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GAUSSIAN PADOVAN AND GAUSSIAN PELL- PADOVAN
SEQUENCES

DURSUN TAŞCI

Abstract. In this paper, we extend Padovan and Pell- Padovan numbers to
Gaussian Padovan and Gaussian Pell-Padovan numbers, respectively. More-
over we obtain Binet-like formulas,generating functions and some identities
related with Gaussian Padovan numbers and Gaussian Pell-Padovan numbers.

1. Introduction

Horadam [3] in 1963 and Berzsenyi [2] in 1977 defined complex Fibonacci num-
bers. Horadam introduced the concept the complex Fibonacci numbers as the
Gaussian Fibonacci numbers.
Padovan sequence is named after Richard Padovan [7] and Atasonav K., Dimitrov

D., Shannon A. and Kritsana S. [1, 4, 5, 6] studied Padovan sequence and Pell-
Padovan sequence.
The Padovan sequence is the sequence of integers Pn defined by the initial values

P0 = P1 = P2 = 1 and the recurrence relation

Pn = Pn−2 + Pn−3 for all n ≥ 3.

The first few values of Pn are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37.
Pell-Padovan sequence is defined by the initial values R0 = R1 = R2 = 1 and

the recurrence relation

Rn = 2Rn−2 +Rn−3 for all n ≥ 3.

The first few values of Pell-Padovan numbers are 1, 1, 1, 3, 3, 7, 9, 17, 25, 43, 67,
111, 177, 289.
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2. Gaussian Padovan Sequences

Firstly we give the definition of Gaussian Padovan sequence.

Definition 2.1. The Gaussian Padovan sequence is the sequence of complex num-
bers GPn defined by the initial values GP0 = 1, GP1 = 1+ i, GP2 = 1+ i and the
recurrence relation

GPn = GPn−2 +GPn−3 for all n ≥ 3.

The first few values of GPn are 1, 1 + i, 1 + i, 2 + i, 2 + 2i, 3 + 2i, 4 + 3i, 5 +
4i, 7 + 5i, 9 + 7i.
The following theorem is related with the generating function of the Gaussian

Padovan sequence.

Theorem 2.2. The generating function of the Gaussian Padovan sequence is

g(x) =
1 + (1 + i) x+ i x2

1− x2 − x3 .

Proof. Let

g(x) =

∞∑
n=0

GPnx
n = GP0 +GP1x+GP2x

2 + · · ·+GPnxn + · · ·

be the generating function of the Gaussian Padovan sequence. On the other hand,
since

x2g(x) = GP0x
2 +GP1x

3 +GP2x
4 + · · ·+GPn−2xn + · · ·

and
x3g(x) = GP0x

3 +GP1x
4 +GP2x

5 + · · ·+GPn−3xn + · · ·
we write

(1− x2 − x3)g(x) = GP0 +GP1x+ (GP2 −GP0)x2 + (GP3 −GP1 −GP0)x3

+ · · ·+ (GPn −GPn−2 −GPn−3)xn + · · ·
Now consider GP0 = 1, GP1 = 1 + i, GP2 = 1 + i and GPn = GPn−2 + GPn−3.
Thus, we obtain

(1− x2 − x3)g(x) = 1 + (1 + i)x+ i x2

or

g(x) =
1 + (1 + i) x+ i x2

1− x2 − x3 .

So, the proof is complete. �

Now we give Binet-like formula for the Gaussian Padovan sequence.

Theorem 2.3. Binet-like formula for the Gaussian Padovan sequence is

GPn =

(
a+ i

a

r1

)
rn1 +

(
b+ i

b

r2

)
rn2 +

(
c+ i

c

r3

)
rn3
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where

a =
(r2 − 1)(r3 − 1)
(r1 − r2)(r1 − r3)

, b =
(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

, c =
(r1 − 1)(r2 − 1)
(r1 − r3)(r2 − r3)

and r1, r2, r3 are the roots of the equation x3 − x− 1 = 0.

Proof. It is easily seen that

GPn = Pn + iPn−1.

On the other hand, we know that the Binet-like formula for the Padovan sequence
is

Pn =
(r2 − 1)(r3 − 1)
(r1 − r2)(r1 − r3)

rn1 +
(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

rn2 +
(r1 − 1)(r2 − 1)
(r1 − r3)(r2 − r3)

rn3 .

So, the proof is easily seen. �

Theorem 2.4.
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 − 2(1 + i).

Proof. By the definition of Gaussian Padovan sequence recurrence relation

GPn = GPn−2 +GPn−3

and

GP0 = GP2 −GP−1
GP1 = GP3 −GP0
GP2 = GP4 −GP1

...

GPn−2 = GPn −GPn−3
GPn−1 = GPn+1 −GPn−2
GPn = GPn+2 −GPn−1

Then we have
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 −GP−1 −GP0 −GP1.

Now considering GP−1 = i, GP0 = 1 and GP1 = 1 + i, we write
n∑
j=0

GPj = GPn +GPn+1 +GPn+2 − 2− 2i.

and so the proof is complete. �
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Now we investigate the new property of Gaussian Padovan numbers in relation
with Padovan matrix formula. We consider the following matrices:

Q3 =

 0 1 1
1 0 0
0 1 0

 , K3 =

 1 + i 1 + i 1
1 + i 1 i
1 i 1


and

Mn
3 =

 GPn+2 GPn+1 GPn
GPn+1 GPn GPn−1
GPn GPn−1 GPn−2

 .
Theorem 2.5. For all n∈ Z+,we have

Qn3K3 =Mn
3 .

