Available online: September 21, 2017

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 67, Number 2, Pages 82–88 (2018) DOI: 10.1501/Communi_0000000863 ISSN 1303-5991 http://communications.science.ankara.edu.tr/index.php?series=A1

GAUSSIAN PADOVAN AND GAUSSIAN PELL- PADOVAN SEQUENCES

DURSUN TAŞCI

ABSTRACT. In this paper, we extend Padovan and Pell-Padovan numbers to Gaussian Padovan and Gaussian Pell-Padovan numbers, respectively. Moreover we obtain Binet-like formulas, generating functions and some identities related with Gaussian Padovan numbers and Gaussian Pell-Padovan numbers.

1. INTRODUCTION

Horadam [3] in 1963 and Berzsenyi [2] in 1977 defined complex Fibonacci numbers. Horadam introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers.

Padovan sequence is named after Richard Padovan [7] and Atasonav K., Dimitrov D., Shannon A. and Kritsana S. [1, 4, 5, 6] studied Padovan sequence and Pell-Padovan sequence.

The Padovan sequence is the sequence of integers P_n defined by the initial values $P_0 = P_1 = P_2 = 1$ and the recurrence relation

$$P_n = P_{n-2} + P_{n-3} \quad \text{for all } n \ge 3.$$

The first few values of P_n are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37.

Pell-Padovan sequence is defined by the initial values $R_0 = R_1 = R_2 = 1$ and the recurrence relation

$$R_n = 2R_{n-2} + R_{n-3}$$
 for all $n \ge 3$.

The first few values of Pell-Padovan numbers are 1, 1, 1, 3, 3, 7, 9, 17, 25, 43, 67, 111, 177, 289.

2010 Mathematics Subject Classification. Primary 11B39; Secondary 15B36.

Received by the editors: January 16, 2017; Accepted: June 12, 2017.

Key words and phrases. Padovan numbers, Pell-Padovan numbers, Gaussian Padovan numbers.

^{©2018} Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics. Communications de la Faculté des Sciences de l'Université d'Ankara-Séries A1 Mathematics and Statistics.

2. Gaussian Padovan Sequences

Firstly we give the definition of Gaussian Padovan sequence.

Definition 2.1. The Gaussian Padovan sequence is the sequence of complex numbers GP_n defined by the initial values $GP_0 = 1$, $GP_1 = 1 + i$, $GP_2 = 1 + i$ and the recurrence relation

$$GP_n = GP_{n-2} + GP_{n-3}$$
 for all $n \ge 3$.

The first few values of GP_n are 1, 1+i, 1+i, 2+i, 2+2i, 3+2i, 4+3i, 5+4i, 7+5i, 9+7i.

The following theorem is related with the generating function of the Gaussian Padovan sequence.

Theorem 2.2. The generating function of the Gaussian Padovan sequence is

$$g(x) = \frac{1 + (1+i) \ x + i \ x^2}{1 - x^2 - x^3}.$$

Proof. Let

$$g(x) = \sum_{n=0}^{\infty} GP_n x^n = GP_0 + GP_1 x + GP_2 x^2 + \dots + GP_n x^n + \dotsb$$

be the generating function of the Gaussian Padovan sequence. On the other hand, since

$$x^{2}g(x) = GP_{0}x^{2} + GP_{1}x^{3} + GP_{2}x^{4} + \dots + GP_{n-2}x^{n} + \dots$$

and

$$x^{3}g(x) = GP_{0}x^{3} + GP_{1}x^{4} + GP_{2}x^{5} + \dots + GP_{n-3}x^{n} + \dots$$

we write

$$(1 - x^{2} - x^{3})g(x) = GP_{0} + GP_{1}x + (GP_{2} - GP_{0})x^{2} + (GP_{3} - GP_{1} - GP_{0})x^{3} + \dots + (GP_{n} - GP_{n-2} - GP_{n-3})x^{n} + \dots$$

Now consider $GP_0 = 1$, $GP_1 = 1 + i$, $GP_2 = 1 + i$ and $GP_n = GP_{n-2} + GP_{n-3}$. Thus, we obtain

$$(1 - x^{2} - x^{3})g(x) = 1 + (1 + i)x + i x^{2}$$

or

$$g(x) = \frac{1 + (1+i) \ x + i \ x^2}{1 - x^2 - x^3}.$$

So, the proof is complete.

