d = 256 again, computing the Stirling numbers becomes
infeasible. Therefore, we need to decrease the alphabet size. Similar to the Poker
Test case, the best candidate for d is 16. For the case d = 16, the bin values and
the probabilities are given below where pi−j is the probability that the length of
the sequence covering all the alphabet elements is between i and j, inclusive.

p16−34 = 0.107625

p35−38 = 0.085983

p39−42 = 0.100841

p43−46 = 0.104948

p47−50 = 0.100590

p51−54 = 0.090983

p55−59 = 0.096727

p≥60 = 0.312300

One can apply an 8-bin χ2 goodness-of-fit test using the above probabilities.
Since the lowest probability is p35−38 = 0.085983, the number of collections should
be at least d 5

0.085983e = 59. In the worst case, each subsequence containing a
collection is at most 60 elements long, or one can stop searching for a collection
after 60th element as the bin for 60 and any length longer then 60 are the same.
Therefore, the sequence is 3540 elements long which is corresponding to 14160 bits.

74 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

3.6. Permutation Test. The Knuth Permutation Test focuses on the frequencies
of the the arrangements of the elements within a block. Each block can be arranged
in different ways considering the lexicographic ordering. For example, (4 3 0 1)
and (9 7 4 5) have the same lexicographic ordering. Test compares the observed
frequencies of the arrangements to the expected frequencies for a random sequence.
First, the sequence is divided into blocks of size t. In [7], Knuth assumes the

sequence is a real number sequence and it is not expected to have a repetition within
a block. It is assumed that each block can be arranged in one of t! permutations.
Counting the frequencies of each permutation, one can apply a χ2 test with bin
probability 1

t! for each bin. However, it is very likely that in an integer sequence
there will be elements that will appear more than once within a block. In order
to have an integer sequence that does not likely to contain repetitions within t-
element blocks, the elements should be very large which makes the sequence too
long. Another idea is to reduce the size of the blocks which in turn reduce the
sensitivity of the test.s
Here, we propose another method to check the frequencies of the permuta-

tions without changing the notions in [7]. Again consider d = 256 and let t=4.
The probability of occurring 4 distinct elements within a block is 256

256
255
256

254
256

253
256 =

0.976729. Each 24 permutation of 4 distinct elements can occur with probability
p = 0.976729989

24 = 0.040697 and repetition within a block occurs with probability
1 − 0.976729 = 0.023270. So, applying the χ2 test with 25 bins, 24 bins for non-
repeating blocks and one for repeating blocks one can compare the sequence to a
random sequence. To apply the χ2 test one needs at least d 5

0.023270e = 215 blocks of
4 elements, therefore, the length of the sequence must be at least 215 ·4 · log2 256 =
6880 bits.

3.7. Max-of-t Test. In [7], the Max-of-t Test is proposed to test the maximal
elements within blocks of size t in order to check for randomness. The pro-
posed test partitions the sequence into non-overlapping blocsk of t, and applies
the Kol-mogorov-Smirnov test to the maximal elements of the sequences. However,
Kolmogorov-Smirnov test is applied for examining a random sample from some un-
known distribution to see the normality of the sample and it is less powerful than
χ2 goodness-of-fit test. Another option given in [7] is applying the Equidistribution
Test to the maximal elements. Yet, the probabilities of maximal element to be 0 or
d− 1 are not equal. Therefore, one should consider each probability while applying
the Equidistribution Test. Setting the parameters d and t, we find the probabilities
of the maximum element to be exactly m within a block of t and to be smaller than
or equal to m. This way one can apply χ2 test with given probabilities and bin
values.

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 75

Theorem 4. Let A be an alphabet of size d.Then the the probability of maximum
element to be less then or equal to m in a block of t terms is

p(max≤m) =
(m+ 1)t

dt
.

Proof. Including ”0”, there are m + 1 numbers less than or equal to m. In order
for the maximum of t elements to be less than or equal to m, each of t elements
can be one of m + 1 numbers, ie. there are (m + 1)t such blocks of t. Therefore,
the probability of maximum element to be less then or equal to m is

p(max≤m) =
(m+ 1)t

dt
.

