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SEMI-SLANT SUBMANIFOLDS OF (k, µ)- CONTACT MANIFOLD

M.S.SIDDESHA AND C.S BAGEWADI

Abstract. In the present paper, we study semi-slant submanifolds of (k, µ)-
contact manifold and give conditions for the integrability of invariant and slant
distributions which are involved in the definition of semi-slant submanifold.
Further, we show the totally geodesicity of such distributions.

1. Introduction

The geometry of slant submanifolds was initiated by Chen [6] as a natural gen-
eralization of both holomorphic and totally real submanifolds. Since then many
geometers have studied such slant immersions in almost Hermitian manifolds. The
contact version of slant immersions was introduced by Lotta [11]. Latter, Cabrerizo
et al., [3] studied and characterized slant submanifolds of K-contact and Sasakian
manifolds and have given several examples of such immersions.
In 1994, Papaghiuc [12] has introduced the notion of semi-slant submanifolds of

almost Hermitian manifolds. Cabrerizo et al., [4] extended the study of semi-slant
submanifolds to the setting of almost contact metric manifolds. They worked out
the integrability conditions of the distributions involved on these submanifolds and
studied the geometrical significance of these distributions. Motivated by these stud-
ies of the above authors [4, 9, 12], in the present paper we extend the study of the
semi-slant submanifolds of (k, µ)-contact manifold, which consist of both Sasakian
as well as non-Sasakian cases and are introduced in 1995 by Blair, Koufogiorgos
and Papantoniou [2]. Hence it is worth studying and is a generalization of [4].
The paper is organized as follows: In section-2, we recall the notion of (k, µ)-

contact manifold and some basic results of submanifolds, which are used for further
study. Section-3 is devoted to study semi-slant submanifolds of (k, µ)-contact man-
ifold. Lastly, in section-4 we consider totally umbilical and totally contact umbilical
semi-slant submanifolds of (k, µ)-contact manifold and find the necessary conditions
to be totally geodesic.
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2. Preliminaries

A contact manifold is a C∞ − (2n+ 1) manifold M̃2n+1 equipped with a global
1-form η such that η ∧ (dη)n 6= 0 everywhere on M̃2n+1. Given a contact form η
it is well known that there exists a unique vector field ξ, called the characteristic
vector field of η, such that η(ξ) = 1 and dη(X, ξ) = 0 for every vector field X on
M̃2n+1. A Riemannian metric g is said to be associated metric if there exists a
tensor field φ of type (1,1) such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η · φ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)

g(X,φY ) = −g(φX, Y ), (2.3)

for all vector fields X,Y ∈ TM̃ . Then the structure (φ, ξ, η, g) on M̃2n+1 is called
a contact metric structure and the manifold M̃2n+1 equipped with such a structure
is called a contact metric manifold [1].
Now we define a (1, 1) tensor field h by h = 1

2Lξφ, where L denotes the Lie dif-
ferentiation, then h is symmetric and satisfies hφ = −φh. Further, a q-dimensional
distribution on a manifold M is defined as a mapping D on M which assigns to
each point p ∈M , a q-dimensional subspace Dp of TpM .
The (k, µ)-nullity distribution of a contact metric manifold M̃(φ, ξ, η, g) is a distri-
bution

N(k, µ) : p→ Np(k, µ) = {Z ∈ TpM : R̃(X,Y )Z

= k[g(Y, Z)X − g(X,Z)Y ] + µ[g(Y, Z)hX − g(X,Z)hY ]},

for all X,Y ∈ TM̃ . Hence if the characteristic vector field ξ belongs to the (k, µ)
nullity distribution, then we have

R̃(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (2.4)

The contact metric manifold satisfying the relation (2.4) is called (k, µ) contact
metric manifold [2]. It consists of both k-nullity distribution for µ = 0 and Sasakian
for k = 1. In (k, µ)-contact manifold the following relation holds:

(∇̃Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX), (2.5)

for all X,Y ∈ TM̃ , where ∇̃ denotes the Levi-Civita connection on M̃ . We also
have on (k, µ)-contact manifold M̃

