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THE RECURRENCE SEQUENCES VIA POLYHEDRAL GROUPS

ÖMÜR DEVECI, YEŞIM AKÜZÜM, AND COLIN M. CAMPBELL

Abstract. In this paper, we define recurrence sequences by using the relation
matrices of the finite polyhedral groups and then, we obtain some of their
properties. Also, we obtain the cyclic groups and the semigroups which are
produced by the generating matrices when read modulo α and we study the
sequences defined modulo α. Then we derive the relationships between the
orders of the cyclic groups obtained and the periods of the sequences defined
working modulo α. Furthermore, we extend these sequences to groups and
obtain the periods of the sequences extended in the finite polyhedral groups
case.

1. Introduction

The polyhedral group (p, q, r) for p, q, r > 1, is defined by the presentation

〈x, y, z | xp = yq = zr = xyz = e〉
or

〈x, y | xp = yq = (xy)
r
= e〉.

The polyhedral group (p, q, r) is finite if and only if the number

k = pqr

(
1

p
+
1

q
+
1

r
− 1
)
= qr + rp+ pq − pqr

is positive, i.e., in the case (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5) . Its order is
2pqr�k. Using Tietze transformations we may show that (p, q, r) u (q, r, p) u
(r, p, q).
For more information on these groups, see [4].
Let G be a finite j-generator group and let

X =

(x1, x2, . . . , xj) ∈ G×G× · · · ×G︸ ︷︷ ︸
j

| 〈x1, x2, . . . , xj〉 = G

 .
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100 ÖMÜR DEVECI, YEŞIM AKÜZÜM, AND COLIN M. CAMPBELL

We call (x1, x2, . . . , xj) a generating j-tuple for G.
Let G be the group defined by the finite presentation

G = 〈x1, x2, . . . , xn | r1, r2, . . . , rm〉.

The relation matrix of G is an m×n matrix where the (i, j)th entry of the matrix
is the sum of the exponents of the generator xj in the relator ri.
For detailed information about the relation matrix, see [12].

Example 1.1. The relation matrix of the group defined by the presentation 〈x, y, z |
xm = y2 = z2 = xyz = e〉 is 

m 0 0
0 2 0
0 0 2
1 1 1

 .
Suppose that the (n+ k)th term of a sequence is defined recursively by a linear

combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1
where c0, c1, . . . , ck−1 are real constants. In [13], Kalman derived a number of
closed-form formulas for the generalized sequence by the companion matrix method
as follows:
Let the matrix A be defined by

A = [aij ]k×k =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1

 .
Number theoretic properties such as these obtained from homogeneous linear

recurrence relations relevant to this paper have been studied by many authors
[2, 5, 6, 10, 11, 13, 15, 19, 20, 21, 22]. In Section 2, we develop properties of the
3-step and 4-step polyhedral sequences of the first, second, third, fourth, fifth and
sixth kind which are obtained from the matices defined by the aid of the relation
matrices of the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4) and
(2, 3, 5).
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In [5, 6, 7, 17], the authors have produced the cyclic groups and the semigroups
via some special matrices and then, they have studied the orders of these algebraic
structures. In Section 3, we obtain the cyclic groups and the semigroups by using
the generating matrices of the 3-step and 4-step polyhedral sequences of the first,
second, third, fourth, fifth and sixth kind when read modulo α and then, we give
their miscellaneous properties.
The study of recurrence sequences in groups began with the earlier work of Wall

[23] where the ordinary Fibonacci sequences in cyclic groups has been investigated.
In the mid eighties, Wilcox extended the problem to abelian groups [24]. Further,
the theory has been expanded to some special linear recurrence sequences by several
authors; see, for example, [1, 3, 5, 6, 8, 9, 14, 16]. In Section 3, we study the
defined sequences modulo α and then, we derive the relationships among the orders
of the cyclic groups obtained and the periods of these sequences. Also, in this
section, we redefine the 3-step and 4-step polyhedral sequences of the first, second,
third, fourth, fifth and sixth kind by means of the elements of the groups which
have two or three generators and then, we examine these sequences in the finite
groups. Finally, we obtain the lengths of the periods of the 3-step and 4-step
polyhedral sequences of the first, second, third, fourth, fifth and sixth kind in
the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5) by
using the periods of these sequences with respect to a modulus α, where we consider
each one of the sequences in one group such that the sequence is produced by the
aid of the presentation of this group.

2. Polyhedral Sequences

We next define the matrices M1, M2, M3, M4, M5 and M6 by using the pre-
sentations of the polyhedral groups (m, 2, 2), (2,m, 2), (2, 2,m), (2, 3, 3), (2, 3, 4)
and (2, 3, 5) in the two generator cases, that is for generating pair (x, y), as follows,
respectively:

Mu =

 α1 0 1
0 α2 1
α3 α3 1

 , (u = 1, 2, 3, αu = m and αi = 2 if i 6= u)

and

Mv =

 2 0 1
0 3 1

v − 1 v − 1 1

 , (v = 4, 5, 6) .
Similarly, we define the matrices M∗

1 , M
∗
2 , M

∗
3 , M

∗
4 , M

∗
5 and M

∗
6 by the aid of

the presentations of these groups in the three generator cases, that is for generating
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triple (x, y, z), as follows, respectively:

M∗
u =


α1 0 0 1
0 α2 0 1
0 0 α3 1
1 1 1 1

 , (u = 1, 2, 3, αu = m and αi = 2 if i 6= u) .

and

M∗
v =


2 0 0 1
0 3 0 1
0 0 v − 1 1
1 1 1 1

 , (v = 4, 5, 6) .
Note that detM1 = detM2 = −4, detM3 = 4−4m, detM4 = −9, detM5 = −14,

detM6 = −19, detM∗
1 = detM

∗
2 = detM

∗
3 = −4, detM∗

4 = −3, detM∗
5 = −2 and

detM∗
6 = −1.