�

Moreover, the probability of maximum to be exactly m is

p(max=m) = p(max≤m) − p(max≤m−1)

=
(m+ 1)t −mt

dt

Again considering d = 256 and t = 4, one can use the bin values given in Table 3.
For the χ2-test to be applicable the least probable bin, last bin in this case, should

m Bin Probability
m ≤ 170 0.199078601

171 ≤ m ≤ 203 0.204158801
204 ≤ m ≤ 225 0.204161350
226 ≤ m ≤ 242 0.204431504
243 ≤ m 0.188169744

Table 3. Bin boundaries and probabilities for Max-of-t Test

have at least 5 elements. Therefore, there should be d 5
0.188169744e = 28 blocks of 4

8-bit elements which sums up to 896 bits. So the sequence should be at least 896
bits to apply the Max-of-t test.

3.8. Collision Test. Collision test checks if the number of collisions in predefined
parts of the sequences is as expected from a random sequences. In this test, the
number of collisions are counted and the result is compared to the expected number
of collisions.
The idea is similar to throwing balls into urns: if a ball lands in a nonempty urn,

a collision is said to occur. If there are m urns and n balls then the probability of
c collisions can be calculated as follows.

76 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

Theorem 5. If n balls are thrown into m urns at random, the probability of oc-
curing exactly c collisions is

P{C = c} = m(m− 1) · · · (m− (n− c− 1))
mn

{
n

n− c

}
. (1)

Proof. In order for exactly c collisions to occur, first, n balls should land in n − c
distinct urns guaranteeing the number of collisions does not exceed c. There are
m(m−1) · · · (m−(n−c−1)) ways to choose n−c urns out of mn. Now each of n−c
urns have a single ball in it. Then, the remaining c balls can land in any of these
urns, urns containing a single ball, in any order. For instance all the remaining c
balls can land in the same urn or each ball may land in distinct urns. This is the
partitioning of n balls into nonempty n− c subsets, which is the Stirling number of
the second kind,

{
n

n− c

}
. Therefore, the probability of c collisions is

P{C = c} = m(m− 1) · · · (m− (n− c− 1))
mn

{
n

n− c

}
.

�

For the randomness test, similarly, if the specified portions of two sequences are
equal, a collision is said to occur and the probability in Equation 1 also applies to
the test. In this case, the number of urns is the number of all possible subsequences
in the predefined portion of the sequence. For example, consider the first 10 bits
of the sequences. The number of “urns” is all possible 10 bit subsequences which
is 210. The balls correspond to the distinct sequences to be tested.
Knuth suggests taking m = 220 and n = 214 which means taking 220 sequences

and counting the collisions in the predefined 14 bits of these sequences. For the
sake of simplicity, one can take the first 14 bits or the last 14 bits of the sequence,
but any set of fixed 14 bits of the sequence can be selected to inspect the collisions.
For the suggestions of Knuth, m = 220 and n = 214, the probabilities of collisions

are given in Table 4. After counting the collisions in 220 sequences, if the number
of collisions is less than or equal to 101, the However, in this setting, one can just

of Collisions ≤ 101 ≤ 108 ≤ 119 ≤ 126 ≤ 134 ≤ 145 ≤ 153
Probability 0.009 0.043 0.244 0.476 0.742 0.946 0.989

Table 4. Bin boundaries and probabilities for Collision Test

get a very inaccurate idea about the sequence by finding the interval in which the
number of collisions lies. Therefore, applying the test on a series of sequences and
getting a convenient result becomes inapplicable. In order to overcome this problem
in a similar way with the previous tests, we calculate the collision probabilities and
construct χ2 bins. Using the bins one can apply χ2 goodness-of-fit test and produce