∇̃Xξ = −φX − φhX. (2.6)

Let M be a submanifold of a (k, µ)-contact manifold M̃, we denote by the same
symbol g the induced metric on M . Let TM be the set of all vector fields tangent
to M and T⊥M is the set of all vector fields normal to M . Then, the Gauss and
Weingarten formulae are given by

∇̃XY = ∇XY + σ(X,Y ), ∇̃XV = −AVX +∇⊥XV, (2.7)
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for any X,Y ∈ TM , V ∈ T⊥M , where ∇ (resp. ∇⊥) is the induced connection on
the tangent bundle TM (resp. normal bundle T⊥M) [7]. The shape operator A is
related to the second fundamental form σ of M by

g(AVX,Y ) = g(σ(X,Y ), V ). (2.8)

Now, for any x ∈M, X ∈ TxM and V ∈ T⊥x M , we put
φX = TX + FX, φV = tV + fV, (2.9)

where TX (resp. FX) is the tangential (resp. normal) component of φX, and tV
(resp. fV ) is the tangential (resp. normal) component of φV . The relation (2.9)
gives rise to an endomorphism T : TxM → TxM whose square (T 2) will be denoted
by Q. The tensor fields on M of type (1, 1) determined by these endomorphisms
will be denoted by the same letters T and Q respectively. From (2.3) and (2.9)

g(TX, Y ) + g(X,TY ) = 0, (2.10)

for each X,Y ∈ TM . The covariant derivatives of the tensor fields T, Q and F are
defined as

(∇XT )Y = ∇XTY − T (∇XY ), (2.11)

(∇XQ)Y = ∇XQY −Q(∇XY ), (2.12)

(∇XF )Y = ∇XFY − F (∇XY ). (2.13)

Using (2.5), (2.6), (2.7), (2.9), (2.11), and (2.12), we obtain

(∇XT )Y = AFYX + tσ(X,Y ) + g(X + hX, Y )ξ − η(Y )(X + hX), (2.14)

(∇XF )Y = −σ(X,TY ) + fσ(X,Y ). (2.15)

3. Semi-slant submanifolds of a (k, µ)-contact manifold

As a generalization of slant and CR-submanifolds, Papaghiuc [12] introduced
the notion of semi-slant submanifolds of an almost Hermitian manifolds. Cabrerizo
et al., [4] gave the contact version of semi-slant submanifold and they obtained
several interesting results. The purpose of the present section is to study semi-slant
submanifolds of a (k, µ)-contact manifold.
A submanifold M of an almost contact metric manifold M̃ is said to be a slant

submanifold if for any x ∈ M and any X ∈ TxM , the Wirtinger’s angle, the angle
between φX and TxM , is constant θ ∈ [0, 2π]. Here the constant angle θ is called
the slant angle of M in M̃ . The invariant submanifolds are slant submanifolds
with slant angle 0 and anti-invariant submanifolds are slant submanifolds with
slant angle π

2 . A slant submanifold is called proper, if it is neither invariant nor
anti-invariant. Recently, we have defined and studied slant submanifolds of a (k, µ)-
contact manifold in [13].
A submanifold M of an almost contact metric manifold M̃ is said to be a semi-

slant submanifold of M̃ [4] if there exist two orthogonal distributions D1 and D2

on M such that:
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(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2⊕ < ξ >.
(ii) The distribution D1 is an invariant distribution, i.e., φ(D1) = D1.
(iii) The distribution D2 is slant with slant angle θ 6= 0.
In particular, if θ = π

2 , then a semi-slant submanifold reduces to a semi-invariant
submanifold. On a semi-slant submanifold M , for any X ∈ TM , we write

X = P1X + P2X + η(X)ξ, (3.1)

where P1X ∈ D1 and P2X ∈ D2. Now by equations (2.9) and (3.1)

φX = φP1X + TP2X + FP2X. (3.2)

Then, it is easy to see that

φP1X = TP1X, FP1X = 0, TP2X ∈ D2. (3.3)

Thus
TX = φP1X + TP2X and FX = FP2X. (3.4)

Let ν denote the orthogonal complement of φD2 in T⊥M i.e., T⊥M = φD2 ⊕ ν.
Then it is easy to observe that ν is an invariant subbundle of T⊥M .
Now, we are in a position to workout the integrability conditions of the distrib-

utions D1 and D2 on a semi-slant submanifold of a (k, µ)-contact manifold.

