GAUSSIAN PADOVAN AND GAUSSIAN PELL- PADOVAN SEQUENCES

DURSUN TAŞCI

Abstract

In this paper, we extend Padovan and Pell- Padovan numbers to Gaussian Padovan and Gaussian Pell-Padovan numbers, respectively. Moreover we obtain Binet-like formulas,generating functions and some identities related with Gaussian Padovan numbers and Gaussian Pell-Padovan numbers.

1. Introduction

Horadam [3] in 1963 and Berzsenyi [2] in 1977 defined complex Fibonacci numbers. Horadam introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers.

Padovan sequence is named after Richard Padovan [7] and Atasonav K., Dimitrov D., Shannon A. and Kritsana S. [1, 4, 5, 6] studied Padovan sequence and PellPadovan sequence.

The Padovan sequence is the sequence of integers P_{n} defined by the initial values $P_{0}=P_{1}=P_{2}=1$ and the recurrence relation

$$
P_{n}=P_{n-2}+P_{n-3} \quad \text { for all } n \geq 3
$$

The first few values of P_{n} are $1,1,1,2,2,3,4,5,7,9,12,16,21,28,37$.
Pell-Padovan sequence is defined by the initial values $R_{0}=R_{1}=R_{2}=1$ and the recurrence relation

$$
R_{n}=2 R_{n-2}+R_{n-3} \quad \text { for all } n \geq 3
$$

The first few values of Pell-Padovan numbers are $1,1,1,3,3,7,9,17,25,43,67$, 111, 177, 289.

[^0]
2. Gaussian Padovan Sequences

Firstly we give the definition of Gaussian Padovan sequence.
Definition 2.1. The Gaussian Padovan sequence is the sequence of complex numbers $G P_{n}$ defined by the initial values $G P_{0}=1, G P_{1}=1+i, G P_{2}=1+i$ and the recurrence relation

$$
G P_{n}=G P_{n-2}+G P_{n-3} \quad \text { for all } n \geq 3
$$

The first few values of $G P_{n}$ are $1,1+i, 1+i, 2+i, 2+2 i, 3+2 i, 4+3 i, 5+$ $4 i, 7+5 i, 9+7 i$.

The following theorem is related with the generating function of the Gaussian Padovan sequence.

Theorem 2.2. The generating function of the Gaussian Padovan sequence is

$$
g(x)=\frac{1+(1+i) x+i x^{2}}{1-x^{2}-x^{3}}
$$

Proof. Let

$$
g(x)=\sum_{n=0}^{\infty} G P_{n} x^{n}=G P_{0}+G P_{1} x+G P_{2} x^{2}+\cdots+G P_{n} x^{n}+\cdots
$$

be the generating function of the Gaussian Padovan sequence. On the other hand, since

$$
x^{2} g(x)=G P_{0} x^{2}+G P_{1} x^{3}+G P_{2} x^{4}+\cdots+G P_{n-2} x^{n}+\cdots
$$

and

$$
x^{3} g(x)=G P_{0} x^{3}+G P_{1} x^{4}+G P_{2} x^{5}+\cdots+G P_{n-3} x^{n}+\cdots
$$

we write

$$
\begin{aligned}
\left(1-x^{2}-x^{3}\right) g(x)= & G P_{0}+G P_{1} x+\left(G P_{2}-G P_{0}\right) x^{2}+\left(G P_{3}-G P_{1}-G P_{0}\right) x^{3} \\
& +\cdots+\left(G P_{n}-G P_{n-2}-G P_{n-3}\right) x^{n}+\cdots
\end{aligned}
$$