We now define new sequences from the matrices Mk and M∗
k , (k = 1, . . . , 6) as

shown, respectively:

aun =

 aun−1 + α1a
u
n−3 n ≡ 1 (mod 3) ,

aun−2 + α2a
u
n−3 n ≡ 2 (mod 3) ,

aun−3 + α3a
u
n−4 + α3a

u
n−5 n ≡ 0 (mod 3) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

avn =

 avn−1 + 2a
v
n−3 n ≡ 1 (mod 3) ,

avn−2 + 3a
v
n−3 n ≡ 2 (mod 3) ,

avn−3 + (v − 1) avn−4 + (v − 1) avn−5 n ≡ 0 (mod 3) ,
(v = 4, 5, 6)

for n ≥ 4, where ak1 = 0, ak2 = 0, ak3 = 1 and

bun =


bun−1 + α1b

u
n−4 n ≡ 1 (mod 4) ,

bun−2 + α2b
u
n−4 n ≡ 2 (mod 4) ,

bun−3 + α3b
u
n−4 n ≡ 3 (mod 4) ,

bun−4 + b
u
n−5 + b

u
n−6 + b

u
n−7 n ≡ 0 (mod 4) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

bvn =


bvn−1 + 2b

v
n−4 n ≡ 1 (mod 4) ,

bvn−2 + 3b
v
n−4 n ≡ 2 (mod 4) ,

bvn−3 + (v − 1) bvn−4 n ≡ 3 (mod 4) ,
bvn−4 + b

v
n−5 + b

v
n−6 + b

v
n−7 n ≡ 0 (mod 4) ,

(v = 4, 5, 6)

for n ≥ 5, where bk1 = 0, bk2 = 0, bk3 = 0, bk4 = 1.
The sequences

{
akn
}
and

{
bkn
}
for k = 1, . . . , 6 are called the 3-step and 4-

step polyhedral sequences of the first, second, third, fourth, fifth and sixth kind,
respectively.
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By an inductive argument for n ≥ 3 and k = 1, . . . , 6, we may write

(Mk)
n

=

 mk
1 mk

2 ak3n+1
mk
3 mk

4 ak3n+2
λka

k
3n+1 λka

k
3n+2 ak3n+3

 ,
(λ1 = λ2 = 2, λ3 = m, λ4 = 3, λ5 = 4, λ6 = 5)

where

m1
1 = 2a13n−2 +ma

1
3n+1 +m

n−1 +

n−3∑
i=0

mn−2−ia18+3i,

m2
1 = a23n+1 + a

2
3n+3 − 2mn−2 − 2

n−3∑
i=0

mn−3−ia27+3i,

m3
1 =

a33n+2 + a
3
3n+3 + 2

n

2
,

m4
1 = 7.2n−2 + 3

n−3∑
i=0

2n−3−ia47+3i,

m5
1 = 2n+1 +

n−3∑
i=0

2n−1−ia57+3i,

m6
1 = 9.2n−2 + 5

n−3∑
i=0

2n−3−ia67+3i,

m1
2 = 2mn−2 + 2

n−3∑
i=0

mn−3−ia18+3i,

m2
2 = 2mn−2 + 2

n−3∑
i=0

mn−3−ia27+3i,

m3
2 =

a33n+2 + a
3
3n+3 − 2n

2
,

m4
2 = 3n−1 +

n−3∑
i=0

3n−2−ia47+3i,

m5
2 = 2n +

n−3∑
i=0

2n−1−ia57+3i,

m6
2 = 5 · 3n−2 + 5

n−3∑
i=0

3n−3−ia67+3i,

m1
3 = m1

2, m
2
3 = m2

2, m
3
3 = m3

2, m
4
3 = m4

2, m
5
3 = m5

2, m
6
3 = m6

2
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and

m1
4 = a13n+2 + a

1
3n+3 − 2mn−2 − 2

n−3∑
i=0

mn−3−ia18+3i,

m2
4 = 2a23n−1 +ma

2
3n+2 −mn−1 −

n−3∑
i=0

mn−2−ia27+3i,

m3
4 = m3

1,

m4
4 = 3n +

n−2∑
i=0

3n−1−ia45+3i,

m5
4 = 3n + 4

n−2∑
i=0

3n−2−ia55+3i,

m6
4 = 3n + 5

n−2∑
i=0

3n−2−ia65+3i.

Similarly, we obtain the matrices (M∗
k )
n for n ≥ 3 and k = 1, . . . , 6 by using