Lemma 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ ,
then

g([X,Y ], ξ) = 2g(φX, Y ) + g(Y, φhX)− g(X,φhY ), (3.5)
for any X,Y ∈ D1 ⊕D2.

The assertion can be proved by using the fact that ∇Xξ = −φX − φhX for
X ∈ D1 and (2.3). Since for any X ∈ D1

g([X,φX], ξ) 6= 0, we have

Corollary 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃
such that dim(D1) 6= 0. Then, the invariant distribution D1 is not integrable.

Now for the slant distribution, we have

Theorem 3.1. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ .
Then the slant distribution D2 is integrable if and only if slant angle of D2 is π

2
i.e., M is semi-invariant submanifold.

Proof. For any Z,W ∈ D2, by (3.5) we have

g([Z,W ], ξ) = 2g(TZ,W ) + g(W,ThZ)− g(Z, ThW ).
If D2 is integrable, then T | D2 ≡ 0 and so θ = π

2 . Hence M is a semi-invariant
submanifold.
Conversely, if sla(D2) =

π
2 , then φZ = FZ for each Z ∈ D2 and by equations (2.5)

and (2.7)

φ∇ZW + φσ(Z,W ) = −AFZW +∇⊥ZFW − g(Z + hZ,W )ξ,
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for each Z,W ∈ D2. Interchanging Z andW in the above equation and subtracting
the obtained relation from the same, we obtain

φ[Z,W ] = AFZW −AFWZ +∇⊥ZFW −∇⊥WFZ − g(hZ,W )ξ + g(hW,Z)ξ. (3.6)
Further, by using equations (2.3), (2.7) and (2.8) in (2.5), it is easy to obtain that

AFZW = AFWZ, (3.7)

for each Z,W ∈ D2. In view of (3.5), (2.1) and (3.7), equation (3.6) yields

[Z,W ] = φ(∇⊥ZFW −∇⊥WFZ). (3.8)

The right hand side of the above lies in D2 because on using equations (2.5), (2.7)
and (2.10), we observe that

g(V,∇⊥WFZ) = −g(AφVW,Z)
for all V ∈ ν and Z,W ∈ D2. This shows that

g(∇⊥ZFW −∇⊥WFZ, V ) = 0.

i.e., ∇⊥ZFW − ∇⊥WFZ lies in FD2 for each Z,W ∈ D2, and thus from equation
(3.8), [Z,W ] ∈ D2. �

Now, for Y ∈ D1 ⊕D2, by equation (2.5), we have

∇̃ξφY = φ∇̃ξY.
In particular, for Y ∈ D1, the above equation yields

∇ξφY = φ∇ξY.
This implies ∇ξY ∈ D1 for any Y ∈ D1.
The above observation together with the fact that σ(X, ξ) = 0 for X ∈ D1 yields

Lemma 3.2. On a semi-slant submanifold M of a (k, µ)-contact manifold M̃ ,

[X, ξ] ∈ D1 and [Z, ξ] ∈ D2

for any X ∈ D1 and Z ∈ D2.

Lemma 3.3. Let M be a semi-slant submanifold of a (k, µ)-contact manifold M̃ .
Then, for any X,Y ∈ TM , we have

P1(∇XφP1Y ) + P1(∇XTP2Y ) = φP1(∇XY ) + P1AFP2YX − η(Y )P1X (3.9)

Proof. By using equations (2.1), (2.7), (3.1), (3.2) and (3.3) we obtain

∇XφP1Y + σ(φP1Y,X) +∇XTP2Y + σ(TP2Y,X)−AFP2YX +∇⊥XFP2Y
= φP1∇XY + TP2∇XY + FP2∇XY + tσ(X,Y ) + fσ(X,Y )
+g(X + hX, Y )ξ − η(Y )P1(X + hX)− η(Y )P2(X + hX)− η(Y )η(X)ξ.