Now consider $G P_{0}=1, G P_{1}=1+i, G P_{2}=1+i$ and $G P_{n}=G P_{n-2}+G P_{n-3}$. Thus, we obtain

$$
\left(1-x^{2}-x^{3}\right) g(x)=1+(1+i) x+i x^{2}
$$

or

$$
g(x)=\frac{1+(1+i) x+i x^{2}}{1-x^{2}-x^{3}}
$$

So, the proof is complete.
Now we give Binet-like formula for the Gaussian Padovan sequence.
Theorem 2.3. Binet-like formula for the Gaussian Padovan sequence is

$$
G P_{n}=\left(a+i \frac{a}{r_{1}}\right) r_{1}^{n}+\left(b+i \frac{b}{r_{2}}\right) r_{2}^{n}+\left(c+i \frac{c}{r_{3}}\right) r_{3}^{n}
$$

where

$$
a=\frac{\left(r_{2}-1\right)\left(r_{3}-1\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, b=\frac{\left(r_{1}-1\right)\left(r_{3}-1\right)}{\left(r_{2}-r_{1}\right)\left(r_{2}-r_{3}\right)}, c=\frac{\left(r_{1}-1\right)\left(r_{2}-1\right)}{\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)}
$$

and r_{1}, r_{2}, r_{3} are the roots of the equation $x^{3}-x-1=0$.
Proof. It is easily seen that

$$
G P_{n}=P_{n}+i P_{n-1} .
$$

On the other hand, we know that the Binet-like formula for the Padovan sequence is

$$
P_{n}=\frac{\left(r_{2}-1\right)\left(r_{3}-1\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)} r_{1}^{n}+\frac{\left(r_{1}-1\right)\left(r_{3}-1\right)}{\left(r_{2}-r_{1}\right)\left(r_{2}-r_{3}\right)} r_{2}^{n}+\frac{\left(r_{1}-1\right)\left(r_{2}-1\right)}{\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)} r_{3}^{n}
$$

So, the proof is easily seen.

Theorem 2.4.

$$
\sum_{j=0}^{n} G P_{j}=G P_{n}+G P_{n+1}+G P_{n+2}-2(1+i)
$$

Proof. By the definition of Gaussian Padovan sequence recurrence relation

$$
G P_{n}=G P_{n-2}+G P_{n-3}
$$

and

$$
\begin{aligned}
G P_{0}= & G P_{2}-G P_{-1} \\
G P_{1}= & G P_{3}-G P_{0} \\
G P_{2}= & G P_{4}-G P_{1} \\
& \vdots \\
G P_{n-2}= & G P_{n}-G P_{n-3} \\
G P_{n-1}= & G P_{n+1}-G P_{n-2} \\
G P_{n}= & G P_{n+2}-G P_{n-1}
\end{aligned}
$$

Then we have

$$
\sum_{j=0}^{n} G P_{j}=G P_{n}+G P_{n+1}+G P_{n+2}-G P_{-1}-G P_{0}-G P_{1}
$$

Now considering $G P_{-1}=i, G P_{0}=1$ and $G P_{1}=1+i$, we write

$$
\sum_{j=0}^{n} G P_{j}=G P_{n}+G P_{n+1}+G P_{n+2}-2-2 i
$$

and so the proof is complete.

Now we investigate the new property of Gaussian Padovan numbers in relation with Padovan matrix formula. We consider the following matrices:

$$
Q_{3}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], K_{3}=\left[\begin{array}{ccc}
1+i & 1+i & 1 \\
1+i & 1 & i \\
1 & i & 1
\end{array}\right]
$$

and

$$
M_{3}^{n}=\left[\begin{array}{ccc}
G P_{n+2} & G P_{n+1} & G P_{n} \\
G P_{n+1} & G P_{n} & G P_{n-1} \\
G P_{n} & G P_{n-1} & G P_{n-2}
\end{array}\right]
$$

Theorem 2.5. For all $n \in Z^{+}$, we have

$$
Q_{3}^{n} K_{3}=M_{3}^{n}
$$

Proof. The proof is easily seen that using the induction on n.
Theorem 2.6. If

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

then we have

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{c}
1 \\
1+i \\
1+i
\end{array}\right]=\left[\begin{array}{c}
G P_{n} \\
G P_{n+1} \\
G P_{n+2}
\end{array}\right]
$$

Proof. The proof can be seen by mathematical induction on n.