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 77

a p-value. The boundaries of the bins for m = 220 and n = 214 case are given in
Table 5.
Moreover, taking 220 distinct sequences is outside the scope of testing the ran-

domness of a sequence. In fact, it is in the scope of testing a random number
generator. Therefore, it is more convenient to partition the sequence into blocks
instead of taking distinct sequences. For the given probabilities, in order to apply
a proper χ2 test, the number of experiments should be at least d 5

0.88373e = 56. So,
instead of taking a set of 220 distinct sequences, one needs to partition the sequence
into 56 · 220 blocks of 14 bits which suggests a sequence of 822083584 bits. In this
case, one should divide the sequence into 56 subsequences, partition each subse-
quence into 220 blocks and count the number of collisions in each subsequence. An

of Collision Probability
0-113 0.106253
114-118 0.109894
119-121 0.088373
122-124 0.100719
125-127 0.106608
128-130 0.104977
131-133 0.096322
124-137 0.106367
138-142 0.091574
143-16384 0.088913

Table 5. Collision Test χ2 bin probabilities for m = 220 and n = 214

alternative case for shorter sequences is taking m = 216 and n = 210. In this case,
to apply the χ2 test, the number of experiments should be at least d 5

0.141034e = 36.
Therefore, one needs 36 · 216 blocks of length 10 bits which makes 23592960 bits.
Table 6 shows the boundaries and the probabilities for m = 216 and n = 210 case.
Birthday Spacing Test

of Collision Probability
0-5 0.192924
6-7 0.259222
8 0.141034
9-10 0.223346
11-1024 0.177158

Table 6. Collision Test χ2 bin probabilities for m = 216 and n = 210

The Birthday Spacing Test examines the randomness of the sequence by checking
the number of equal differences between selected sequence elements. In this test,

78 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

a number of sequence elements are selected, sorted, and the differences between
each consecutive element are calculated. Then, the number of equal differences
are compared to the expected number of equal differences. For example, let S =
9, 5, 6, 1, 16, 24, 2, 13, 34, 29 and consider the 4th, 5th, 9th and 10th elements: 1, 16,
34, 29. Sorting the elements we get S′=1, 16, 29, 34. The differences between the
elements are G = 16 − 1, 29 − 16, 34 − 29 ie., G = 15, 13, 15. There are two equal
differences, which means one collision occurs in differences. The test resembles the
collision test and throwing balls into urns phenomenon with days of the year as
urns and birthdays as balls. Since the elements of the alphabet are considered as
the days of the year and the sequence elements are the birthdays, the name of the
test is the birthday spacing test.
Knuth suggests to use m = 225 days for n = 512 birthdays. This setting, for bit

sequences, is corresponding to taking 512 elements of 25 bits each, computing the
differences between the consecutive elements. The probabilities for the number of
colliding differences are given in Table 7. Using these probabilities one can apply a
χ2 test for goodness-of-fit.

of Equal Spacings 0 1 2 3 or more
Probability 0.368801 0.369035 0.183471 0.078692

Table 7. The probabilities for Birthday Spacing Test

Similar to the Collision Test, in order to test the sequence, instead of taking
distinct sequences, we take a sequence and partition the sequence according to the
bit length of the “birthdays”. In order to apply the χ2 test properly, one needs to
make d 5

0.078692e = 64 experiments each needs 2
25 blocks of 9 bits long. Therefore,

one needs 225 · 64 · 9 ≈ 234 bits of data. In [7], advises to repeat the process 1000
times instead of 64 which increases the data size to 240 assuming each sequence is
9 bits long.

4. Application

In this section we present the results of Knuth Test suite on various sequences.
The primary aim of the section is to show the applicability of the suite on integer,
and therefore on binary, sequences.
We applied the suite on π, e,

√
2, log(2) and Riemann Zeta function ζ(3). For

these numbers, we excluded the integer parts and test the sequence of 1.000.000
digits to the right of the decimal point. Moreover, we generate sequences, that
have the same size with the previous sequences, by concatenating the SHA-256
[11] and MD-5 [12] hash values of successive integers starting from 0. Another
sequence is generated by using the “random” utility of C#. Then, we generate
a new sequence by giving a 1% “1” bias to this sequence. This way, test our
parameters for frequency related tests. When testing the suite, we apply some
tests twice with distinct parameters. The test parameters can be found in Table 8.