mathematical induction as shown:
For k = 1, 2, 3,

(M∗
k )
n
=


m∗k
1 m∗k

2 m∗k
3 a∗k4n+1

m∗k
4 m∗k

5 m∗k
6 a∗k4n+2

m∗k
7 m∗k

8 m∗k
9 a∗k4n+3

a∗k4n+1 a∗k4n+2 a∗k4n+3 a∗k4n+4

 ,
where

m∗1
1 = a∗14n−3 +ma

∗1
4n+1 −mn−1 −

n−3∑
i=0

mn−2−ia∗110+4i, m
∗2
1 = a∗24n−3 + 2

n

+

n−3∑
i=0

2n−2−ia∗25+4i,

m∗3
1 = a∗34n−3 + 2

n +

n−3∑
i=0

2n−2−ia∗35+4i,

m∗1
2 = mn−2 +

n−3∑
i=0

mn−3−ia∗110+4i, m
∗2
2 = mn−2 +

n−3∑
i=0

mn−3−ia∗29+4i, m
∗3
2 = a∗34n−3

+

n−3∑
i=0

2n−2−ia∗35+4i,
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m∗1
3 = m∗1

2 , m
∗2
3 = a∗24n−3 +

n−3∑
i=0

2n−2−ia∗25+4i, m
∗3
3 = mn−2 +

n−3∑
i=0

mn−3−ia∗39+4i,

m∗1
4 = m∗1

2 , m
∗2
4 = m∗2

2 , m
∗3
4 = m∗3

2 ,

m∗1
5 = a∗14n−2 + 2

n +

n−3∑
i=0

2n−2−ia∗16+4i, m
∗2
5

= a∗24n−2 +ma
∗2
4n+2 −mn−1 +

n−3∑
i=0

mn−2−ia∗29+4i, m
∗3
5 = m∗3

1 ,

m∗1
6 = a∗14n−2 +

n−3∑
i=0

2n−2−ia∗16+4i, m
∗2
6 = m∗2

2 , m
∗3
6 = m∗3

3 ,

m∗1
7 = m∗1

2 , m
∗2
7 = m∗2

3 , m
∗3
7 = m∗3

3 ,

m∗1
8 = m∗1

6 , m
∗2
8 = m∗2

2 , m
∗3
8 = m∗3

3

and

m∗1
9 = m∗1

5 , m
∗2
9 = m∗2

1 , m
∗3
9 = a∗34n−1 +ma

∗3
4n+3 −mn−1 +

n−3∑
i=0

mn−2−ia∗39+4i.

For k = 4, 5, 6,

(
M

∗
4

)n
=



a∗44n−3 + 2n +

n−3∑
i=0

2n−2−ia∗45+4i a∗44n+2 − a∗44n+1 a∗44n+2 − a∗44n+1 a∗44n+1

a∗44n+2 − a∗44n+1 a∗44n−2 + 3n +

n−3∑
i=0

3n−2−ia∗46+4i a∗44n−2 +
n−3∑
i=0

3n−2−ia∗46+4i a∗44n+2

a∗44n+2 − a∗44n+1 a∗44n−2 +
n−3∑
i=0

3n−2−ia∗46+4i a∗44n−2 + 3n +

n−3∑
i=0

3n−2−ia∗46+4i a∗44n+3

a∗44n+1 a∗44n+2 a∗44n+3 a∗44n+4


,

(
M

∗
5

)n
=



a∗54n−3 + 2n +

n−3∑
i=0

2n−2−ia∗55+4i a∗54n+2 − a∗54n+1 a∗54n−3 +
n−3∑
i=0

4n−2−ia∗55+4i a∗54n+1

a∗54n+2 − a∗54n+1 a∗54n−2 + 3n +

n−3∑
i=0

3n−2−ia∗56+4i a∗54n+3 − a∗54n+2 a∗54n+2

a∗54n−3 +
n−3∑
i=0

4n−2−ia∗55+4i a∗54n+3 − a∗54n+2 a∗54n−1 + 4n +

n−3∑
i=0

4n−2−ia∗57+4i a∗54n+3

a∗54n+1 a∗54n+2 a∗54n+3 a∗54n+4


and

(
M

∗
6

)n
=



a∗64n−3 + 2n +

n−3∑
i=0

2n−2−ia∗65+4i a∗64n+2 − a∗64n+1 a∗64n−1 +
n−3∑
i=0

2n−2−ia∗67+4i a∗64n+1

a∗64n+2 − a∗64n+1 a∗64n−2 + 3n +

n−3∑
i=0

3n−2−ia∗66+4i a∗64n−2 +
n−3∑
i=0

5n−2−ia∗66+4i a∗64n+2

a∗64n−1 +
n−3∑
i=0

2n−2−ia∗67+4i a∗64n−2 +
n−3∑
i=0

5n−2−ia∗66+4i a∗64n−1 + 5n +

n−3∑
i=0

5n−2−ia∗67+4i a∗64n+3

a∗64n+1 a∗64n+2 a∗64n+3 a∗64n+4


.
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It is well-known that the Simpson formula for a recurrence sequence can be
obtained from the determinant of its generating matrix. For example, the Simpson
formula for the sequence

{
a3n
}
is

(4− 4m)n =
(
a33n+2 + a

3
3n+3 + 2

n
) (
−m
2

(
a33n+1

)2 − m

2

(
a33n+2

)2)
+

ma33n+1

((
a33n+2

)2
+ a33n+2a

3
3n+3 − 2na33n+2

)
+ 2na33n+3

(
a33n+3 + a

3
3n+2

)
.

It is easy to see that the characteristic equations of the sequences
{
akn
}
and{

bkn
}
, (k = 1, . . . , 6) do not have multiple roots; that is, each of the eigenvalues of

the matrices Mk and M∗
k is distinct.

Let
{
xk1 , x

k
2 , x

k
3

}
and

{
xk1 , x

k
2 , x

k
3 , x

k
4

}
be the sets of the eigenvalues of the matrices

Mk and M∗
k for k = 1, . . . , 6, respectively and let V (u)k be a (u+ 2) × (u+ 2)

Vandermonde matrix as follows:

V
(u)
k =


(
xk1
)u+1 (

xk2
)u+1 · · ·

(
xku+2

)u+1(
xk1
)u (

xk2
)u · · ·

(
xku+2

)u
...

...
...