Proof. The proof is easily seen that using the induction on n. �

Theorem 2.6. If

P =

 0 1 0
0 0 1
1 1 0


then we have  0 1 0

0 0 1
1 1 0

n  1
1 + i
1 + i

 =
 GPn
GPn+1
GPn+2

 .
Proof. The proof can be seen by mathematical induction on n. �

3. Gaussian Pell-Padovan Sequence

As well known Pell-Padovan sequence is defined by the recurrence relation

Rn = 2Rn−2 +Rn−3, n ≥ 3
and initial values are R0 = R1 = R2 = 1.
Now we define Gaussian Pell-Padovan sequence.

Definition 3.1. The Gaussian Pell-Padovan sequence is defined by the recurrence
relation

GRn = 2GRn−2 +GRn−3, n ≥ 3
and initial values are GR0 = 1− i, GR1 = 1 + i, GR2 = 1 + i.

The first few values of GRn are 1−i, 1+i, 1+i, 3+i, 3+3i, 7+3i, 9+7i, 17+9i.

Theorem 3.2. The generating function of Gaussian Pell-Padovan sequence is

f(x) =
1− i+ (1 + i)x+ (−1 + 3i)x2

1− 2x2 − x3 .
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Proof. Let

f(x) =

∞∑
n=0

GRnx
n

be the generating function of the Gaussian Pell-Padovan sequence. In this case, we
have

2x2f(x) = 2GR0x
2 + 2GR1x

3 + 2GR2x
4 + · · ·+ 2GRn−2xn + · · ·

and
x3f(x) = GR0x

3 +GR1x
4 +GR2x

5 + · · ·+GRn−3xn + · · ·
so we obtain

(1− 2x2 − x3)f(x) = GR0 +GR1x+ (GR2 − 2GR0)x2 + (GR3 − 2GR1 −GR0)x3

+ · · ·+ (GRn − 2GRn−2 −GRn−3)xn + · · · .

On the other hand, since GR0 = 1 − i, GR1 = 1 + i, GR2 = 1 + i and GRn =
2GRn−2 +GRn−3, then we have

f(x) =
1− i+ (1 + i)x+ (−1 + 3i)x2

1− 2x2 − x3
which is desired. �

Theorem 3.3. The Binet-like formula of Gaussian Pell-Padovan sequence is

GRn =
2√
5

[
α− 1 + i

(
1− 1

α

)]
αn − 2√

5

[
β − 1 + i

(
1− 1

β

)]
βn + (i− 1)γn

where

α =
1 +
√
5

2
, β =

1−
√
5

2
, γ = 1

are roots of the equation x3 − 2x− 1 = 0.

Proof. The Binet-like formula of Pell-Padovan sequence is given by

Rn = 2
αn+1 − βn+1

α− β − 2α
n − βn

α− β + γn+1.

Now consider
GRn = Rn + iRn−1

so the proof is easily seen. �

Theorem 3.4.
∑n

j=0GRj =
1
2 [(−1− 3i)−GRn+1 +GRn+2 +GRn+3] .

Proof. We find that
n∑
j=0

Rj =
1

2
(−1−Rn+1 +Rn+2 +Rn+3)
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and
n∑
j=0

Rj−1 =
1

2
(−3− 2Rn −Rn+1 +Rn+2 +Rn+3).

Since
GRn = Rn + iRn−1

we have
n∑
j=0

GRj =

n∑
j=0

Rj + i

n∑
j=0

Rj−1

So the theorem is proved. �

Theorem 3.5.
∑n

j=1GR2j = R2n+1 + iR2n − (n+ 1) + i(n− 1).

Proof. If we consider the following equalities, then the proof is seen:
n∑
j=1

R2j = R2n+1 − (n+ 1)

n∑
j=1

R2j−1 = R2n + (n− 1)

and
n∑
j=1

GR2j =

n∑
j=1

R2j + i

n∑
j=1

R2j−1

�

Theorem 3.6.
∑n

j=1

(
n
j

)
GRj = GR2n + (1− i).

Proof. Considering the following equalities:
n∑
j=1

(
n

j

)
Rj = R2n + 1

n∑
j=1

(
n

j

)
Rj−1 = R2n−1 − 1

and
n∑
j=1

(
n

j

)
GRj =

n∑
j=1

(
n

j

)
Rj + i

n∑
j=1

(
n

j

)
Rj−1

then the proof is easily seen. �

Now we shall give the new properties of Gaussian Pell-Padovan numbers relation
with Pell-Padovan matrix.
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Theorem 3.7. If we take the following matrices

Q3 =

 0 2 1
1 0 0
0 1 0

 , K3 =

 1 + i 1 + i 1− i
1 + i 1− i −1 + 3i
1− i −1 + 3i 3− 5i


and

Sn3 =

 GRn+2 GRn+1 GRn
GRn+1 GRn GRn−1
GRn GRn−1 GRn−2

 .
then

Qn3 .K3 = Sn3 for all n ∈ Z+.

Theorem 3.8.

 0 1 0
0 0 1
1 2 0

n  1− i
1 + i
1 + i

 =
 GRn
GRn+1
GRn+2

 for all n ∈ Z+.
We note that for the proofs Theorem 3.7 and Theorem 3.8 are used induction

on n.
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