3. Gaussian Pell-Padovan Sequence

As well known Pell-Padovan sequence is defined by the recurrence relation

$$
R_{n}=2 R_{n-2}+R_{n-3}, n \geq 3
$$

and initial values are $R_{0}=R_{1}=R_{2}=1$.
Now we define Gaussian Pell-Padovan sequence.
Definition 3.1. The Gaussian Pell-Padovan sequence is defined by the recurrence relation

$$
G R_{n}=2 G R_{n-2}+G R_{n-3}, n \geq 3
$$

and initial values are $G R_{0}=1-i, G R_{1}=1+i, G R_{2}=1+i$.
The first few values of $G R_{n}$ are $1-i, 1+i, 1+i, 3+i, 3+3 i, 7+3 i, 9+7 i, 17+9 i$.
Theorem 3.2. The generating function of Gaussian Pell-Padovan sequence is

$$
f(x)=\frac{1-i+(1+i) x+(-1+3 i) x^{2}}{1-2 x^{2}-x^{3}}
$$

Proof. Let

$$
f(x)=\sum_{n=0}^{\infty} G R_{n} x^{n}
$$

be the generating function of the Gaussian Pell-Padovan sequence. In this case, we have

$$
2 x^{2} f(x)=2 G R_{0} x^{2}+2 G R_{1} x^{3}+2 G R_{2} x^{4}+\cdots+2 G R_{n-2} x^{n}+\cdots
$$

and

$$
x^{3} f(x)=G R_{0} x^{3}+G R_{1} x^{4}+G R_{2} x^{5}+\cdots+G R_{n-3} x^{n}+\cdots
$$

so we obtain

$$
\begin{aligned}
\left(1-2 x^{2}-x^{3}\right) f(x)= & G R_{0}+G R_{1} x+\left(G R_{2}-2 G R_{0}\right) x^{2}+\left(G R_{3}-2 G R_{1}-G R_{0}\right) x^{3} \\
& +\cdots+\left(G R_{n}-2 G R_{n-2}-G R_{n-3}\right) x^{n}+\cdots .
\end{aligned}
$$

On the other hand, since $G R_{0}=1-i, G R_{1}=1+i, G R_{2}=1+i$ and $G R_{n}=$ $2 G R_{n-2}+G R_{n-3}$, then we have

$$
f(x)=\frac{1-i+(1+i) x+(-1+3 i) x^{2}}{1-2 x^{2}-x^{3}}
$$

which is desired.
Theorem 3.3. The Binet-like formula of Gaussian Pell-Padovan sequence is

$$
G R_{n}=\frac{2}{\sqrt{5}}\left[\alpha-1+i\left(1-\frac{1}{\alpha}\right)\right] \alpha^{n}-\frac{2}{\sqrt{5}}\left[\beta-1+i\left(1-\frac{1}{\beta}\right)\right] \beta^{n}+(i-1) \gamma^{n}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, \gamma=1
$$

are roots of the equation $x^{3}-2 x-1=0$.
Proof. The Binet-like formula of Pell-Padovan sequence is given by

$$
R_{n}=2 \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}-2 \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}+\gamma^{n+1}
$$

Now consider

$$
G R_{n}=R_{n}+i R_{n-1}
$$

so the proof is easily seen.
Theorem 3.4. $\sum_{j=0}^{n} G R_{j}=\frac{1}{2}\left[(-1-3 i)-G R_{n+1}+G R_{n+2}+G R_{n+3}\right]$.
Proof. We find that

$$
\sum_{j=0}^{n} R_{j}=\frac{1}{2}\left(-1-R_{n+1}+R_{n+2}+R_{n+3}\right)
$$

and

$$
\sum_{j=0}^{n} R_{j-1}=\frac{1}{2}\left(-3-2 R_{n}-R_{n+1}+R_{n+2}+R_{n+3}\right)
$$