1 1 · · · 1


where u = 1, 2. Suppose now that

W i
k =


(
xk1
)n+u+2−i(

xk2
)n+u+2−i
...(

xku+2
)n+u+2−i


and V (u,i)k,j İS a (u+ 2) × (u+ 2) matrix obtained from V

(u)
k by replacing the jth

column of V (u)k by W i
k. This yields the Binet-type formulas for the sequences

{
akn
}

and
{
bkn
}
, namely.

Theorem 2.1. For k = 1, . . . , 6,

m
(k,n)
ij =

detV
(1,i)
k,j

detV
(1)
k

and m∗(k,n)
ij =

detV
(2,i)
k,j

detV
(2)
k

,

where (Mk)
n
= m

(k,n)
ij and (M∗

k )
n
= m

∗(k,n)
ij .

Proof. Since the eigenvalues of the matrices Mk and M∗
k are are distinct, these

matrices are diagonalizable. Let

D(1,k) = diag
(
xk1 , x

k
2 , x

k
3

)
and D(2,k) = diag

(
xk1 , x

k
2 , x

k
3 , x

k
4

)
,

then it is easy to see thatMkV
(1)
k = V

(1)
k D(1,k) andM∗

kV
(2)
k = V

(2)
k D(2,k). Since the

matrices V (1)k and V (2)k are invertible,
(
V
(1)
k

)−1
MkV

(1)
k = D(1,k) and

(
V
(2)
k

)−1
M∗
kV

(2)
k =
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D(2,k). Thus, the matrices Mk and M∗
k are similar to D

(1,k) and D(2,k), respec-
tively. So, we get (Mk)

n
V
(1)
k = V

(1)
k

(
D(1,k)

)n
and (M∗

k )
n
V
(2)
k = V

(2)
k

(
D(2,k)

)n
for

n ≥ 1.
Then we can write the following linear system of equations:

m
(k,n)
i1

(
xk1
)2
+m

(k,n)
i2

(
xk1
)
+m

(k,n)
i3 =

(
xk1
)n+3−i

m
(k,n)
i1

(
xk2
)2
+m

(k,n)
i2

(
xk2
)
+m

(k,n)
i3 =

(
xk2
)n+3−i

m
(k,n)
i1

(
xk3
)2
+m

(k,n)
i2

(
xk3
)
+m

(k,n)
i3 =

(
xk3
)n+3−i , (1 ≤ i, j ≤ 3)

and
m
∗(k,n)
i1

(
xk1
)3
+m

∗(k,n)
i2

(
xk1
)2
+m

∗(k,n)
i3

(
xk1
)
+m

∗(k,n)
i4 =

(
xk1
)n+4−i

m
∗(k,n)
i1

(
xk2
)3
+m

∗(k,n)
i2

(
xk2
)2
+m

∗(k,n)
i3

(
xk2
)
+m

∗(k,n)
i4 =

(
xk2
)n+4−i

m
∗(k,n)
i1

(
xk3
)3
+m

∗(k,n)
i2

(
xk3
)2
+m

∗(k,n)
i3

(
xk3
)
+m

∗(k,n)
i4 =

(
xk3
)n+4−i

m
∗(k,n)
i1

(
xk4
)3
+m

∗(k,n)
i2

(
xk4
)2
+m

∗(k,n)
i3

(
xk4
)
+m

∗(k,n)
i4 =

(
xk4
)n+4−i , (1 ≤ i, j ≤ 4) .

Therefore, we obtain

m
(k,n)
ij =

detV
(1,i)
k,j

detV
(1)
k

and m∗(k,n)
ij =

detV
(2,i)
k,j

detV
(2)
k

for k = 1, . . . , 6. �

3. The Cyclic Groups and The Semigroups via The Matrices Mk and
M∗
k

Given an integer matrix A = [aij ], A (modα) means that all entries of A are
modulo α, that is, A (modα) = (aij (modα)). Let us consider the set 〈A〉α ={
Ai (modα) | i ≥ 0

}
. If gcd (α,detA) = 1, then 〈A〉α is a cyclic group; if gcd (α,detA) 6=

1, then 〈A〉α is a semigroup. Let the notation |〈A〉α| denote the order of the set
〈A〉α.
We next consider the orders of the cyclic groups and the semigroups generated

by the matrices Mk and M∗
k for k = 1, . . . , 6.

Theorem 3.1. Let p be a prime and let 〈G〉pn be any of the cyclic groups of 〈Mk〉pn
and 〈M∗

k 〉pn for k = 1, . . . , 6 and n ∈ N . If i is the largest positive integer such that∣∣∣〈G〉pi∣∣∣ = ∣∣∣〈G〉p∣∣∣, then ∣∣∣〈G〉pj ∣∣∣ = pj−i
∣∣∣〈G〉p∣∣∣. In particular, if ∣∣∣〈G〉p2∣∣∣ 6= ∣∣∣〈G〉p∣∣∣,

then
∣∣∣〈G〉pj ∣∣∣ = pj−1

∣∣∣〈G〉p∣∣∣.
Proof. Let us consider the cyclic group 〈M1〉pn . Then gcd (p, 4) = 1 that is, p is

an odd prime. Suppose that u is positive integer and
∣∣∣〈M1〉pn

∣∣∣ is denoted by ◦ (pn).
Since (M1)

◦(pu+1) ≡ I
(
mod pu+1

)
, (M1)

◦(pu+1) ≡ I (mod pu) where I is a 3 × 3
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identity matrix. Thus, we show that ◦ (pu) divides ◦
(
pu+1

)
. Furthermore, if we

denote

(M1)
◦(pu)

= I +
(
m
(u)
ij · pu

)
,

then by the binomial expansion, we have

(M1)
◦(pu)·p

=
(
I +

(
m
(u)
ij · pu

))p
=

p∑
r=0

(
p

r

)(
m
(u)
ij · pu

)r
≡ I (mod pu) .