Now we give Binet-like formula for the Gaussian Padovan sequence.

Theorem 2.3. Binet-like formula for the Gaussian Padovan sequence is

$$GP_n = \left(a + i\frac{a}{r_1}\right)r_1^n + \left(b + i\frac{b}{r_2}\right)r_2^n + \left(c + i\frac{c}{r_3}\right)r_3^n$$

where

$$a = \frac{(r_2 - 1)(r_3 - 1)}{(r_1 - r_2)(r_1 - r_3)}, b = \frac{(r_1 - 1)(r_3 - 1)}{(r_2 - r_1)(r_2 - r_3)}, c = \frac{(r_1 - 1)(r_2 - 1)}{(r_1 - r_3)(r_2 - r_3)}$$

and r_1, r_2, r_3 are the roots of the equation $x^3 - x - 1 = 0$.

Proof. It is easily seen that

$$GP_n = P_n + iP_{n-1}.$$

On the other hand, we know that the Binet-like formula for the Padovan sequence is

$$P_n = \frac{(r_2 - 1)(r_3 - 1)}{(r_1 - r_2)(r_1 - r_3)} r_1^n + \frac{(r_1 - 1)(r_3 - 1)}{(r_2 - r_1)(r_2 - r_3)} r_2^n + \frac{(r_1 - 1)(r_2 - 1)}{(r_1 - r_3)(r_2 - r_3)} r_3^n.$$

the proof is easily seen.

So, the proof is easily seen.

Theorem 2.4.

$$\sum_{j=0}^{n} GP_j = GP_n + GP_{n+1} + GP_{n+2} - 2(1+i).$$

Proof. By the definition of Gaussian Padovan sequence recurrence relation

$$GP_n = GP_{n-2} + GP_{n-3}$$

and

$$\begin{array}{rcl} GP_{0} &=& GP_{2} - GP_{-1} \\ GP_{1} &=& GP_{3} - GP_{0} \\ GP_{2} &=& GP_{4} - GP_{1} \\ &\vdots \\ GP_{n-2} &=& GP_{n} - GP_{n-3} \\ GP_{n-1} &=& GP_{n+1} - GP_{n-2} \\ GP_{n} &=& GP_{n+2} - GP_{n-1} \end{array}$$

Then we have

$$\sum_{j=0}^{n} GP_{j} = GP_{n} + GP_{n+1} + GP_{n+2} - GP_{-1} - GP_{0} - GP_{1}.$$

Now considering $GP_{-1} = i, GP_0 = 1$ and $GP_1 = 1 + i$, we write

$$\sum_{j=0}^{n} GP_j = GP_n + GP_{n+1} + GP_{n+2} - 2 - 2i.$$

and so the proof is complete.

84

Now we investigate the new property of Gaussian Padovan numbers in relation with Padovan matrix formula. We consider the following matrices:

$$Q_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ K_3 = \begin{bmatrix} 1+i & 1+i & 1 \\ 1+i & 1 & i \\ 1 & i & 1 \end{bmatrix}$$

and

$$M_{3}^{n} = \begin{bmatrix} GP_{n+2} & GP_{n+1} & GP_{n} \\ GP_{n+1} & GP_{n} & GP_{n-1} \\ GP_{n} & GP_{n-1} & GP_{n-2} \end{bmatrix}.$$

Theorem 2.5. For all $n \in Z^+$, we have

$$Q_3^n K_3 = M_3^n.$$

Proof. The proof is easily seen that using the induction on n.