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 79

The results can be seen in Table 9. According to these results, all the non-biased
sequences can be considered to be random. For the biased sequence, Frequency,
Serial, Gap and Max-of-t tests output p-values less than 0.01 indicating the non-
randomness as expected.

Test Parameters
Frequency 1 d = 256
Frequency 2 d = 224

Serial d = 256
Gap d = 256, |U| = 16
Poker d = 16, t = 4
Coupon Coll d = 16
Max-Of-t 1 d = 256, t = 4
Max-Of-t 2 d = 216, t = 6
Permutation 1 d = 256, t = 4
Permutation 2 d = 216, t = 5
Collision m = 216, n = 210

Birthday Sp. m = 225, n = 512
Table 8. Application Test Parameters

PI E Sqrt(2) Log(2) Golden Ratio Zeta(3) MD5 SHA256 C# Random C# Biased
Frequency 1 0,940520 0,174365 0,401369 0,551351 0,039588 0,046532 0,942153 0,509073 0,261939 0
Frequency 2 0,964781 0,261258 0,030199 0,931099 0,570073 0,506992 0,265583 0,221097 0,847772 0,001599

Serial 0,384719 0,052247 0,702899 0,980707 0,131627 0,024494 0,993911 0,231856 0,752165 0
Gap 0,709093 0,305874 0,440585 0,754035 0,348360 0,661038 0,723083 0,444013 0,979131 0
Poker 0,699648 0,956847 0,741170 0,560399 0,422498 0,957892 0,933983 0,355740 0,385174 0,002392

Coupon Coll 0,325971 0,213433 0,621810 0,853074 0,560253 0,837512 0,228078 0,519568 0,188181 0,139930
Max-Of-t 1 0,055390 0,267757 0,551455 0,599732 0,701230 0,150366 0,264187 0,576693 0,312611 0
Max-Of-t 2 0,101844 0,567233 0,665188 0,657665 0,765619 0,548888 0,351747 0,809745 0,020687 0

Permutation 1 0,118599 0,413592 0,388108 0,901025 0,953106 0,365188 0,347413 0,048359 0,559867 0,715372
Permutation 2 0,123178 0,639895 0,905754 0,937968 0,951257 0,069539 0,182614 0,591102 0,379035 0,214872
Collision 0,230030 0,640728 0,935599 0,769927 0,435727 0,698075 0,042924 0,044239 0,564757 0,343109

Birthday Sp. 0,042169 0,935038 0,249442 0,450414 0,060426 0,934736 0,135028 0,054025 0,764874 0,856611

Table 9. Test results of Knuth Test Suite for some mathematical
constants and sequences

5. Conclusion

Knuth Test Suite [7] is one of the first statistical randomness test suites. The
suite is well formed and the statistical basis of the test is well established. However,
the suite is designed primarily to test real number sequences. The assumption given
in the suite, that the tests could be applied to the integer sequences misses some
points and some tests cannot be applied to integer sequences.

80 ONUR KOÇAK, FATIH SULAK, ALI DOĞANAKSOY, AND MUHIDDIN UĞUZ

Moreover, the tester is assumed to have a knowledge over statistics and combina-
torics that the test parameters and probability calculations are not given excluding
one or two exceptions.
In this work, we review all the tests in Knuth Test Suite and excluding the

Run Test and the Serial Correlation Test, we give test parameters in order for the
tests to be applicable to integer sequences and make suggestions on the choice of
these parameters. We clarify how the probabilities used in the tests are calculated
according to the parameters and provide users to calculate the probabilities they
need without any knowledge of statistics or combinatorics.
Also, some tests, like Permutation Test and Max-of-t-test, are reviewed so that

the test can be used for integer sequences.
Finally, we apply the suite on some widely used cryptographic random number

sources and present the results.
As a future work, the relations between Knuth Test Suite and NIST Test Suite

will be investigated.