So we get that ◦
(
pu+1

)
is divisible by ◦

(
pu+1

)
· p. Then, ◦

(
pu+1

)
= ◦ (pu) or

◦
(
pu+1

)
= ◦

(
pu+1

)
· p. It is clear that the latter holds if and only if there exists

an integer m(u)
ij which is not divisible by p. Since i is the largest positive integer

such that ◦
(
pi
)
= ◦ (p) we have ◦

(
pi+1

)
6= ◦

(
pi
)
, which yields that there exists an

integer m(u)
ij such that p - m(u)

ij . So we find that ◦
(
pi+2

)
6= ◦

(
pi+1

)
. To complete

the proof we use an inductive method on i.
There are similar proofs for the other cyclic groups which are obtained as the

above. �

Theorem 3.2. Let α be an positive integer and let 〈G〉α be any of the cyclic groups

of 〈Mk〉α and 〈M∗
k 〉α for k = 1, . . . , 6. If α has the prime factorization α =

t∏
j=1

p
ej
j ,

(t ≥ 1), then
|〈G〉α| = lcm

[∣∣∣〈G〉pe11 ∣∣∣ , ∣∣∣〈G〉pe22 ∣∣∣ , . . . , ∣∣∣〈G〉pett ∣∣∣] .
Proof. Let us consider the cyclic group 〈M∗

4 〉α, then gcd (α, 3) = 1. Suppose that∣∣∣〈M∗
4 〉pejj

∣∣∣ = vj for j = 1, . . . , t and |〈M∗
4 〉α| = v. Then by (M∗

4 )
n, we can write

a∗44vj−3 + 2
vj +

vj−3∑
i=0

2vj−2−ia∗45+4i ≡ a∗44vj−2 + 3
vj +

vj−3∑
i=0

3vj−2−ia∗46+4i ≡ a∗44vj+4

≡ 1
(
mod pejj

)
,

a∗44vj−2 +

vj−3∑
i=0

3vj−2−ia∗46+4i ≡ a∗44vj+1 ≡ a
∗4
4vj+2 ≡ a

∗4
4vj+3 ≡ 0

(
mod p

ej
j

)
and

a∗44v−3 + 2
v +

v−3∑
i=0

2v−2−ia∗45+4i ≡ a∗44v−2 + 3
v +

v−3∑
i=0

3v−2−ia∗46+4i ≡ a∗44v+4 ≡ 1 (modα) ,

a∗44v−2 +

v−3∑
i=0

3v−2−ia∗46+4i ≡ a∗44v+1 ≡ a∗44v+2 ≡ a∗44v+3 ≡ 0 (modα) .
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This implies that (M∗
4 )
v is of the form λ · (M∗

4 )
vj , (λ ∈ N) for all values of j. Thus

it is verified that v =lcm[v1, v2, . . . , vt].
There are similar proofs for the other cyclic groups which are obtained as the

above. �
We have the following useful results for the orders of the semigroups generated

by the matrices Mk and M∗
k from (Mk)

n and (M∗
k )
n
.

Corollary 3.3. Let α = 2η and m = 2µ such that η, µ ∈ N and 1 ≤ µ ≤ η. Then
the orders of the semigroups 〈Mk〉α for k = 1, 2, 3 are as follows:
(i). If η = µ = 1, then |〈Mk〉α| = 1.
(ii). If η ≥ 2 and µ = η or µ = η − 1, then |〈Mk〉α| = η.
(iii). If η ≥ 3 and µ = η− i such that 2 ≤ i ≤ η−1, then |〈Mk〉α| = η+2i−1−1.

Corollary 3.4. Let m ≡ 1 (mod 4) or m ≡ 2 (mod 4) and let η ∈ N . Then the
orders of the semigroups 〈M3〉2η are as follows:
i. If m ≡ 1 (mod 4), then

|〈M3〉2η | =

 2 for η = 1,
4 for η = 2,

2η−2 + η for η ≥ 3.
ii. If m ≡ 2 (mod 4), then

|〈M3〉2η | =

 1 for η = 1,
2 for η = 2,

2η−2 + η − 1 for η ≥ 3.

Corollary 3.5. Let η ∈ N . Then the orders of the semigroups 〈M4〉3η , 〈M5〉2η ,
〈M5〉7η and 〈M6〉19η are as follows:

|〈M4〉3η | =
{
2 · 3η−1 + η − 1 for η = 1,
2 · 3η−1 + η − 2 for η ≥ 2,

|〈M5〉2η | =
{

1 for η = 1,
2η−1 + η − 1 for η ≥ 2,

|〈M5〉7η | = 48 · 7
η−1 + η − 1

and
|〈M6〉19η | = 20 · 19

η−1 + η − 1.

Corollary 3.6. Let η ∈ N . Then the orders of the semigroups 〈M∗
k 〉2η for k =

1, 2, 3 are as follows:
(i). If m ≡ 0 (mod 4), then

|〈M∗
k 〉2η | =

 3 for η = 1,
7 for η = 2,

2η−1 + 2η−2 + η − 1 for η ≥ 3.
(ii). If m ≡ 2 (mod 4), then

∣∣〈M∗
k 〉2η

∣∣ = 2η−1 + 2η−2 + η − 1.
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(iii). If m is odd, then
∣∣〈M∗

k 〉2η
∣∣ = 3η + 1.