Theorem 2.6. If

$$P = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

then we have

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 1+i \\ 1+i \end{bmatrix} = \begin{bmatrix} GP_n \\ GP_{n+1} \\ GP_{n+2} \end{bmatrix}.$$

Proof. The proof can be seen by mathematical induction on n.

3. GAUSSIAN PELL-PADOVAN SEQUENCE

As well known Pell-Padovan sequence is defined by the recurrence relation

$$R_n = 2R_{n-2} + R_{n-3}, \ n \ge 3$$

and initial values are $R_0 = R_1 = R_2 = 1$.

Now we define Gaussian Pell-Padovan sequence.

Definition 3.1. The Gaussian Pell-Padovan sequence is defined by the recurrence relation

$$GR_n = 2GR_{n-2} + GR_{n-3}, \ n \ge 3$$

and initial values are $GR_0 = 1 - i, GR_1 = 1 + i, GR_2 = 1 + i$.

The first few values of GR_n are 1-i, 1+i, 1+i, 3+i, 3+3i, 7+3i, 9+7i, 17+9i.

Theorem 3.2. The generating function of Gaussian Pell-Padovan sequence is

$$f(x) = \frac{1 - i + (1 + i)x + (-1 + 3i)x^2}{1 - 2x^2 - x^3}.$$

Proof. Let

$$f(x) = \sum_{n=0}^{\infty} GR_n x^n$$

be the generating function of the Gaussian Pell-Padovan sequence. In this case, we have

$$2x^{2}f(x) = 2GR_{0}x^{2} + 2GR_{1}x^{3} + 2GR_{2}x^{4} + \dots + 2GR_{n-2}x^{n} + \dots$$

and

$$x^{3}f(x) = GR_{0}x^{3} + GR_{1}x^{4} + GR_{2}x^{5} + \dots + GR_{n-3}x^{n} + \dots$$

so we obtain

$$(1 - 2x^{2} - x^{3})f(x) = GR_{0} + GR_{1}x + (GR_{2} - 2GR_{0})x^{2} + (GR_{3} - 2GR_{1} - GR_{0})x^{3} + \dots + (GR_{n} - 2GR_{n-2} - GR_{n-3})x^{n} + \dots$$

On the other hand, since $GR_0 = 1 - i$, $GR_1 = 1 + i$, $GR_2 = 1 + i$ and $GR_n = 2GR_{n-2} + GR_{n-3}$, then we have

$$f(x) = \frac{1 - i + (1 + i)x + (-1 + 3i)x^2}{1 - 2x^2 - x^3}$$

which is desired.

Theorem 3.3. The Binet-like formula of Gaussian Pell-Padovan sequence is

$$GR_n = \frac{2}{\sqrt{5}} \left[\alpha - 1 + i \left(1 - \frac{1}{\alpha} \right) \right] \alpha^n - \frac{2}{\sqrt{5}} \left[\beta - 1 + i \left(1 - \frac{1}{\beta} \right) \right] \beta^n + (i - 1)\gamma^n$$

where

$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}, \gamma = 1$$

are roots of the equation $x^3 - 2x - 1 = 0$.

Proof. The Binet-like formula of Pell-Padovan sequence is given by

$$R_n = 2\frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} - 2\frac{\alpha^n - \beta^n}{\alpha - \beta} + \gamma^{n+1}.$$

Now consider

$$GR_n = R_n + iR_{n-1}$$

so the proof is easily seen.

Theorem 3.4. $\sum_{j=0}^{n} GR_j = \frac{1}{2} \left[(-1 - 3i) - GR_{n+1} + GR_{n+2} + GR_{n+3} \right].$ *Proof.* We find that

$$\sum_{j=0}^{n} R_j = \frac{1}{2} (-1 - R_{n+1} + R_{n+2} + R_{n+3})$$

and

$$\sum_{j=0}^{n} R_{j-1} = \frac{1}{2} (-3 - 2R_n - R_{n+1} + R_{n+2} + R_{n+3}).$$

Since

 $GR_n = R_n + iR_{n-1}$

we have

$$\sum_{j=0}^{n} GR_j = \sum_{j=0}^{n} R_j + i \sum_{j=0}^{n} R_{j-1}$$

So the theorem is proved.