Since

$$
G R_{n}=R_{n}+i R_{n-1}
$$

we have

$$
\sum_{j=0}^{n} G R_{j}=\sum_{j=0}^{n} R_{j}+i \sum_{j=0}^{n} R_{j-1}
$$

So the theorem is proved.
Theorem 3.5. $\sum_{j=1}^{n} G R_{2 j}=R_{2 n+1}+i R_{2 n}-(n+1)+i(n-1)$.
Proof. If we consider the following equalities, then the proof is seen:

$$
\begin{aligned}
\sum_{j=1}^{n} R_{2 j} & =R_{2 n+1}-(n+1) \\
\sum_{j=1}^{n} R_{2 j-1} & =R_{2 n}+(n-1)
\end{aligned}
$$

and

$$
\sum_{j=1}^{n} G R_{2 j}=\sum_{j=1}^{n} R_{2 j}+i \sum_{j=1}^{n} R_{2 j-1}
$$

Theorem 3.6. $\sum_{j=1}^{n}\binom{n}{j} G R_{j}=G R_{2 n}+(1-i)$.
Proof. Considering the following equalities:

$$
\begin{aligned}
\sum_{j=1}^{n}\binom{n}{j} R_{j} & =R_{2 n}+1 \\
\sum_{j=1}^{n}\binom{n}{j} R_{j-1} & =R_{2 n-1}-1
\end{aligned}
$$

and

$$
\sum_{j=1}^{n}\binom{n}{j} G R_{j}=\sum_{j=1}^{n}\binom{n}{j} R_{j}+i \sum_{j=1}^{n}\binom{n}{j} R_{j-1}
$$

then the proof is easily seen.
Now we shall give the new properties of Gaussian Pell-Padovan numbers relation with Pell-Padovan matrix.

Theorem 3.7. If we take the following matrices

$$
Q_{3}=\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], K_{3}=\left[\begin{array}{ccc}
1+i & 1+i & 1-i \\
1+i & 1-i & -1+3 i \\
1-i & -1+3 i & 3-5 i
\end{array}\right]
$$

and

$$
S_{3}^{n}=\left[\begin{array}{ccc}
G R_{n+2} & G R_{n+1} & G R_{n} \\
G R_{n+1} & G R_{n} & G R_{n-1} \\
G R_{n} & G R_{n-1} & G R_{n-2}
\end{array}\right]
$$

then

$$
Q_{3}^{n} \cdot K_{3}=S_{3}^{n} \text { for all } n \in \mathbb{Z}^{+}
$$

Theorem 3.8. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0\end{array}\right]^{n}\left[\begin{array}{c}1-i \\ 1+i \\ 1+i\end{array}\right]=\left[\begin{array}{c}G R_{n} \\ G R_{n+1} \\ G R_{n+2}\end{array}\right]$ for all $n \in Z^{+}$.
We note that for the proofs Theorem 3.7 and Theorem 3.8 are used induction on n.

References

[1] Atassanov, K., Dimitriv, D. and Shannon, A., A remark on ψ functions and Pell-Padovan's Sequence, Notes on Number Theory and Discrete Mathematics 15(2) (2009), 1-11.
[2] Berzsenyi, Gaussian Fibonacci numbers, The Fibonacci Quarterly,15 (1977) 223-236.
[3] Horadam, A.F., Complex Fibonacci Numbers and Fibonacci Quaternions, American Mathematics Monthly 70 (1963) 289-291.
[4] Kritsana, S., Matrices formula for Padovan and Perrin Sequences, Applied Mathematics Sciences, 7(142) (2013) 7093-7096.
[5] Shannon, A.G., Anderson, P.G. and Horadam, A.F., Van der Loan numbers, International Journal of Mathematics Education in Science \& Technology 37(7) (2006) 825-831.
[6] Shannon, A.G., Anderson, A. F. and Anderson, P.R., The Auxiliary Equation Associated with the Plastic Numbers, Notes on Number Theory and Discrete Mathematics 12(1) (2006) 1-12.
[7] Voet, C., The Poetics of order: Dom Hans Van der Loan's numbers, Architectonic Space, ARQ. 16 (2012) 137-154.

Current address: Gazi University Faculty of Science Department of Mathematics 06500 Teknikokullar-Ankara TURKEY

E-mail address: dtasci@gazi.edu.tr
ORCID Address: http://orcid.org/0000-0001-8357-4875

[^0]: Received by the editors: January 16, 2017; Accepted: June 12, 2017.
 2010 Mathematics Subject Classification. Primary 11B39; Secondary 15B36.
 Key words and phrases. Padovan numbers, Pell-Padovan numbers, Gaussian Padovan numbers, Gaussian Pell-Padovan numbers.