Corollary 3.7. Let η ∈ N . Then the orders of the semigroups 〈M∗
4 〉3η and 〈M∗

5 〉2η
are as follows:

|〈M∗
4 〉3η | = 26 · 3

η−1 + η − 1
and

|〈M∗
5 〉2η | = 4η.

By an inductive argument for n ≥ 1, we obtain

(M1)
n
=

 x1 x2 x3
x2 x4 x5
x6 x7 x8

 , (M2)
n
=

 x4 x2 x5
x2 x1 x3
x7 x6 x8


and

(M∗
1 )
n

=


y1 y2 y2 y3
y2 y4 y5 y6
y2 y5 y4 y6
y3 y6 y6 y7

 , (M∗
2 )
n
=


y4 y2 y5 y6
y2 y1 y2 y3
y5 y2 y4 y6
y6 y3 y6 y7

 ,

(M∗
3 )
n

=


y4 y5 y2 y6
y5 y4 y2 y6
y2 y2 y1 y3
y6 y6 y3 y7

 ,
where xi, yj ∈ N such that i = 1, . . . , 8 and j = 1, . . . , 7. Thus, we have the
following results

a13n+1 = a23n+2, a
1
3n+2 = a23n+1, a

1
3n+3 = a23n+3

and

b14n+1 = b24n+2 = b34n+3, b
1
4n+2 = b24n+1 = b34n+1, b

1
4n+4 = b24n+4 = b34n+4,

b14n+2 = b14n+3, b
2
4n+1 = b24n+3, b

3
4n+1 = b34n+2

and hence
|〈M1〉α| = |〈M2〉α| , | 〈M

∗
1 〉α| = | 〈M

∗
2 〉α| = | 〈M

∗
2 〉α|

for every positive integer α.

4. The Polyhedral Sequences in Groups

It is well-known that a sequence is periodic if, after a certain point, it consists
only of repetitions of a fixed subsequence. The number of elements in the repeating
subsequence is the period of the sequence. A sequence is simply periodic with
period k if the first k elements in the sequence form a repeating subsequence.
Reducing 3-step and 4-step polyhedral sequences of the first, second, third,

fourth, fifth and sixth kind by a modulus α, then we get the repeating sequences,
respectively denoted by{

akn (α)
}
=
{
ak1 (α) , a

k
2 (α) , . . . , a

k
i (α) , . . .

}
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and {
bkn (α)

}
=
{
bk1 (α) , b

k
2 (α) , . . . , b

k
i (α) , . . .

}
,

where aki (α) = aki (modα), b
k
i (α) = bki (modα) and k = 1, . . . , 6. The recurrence

relations in the sequences
{
akn (α)

}
,
{
bkn (α)

}
and

{
akn
}
,
{
bkn
}
are the same, respec-

tively.

Theorem 4.1. For k = 1, . . . , 6, the sequences
{
akn (α)

}
,
{
bkn (α)

}
are periodic.

Proof. Let us consider the 4-step polyhedral sequence of the first kind
{
b1n (α)

}
as

an example. Let X = {(x1, x2, x3, x4, x5, x6, x7) | 0 ≤ xi ≤ α− 1}. Since there are
α7 distinct 7-tuples of elements of Zα, at least one of the 7-tuples appears twice in
the sequence

{
b1n (α)

}
. Therefore, the subsequence following this 7-tuple repeats;

that is the sequence is periodic.
There are similar proofs for the other sequences which are defined as the above.

�
We next denote the periods of the sequences

{
akn (α)

}
and

{
bkn (α)

}
by lak (α)

and lbk (α), respectively.

Example 4.1. For m = 2, the sequence
{
b1n (3)

}
is

{0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, . . .}
and thus lb1 (3) = 8.

Theorem 4.2. Let α be an positive integer and let
{
xkn (α)

}
be any of the sequences

of
{
akn (α)

}
,
{
bkn (α)

}
for k = 1, . . . , 6. If α has the prime factorization α =

t∏
j=1

p
ej
j ,

(t ≥ 1) and (α,detM) = 1 where M is generating matrix of the sequence that is,
M =Mk or M =M∗

k , then

lxk (α) = lcm [lxk (p
e1
1 ) , lxk (p

e2
2 ) , . . . , lxk (p

et
t )] .

Proof. Let us consider the 3-step polyhedral sequence of the fourth kind
{
a4n (α)

}
as an example. Since la4

(
p
ej
j

)
is the length of the period of the sequence

{
akn
(
p
ej
j

)}
,

this sequence repeats only after blocks of length u · la4
(
p
ej
j

)
, (u ∈ N). Since also

la4 (α) is the length of the period of
{
akn (α)

}
, the sequence

{
akn
(
p
ej
j

)}
repeats

after la4 (α) terms for all values j. Thus, la4 (α) is of the form u · la4
(
p
ej
j

)
for

all values j, and since any such number gives a period of la4 (α), we find that
la4 (α) = lcm [la4 (p

e1
1 ) , la4 (p

e2
2 ) , . . . , la4 (p

et
t )].

There are similar proofs for the other sequences which are defined as the above.
�

Since

(Mk)
n

 0
0
1

 =
 ak3n+1
ak3n+2
ak3n+3


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and

(M∗
k )
n


0
0
0
1

 =

bk4n+1
bk4n+2
bk4n+3
bk4n+4

 ,
it is clear that lak (α) = 3 · |〈Mk〉α| and lbk (α) = 4 ·

∣∣〈M∗
k 〉α
∣∣ when (detM,α) = 1

where M =Mk or M =M∗
k for k = 1, . . . , 6.