References

[1] P. K. A. Freier, P. Kocher, The secure sockets layer (ssl) protocol version 3.0 (2011). doi:
10.17487/RFC6101.
URL <http://www.rfc-editor.org/info/rfc6101>

[2] Intel Corporation, Intel Digital Random Number Generator (DRNG): Software Implementa-
tion Guide, Revision 1.1 (2012).

[3] Comscire quantum number generators.
URL http://comscire.com/cart/

[4] M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1) (1998)
3—30. doi:10.1145/272991.272995.
URL http://doi.acm.org/10.1145/272991.272995

[5] L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo random number generator,
SIAM J. Comput. 15 (2) (1986) 364—383. doi:10.1137/0215025.
URL http://dx.doi.org/10.1137/0215025

[6] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for random and pseudorandom
number generators for cryptographic applications, Tech. rep., NIST (2001).
URL http://www.nist.gov

[7] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Al-
gorithms, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[8] G. Marsaglia, The Marsaglia random number CDROM including the DIEHARD battery of
tests of randomness (1996).
URL http://stat.fsu.edu/pub/diehard

[9] R. G. Brown, Dieharder: A random number test suite (2013).
URL http://www.phy.duke.edu/~rgb/General/dieharder.php

[10] P. L’Ecuyer, R. Simard, Testu01: A c library for empirical testing of random number genera-
tors, ACM Trans. Math. Softw. 33 (4) (2007) 22. doi:http://doi.acm.org/10.1145/1268776.
1268777.

[11] Q. H. Dang, Fips 180-4, secure hash standard, Tech. rep., NIST (2012).
[12] R. Rivest, The md5 message-digest algorithm, in: RFC 1320, 1992.

<http://www.rfc-editor.org/info/rfc6101>
http://dx.doi.org/10.17487/RFC6101
http://dx.doi.org/10.17487/RFC6101
<http://www.rfc-editor.org/info/rfc6101>
http://comscire.com/cart/
http://comscire.com/cart/
http://doi.acm.org/10.1145/272991.272995
http://doi.acm.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://doi.acm.org/10.1145/272991.272995
http://dx.doi.org/10.1137/0215025
http://dx.doi.org/10.1137/0215025
http://dx.doi.org/10.1137/0215025
http://www.nist.gov
http://www.nist.gov
http://www.nist.gov
http://stat.fsu.edu/pub/diehard
http://stat.fsu.edu/pub/diehard
http://stat.fsu.edu/pub/diehard
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://dx.doi.org/http://doi.acm.org/10.1145/1268776.1268777
http://dx.doi.org/http://doi.acm.org/10.1145/1268776.1268777

MODIFICATIONS OF KNUTH RANDOMNESS TESTS 81

Current address : Onur KOÇAK: TUBITAK BILGEM UEKAE, Turkey
E-mail address : onur.kocak@tubitak.gov.tr
ORCID: http://orcid.org/0000-0001-5744-4727
Current address : Fatih SULAK: Department of Mathematics, Atılım University, Ankara,

Turkey
E-mail address : fatih.sulak@atilim.edu.tr
ORCID: http://orcid.org/0000-0002-5220-3630
Current address : Ali Doğanaksoy: Department of Mathematics, Middle East Technical Uni-

versity, Ankara, Turkey
E-mail address : aldoks@metu.edu.tr
ORCID: http://orcid.org/0000-0002-3055-9863
Current address : Muhiddin Uğuz: Department of Mathematics, Middle East Technical Uni-

versity, Ankara, Turkey
E-mail address : muhid@metu.edu.tr
ORCID: http://orcid.org/0000-0003-2344-503X

	1. Introduction
	2. Preliminaries
	3. Knuth's Statistical Randomness Tests
	3.1. Equidistribution (Frequency) Test
	3.2. Serial Test
	3.3. Gap Test
	3.4. Poker Test
	3.5. Coupon Collector Test
	3.6. Permutation Test
	3.7. Max-of-t Test
	3.8. Collision Test

	4. Application
	5. Conclusion
	References