Theorem 3.5. $\sum_{j=1}^{n} GR_{2j} = R_{2n+1} + iR_{2n} - (n+1) + i(n-1).$

Proof. If we consider the following equalities, then the proof is seen:

$$\sum_{j=1}^{n} R_{2j} = R_{2n+1} - (n+1)$$
$$\sum_{j=1}^{n} R_{2j-1} = R_{2n} + (n-1)$$

and

$$\sum_{j=1}^{n} GR_{2j} = \sum_{j=1}^{n} R_{2j} + i \sum_{j=1}^{n} R_{2j-1}$$

Theorem 3.6. $\sum_{j=1}^{n} {n \choose j} GR_j = GR_{2n} + (1-i).$

Proof. Considering the following equalities:

$$\sum_{j=1}^{n} \binom{n}{j} R_{j} = R_{2n} + 1$$
$$\sum_{j=1}^{n} \binom{n}{j} R_{j-1} = R_{2n-1} - 1$$

and

$$\sum_{j=1}^{n} \binom{n}{j} GR_j = \sum_{j=1}^{n} \binom{n}{j} R_j + i \sum_{j=1}^{n} \binom{n}{j} R_{j-1}$$

then the proof is easily seen.

Now we shall give the new properties of Gaussian Pell-Padovan numbers relation with Pell-Padovan matrix.

Theorem 3.7. If we take the following matrices

$$Q_3 = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad K_3 = \begin{bmatrix} 1+i & 1+i & 1-i \\ 1+i & 1-i & -1+3i \\ 1-i & -1+3i & 3-5i \end{bmatrix}$$

and

$$S_{3}^{n} = \begin{bmatrix} GR_{n+2} & GR_{n+1} & GR_{n} \\ GR_{n+1} & GR_{n} & GR_{n-1} \\ GR_{n} & GR_{n-1} & GR_{n-2} \end{bmatrix}.$$

then

$$Q_3^n.K_3 = S_3^n \text{ for all } n \in \mathbb{Z}^+.$$

Theorem 3.8. $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}^n \begin{bmatrix} 1-i \\ 1+i \\ 1+i \end{bmatrix} = \begin{bmatrix} GR_n \\ GR_{n+1} \\ GR_{n+2} \end{bmatrix}$ for all $n \in Z^+$.

We note that for the proofs Theorem 3.7 and Theorem 3.8 are used induction on n.

References

- [1] Atassanov, K., Dimitriv, D. and Shannon, A., A remark on ψ functions and Pell-Padovan's Sequence, Notes on Number Theory and Discrete Mathematics 15(2) (2009), 1–11.
- [2] Berzsenyi, Gaussian Fibonacci numbers, The Fibonacci Quarterly, 15 (1977) 223-236.
- [3] Horadam, A.F., Complex Fibonacci Numbers and Fibonacci Quaternions, American Mathematics Monthly 70 (1963) 289-291.
- [4] Kritsana, S., Matrices formula for Padovan and Perrin Sequences, Applied Mathematics Sciences, 7(142) (2013) 7093-7096.
- [5] Shannon, A.G., Anderson, P.G. and Horadam, A.F., Van der Loan numbers, International Journal of Mathematics Education in Science & Technology 37(7) (2006) 825-831.
- [6] Shannon, A.G., Anderson, A. F. and Anderson, P.R., The Auxiliary Equation Associated with the Plastic Numbers, Notes on Number Theory and Discrete Mathematics 12(1) (2006) 1-12.
- [7] Voet, C., The Poetics of order: Dom Hans Van der Loan's numbers, Architectonic Space, ARQ.16 (2012) 137-154.

Current address: Gazi University Faculty of Science Department of Mathematics 06500 Teknikokullar-Ankara TURKEY

E-mail address: dtasci@gazi.edu.tr

ORCID Address: http://orcid.org/0000-0001-8357-4875