We next redefine the sequences
{
akn
}
and

{
bkn
}
by means of the elements of the

groups which have two or three generators.

Definition 4.1. Let G be a 2-generator group. For a generating pair (x, y), we
define the polyhedral 3-orbits of the first, second, third, fourth, fifth and sixth kind
by:

sun =


(
sun−3

)α1
sun−1 n ≡ 1 (mod 3) ,(

sun−3
)α2

sun−2 n ≡ 2 (mod 3) ,(
sun−5

)α3 (
sun−4

)α3
sun−3 n ≡ 0 (mod 3) ,

,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u)

svn =


(
svn−3

)2
svn−1 n ≡ 1 (mod 3) ,(

svn−3
)3
svn−2 n ≡ 2 (mod 3) ,(

svn−5
)v−1 (

svn−4
)v−1

svn−3 n ≡ 0 (mod 3) ,
(v = 4, 5, 6)

for n ≥ 4, with initial conditions sk1 = x, sk2 = y, sk3 = y, (k = 1, . . . , 6).
For a generating pair (x, y), the polyhedral 3-orbits of the first, second, third,

fourth, fifth and sixth kind are denoted byO3,1(x,y) (G), O
3,2
(x,y) (G), O

3,3
(x,y) (G), O

3,4
(x,y) (G),

O3,5(x,y) (G) and O
3,6
(x,y) (G), respectively.

Definition 4.2. Let G be a 3-generator group. For a generating triple (x, y, z), we
define the polyhedral 4-orbits of the first, second, third, fourth, fifth and sixth kind
by:

run =


(
run−4

)α1
run−1 n ≡ 1 (mod 4) ,(

run−4
)α2

run−2 n ≡ 2 (mod 4) ,(
run−4

)α3
run−3 n ≡ 3 (mod 4) ,

run−7r
u
n−6r

u
n−5r

u
n−4 n ≡ 0 (mod 4) ,

(u = 1, 2, 3, αu = m and αi = 2 if i 6= u) ,

rvn =


(
rvn−4

)2
rvn−1 n ≡ 1 (mod 4) ,(

rvn−4
)3
rvn−2 n ≡ 2 (mod 4) ,(

rvn−4
)(v−1)

rvn−3 n ≡ 3 (mod 4) ,
rvn−7r

v
n−6r

v
n−5r

v
n−4 n ≡ 0 (mod 4) ,

(v = 4, 5, 6)

for n ≥ 5, with initial conditions rk1 = x, rk2 = y, rk3 = z, rk4 = z, (k = 1, . . . , 6).
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For a generating triple (x, y, z), the polyhedral 4-orbits of the first, second, third,
fourth, fifth and sixth kind are denoted by O4,1(x,y,z) (G), O

4,2
(x,y,z) (G), O

4,3
(x,y,z) (G),

O4,4(x,y,z) (G), O
4,5
(x,y,z) (G) and O

4,6
(x,y,z) (G), respectively.

Theorem 4.3. The polyhedral 3-orbits and 4-orbits of the first, second, third,
fourth, fifth and sixth kind of a finite group G are periodic.

Proof. Let us consider the polyhedral 3-orbit of the first kind O3,1(x,y) (G) as an
example. Suppose that n is the order of G. Since there are n5 distinct 5-tuples of
elements of G, at least one of the 5-tuples appears twice in the sequence O3,1(x,y) (G).
Therefore, the subsequence following this 5-tuple repeats. Because of the repetition,
the sequence is periodic. �

We denote the lengths of the periods of the orbits O3,k(x,y) (G) and O
4,k
(x,y,z) (G) by

LO3,k(x,y) (G) and LO
4,k
(x,y,z) (G) for k = 1, . . . , 6, respectively.

We will now address the lengths of the periods of the polyhedral 3-orbits and
4-orbits of the first, second, third, fourth, fifth and sixth kind of finite polyhedral
groups as applications of the results obtained.

Theorem 4.4. The orbit O3,1(x,y) ((m, 2, 2)) is a simply periodic sequence and

LO3,1(x,y) ((m, 2, 2)) = 6i where i is the least positive integer such that (−2)i ≡
1 (modm) and[
(−2)i + (−2)i−1 + · · ·+ (−2)3

]
+ 2 ≡ 0 (modm).

Proof. We first note that the polyhedral group (m, 2, 2) of order 2m is presented in
the 2-generator case by 〈

x, y | xm = y2 = (xy)
2
= e
〉
.

The sequence O3,1(x,y) ((m, 2, 2)) is

x, y, y, y, y, x2y, . . . .

Using the above, the sequence becomes:

s11 = x, s12 = y, s13 = y, s14 = y, s15 = y, s16 = x2y, . . . ,

s16i+1 = x(−2)
i

, s16i+2 = s16i+3 = s16i+4 = s16i+5 = x−[(−2)
i+(−2)i−1+···+(−2)3]−2y,

s16i+6 = x−[(−2)
i+1+(−2)i+···+(−2)3]−2y, . . . .

So we need the smallest positive integer i such that

(−2)i = um+ 1 and
[
(−2)i + (−2)i−1 + · · ·+ (−2)3

]
+ 2 = vm for u, v ∈ N.

Thus the proof is complete. �
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Theorem 4.5.

LO3,2(x,y) ((2,m, 2)) = la2 (m) , LO
3,3
(x,y) ((2, 2,m)) = 3, LO

3,4
(x,y) ((2, 3, 3)) = 18,

LO3,5(x,y) ((2, 3, 4)) = 9, LO
3,6
(x,y) ((2, 3, 5)) = 21

and

LO4,1(x,y,z) ((m, 2, 2)) = LO4,2(x,y,z) ((2,m, 2)) =

{
4 if m is odd,
12 if m is even,

LO4,3(x,y,z) ((2, 2,m)) = lb3 (m) , LO
4,4
(x,y,z) ((2, 3, 3)) = 104,

LO4,5(x,y,z) ((2, 3, 4)) = 4, LO
4,6
(x,y,z) ((2, 3, 5)) = 248.

Proof. Let us consider the polyhedral 4-orbit of the third kind of the polyhedral
group (2, 2,m) , O4,3(x,y,z) ((2, 2,m)) as an example. The sequence O

4,3
(x,y,z) ((2, 2,m))

is
x, y, z, z, z, z, z, z, z3, z3, z, z4, z10, z10, z4, z11, . . . .

Using the above, the sequence becomes:

r35 = z = zb
3
5 , r36 = z = zb

3
6 , r37 = z = zb

3
7 , r38 = z = zb

3
8 , . . . ,

r34i+1 = zb
3
4i+1 , r34i+2 = zb

3
4i+2 , r34i+3 = zb

3
4i+3 , r34i+4 = zb

3
4i+4 , . . . .

Since the order of z is m, it is easy to see that the length of the period of the
orbit O4,3(x,y,z) ((2, 2,m)) is lb3 (m).
There are similar proofs for the other orbits. �

Acknowledgement. This Project was supported by the Commission for the
Scientific Research Projects of Kafkas University. The Project number. 2015-FM-
45.

References

[1] Aydın, H. and Smith, G. C., Finite p-quotients of some cyclically presented groups, J. Lond.
Math. Soc. 49 (1994), 83-92.

[2] Bozkurt, D. and Tam, T-Y., Determinants and inverses of circulant matrices with Jacobsthal
and Jacobsthal-Lucas numbers, Appl. Math. Comput. (2012), 219(2), 544-551.

[3] Campbell, C. M. and Campbell, P.P., The Fibonacci lengths of binary polyhedral groups and
related groups, Congr. Numer. 194 (2009), 95-102.

[4] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups, 3rd
edition, Springer, Berlin, 1972.

[5] Deveci, O., On the Fibonacci-circulant p-sequences, Util. Math. in press.
[6] Deveci, O. and Akuzum,Y., The recurrence sequences via Hurwitz matrices, Sci. Ann. “Al.

I. Cuza” Univ. Iasi, in press.
[7] Deveci, O. and Karaduman, E., The cyclic groups via the Pascal matrices and the generalized

Pascal matrices, Linear Algebra Appl. 437 (2012), 2538-2545.
[8] Doostie, H. and Campbell, C. M., Fibonacci length of automorphism groups involving tri-

bonacci numbers, Vietnam J. Math. (2000), 28(1), 57-65.



POLYHEDRAL SEQUENCES 115

[9] Falcon, S. and Plaza, A., k-Fibonacci sequences modulo m, Chaos Solitons Fractals (2009),
41(1), 497-504.

[10] Frey, D. D. and Sellers, J. A., Jacobsthal numbers and alternating sign matrices, J. Integer
Seq. 3 (2000), Article 00.2.3.

[11] Gogin, N. D. and Myllari, A. A., The Fibonacci-Padovan sequence and MacWilliams trans-
form matrices, Program. Comput. Softw., published in Programmirovanie (2007), 33(2), 74-
79.

[12] Johnson, D .L., Topics in the theory of group presentations, London Math. Soc. Lecture
Notes, Cambridge University Press, 1980.

[13] Kalman, D., Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. (1982),
20(1), 73-76.

[14] Karaduman, E. and Deveci, O., k-nacci sequences in finite triangle groups, Disc. Dyn. Nat.
Soc. (2009), 453750-5-453750-10.

[15] Kilic, E., The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial repre-
sentations, sums, Chaos, Solitons Fractals (2009), 40(4), 2047-2063.

[16] Knox, S. W., Fibonacci sequences in finite groups, Fibonacci Quart. (1992), 30(2), 116-120.
[17] Lu, K. and Wang, J., k-step Fibonacci sequence modulo m, Util. Math. 71 (2006), 169-178.
[18] Ozkan, E., On truncated Fibonacci sequences, Indian J. Pure Appl. Math. (2007), 38(4),

241-251.
[19] Spinadel, V. W., The metallic means family and forbidden symmetries, Int. Math. J. (2002),

2(3), 279-288.
[20] Stakhov, A. P. and Rozin, B., Theory of Binet formulas for Fibonacci and Lucas p-numbers,

Chaos Solitons Fractals (2006), 27(5), 1162-1177.
[21] Tasci, D. and Firengiz, M .C., Incomplete Fibonacci and Lucas p-numbers, Math. Comput.

Modelling 52 (2010), 1763-1770.
[22] Tuglu, N., Kocer, E. G. and Stakhov, A. P., Bivariate Fibonacci like p-polynomials, Appl.

Math. Comput. (2011), 217(24), 10239-10246.
[23] Wall, D. D., Fibonacci series modulo m , Amer. Math. Monthly 67 (1960), 525-532.
[24] Wilcox, H.J., Fibonacci sequences of period n in groups, Fibonacci Quart. (1986), 24(4),

356-361.

Current address : Ömür Deveci: Faculty of Science and Letters, Kafkas University 36100,
Turkey

E-mail address : odeveci36@hotmail.com
ORCID: http://orcid.org/0000-0001-5870-5298
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