Equating the components of D1 we get (3.9). �
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Proposition 3.2. Let M be a semi-slant submanifold of (k, µ)-contact manifold
M̃ . Then
(i) D1⊕ < ξ > is integrable if and only if

σ(X,φY ) = σ(Y, φX); (3.10)

(ii) D2⊕ < ξ > is integrable if and only if

P1(∇ZTW −ANWZ −∇WTZ +ANZW ) = 0; (3.11)

for any X,Y ∈ D1 and Z,W ∈ D2.

Proof. Now, for any X,Y ∈ D1⊕ < ξ > and V ∈ T⊥M
g(∇̃XφY − ∇̃Y φX, V ) = g(σ(X,φY )− σ(φX, Y ), V ),

after simplification, we get

g((∇̃Xφ)Y − (∇̃Y )φX + φ[X,Y ], V ) = g(σ(X,φY )− σ(φX, Y ), V ).
Now using (2.5) and (3.2), we obtain

g(FP2[X,Y ], V ) = g(σ(X,φY )− σ(φX, Y ), V ).
Removing inner product, we get

FP2[X,Y ] = σ(X,φY )− σ(φX, Y ). (3.12)

Hence, if D1⊕ < ξ > is integrable then (3.10) holds directly from (3.12).
Conversely, by using (3.10), it is easy to prove that

σ(X,φY )− σ(Y, φX) = σ(P1X,φP1Y )− σ(P1Y, φP1X) = 0,
for any X,Y ∈ D1⊕ < ξ >. Thus, by applying (3.12) it follows that FP2[X,Y ] = 0.
So, we can easily deduce that P2[X,Y ] must vanish. Since D2 is a slant distribution
with nonzero slant angle. Hence [X,Y ] ∈ D1⊕ < ξ > and statement (i) holds.
With regards to statement (ii), by virtue of (3.9) we have

φP1[Z,W ] = P1(∇ZTW −∇WTZ −AFWZ +AFZW ).
for any Z,W ∈ D2⊕ < ξ >. Hence (3.11) holds if and only if

φP1[Z,W ] = 0, (3.13)

for any Z,W ∈ D2⊕ < ξ >. But it can be showed that (3.13) is equivalent to
D2⊕ < ξ > being an integrable distribution. �

The Nijenhuis tensor field S of the tensor T is given by

S(X,Y ) = [TX, TY ] + T 2[X,Y ]− T [TX, Y ]− T [X,TY ],
for X,Y ∈ TM . In particular, for X ∈ D1 and Z ∈ D2, the above equation on
simplification takes the form

S(X,Z) = (∇TXT )Z − (∇TZT )X + T (∇ZT )X − T (∇XT )Z.
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Using (2.14) the above equation becomes

S(X,Z) = AFZTX + tσ(TX,Z)− tσ(TZ,X)− T (AFZX). (3.14)

Theorem 3.3. If the invariant distribution D1 on a semi-slant submanifold M of
a (k, µ)-contact manifold M̃ is integrable and its leaves are totally geodesic in M,
then
(i) σ(D1, D1) ∈ ν,
(ii) S(D1, D2) ∈ D2.

Proof. By hypothesis, for any X,Y in D1 and Z in D2

g(∇XY,Z) = 0,

and therefore by Gauss formula, we have

g(φ∇̃XY, φZ) = 0.

The above equation on making use of equations (2.5), (2.7) and (2.9) yields

g(σ(X,φY ), FZ) = 0.

This proves statement (i). To prove statement (ii), use (3.14) to get

g(S(X,Z), Y ) = g(AFZTX + tσ(TX,Z)− tσ(TZ,X)− TAFZX,Y ).

The right hand side of the above equation is zero in view of statement (i) and thus
(ii) is established. �

Next for the slant distribution, we have:

Theorem 3.4. If the slant distribution D2 on a semi-slant submanifold M of a
(k, µ)-contact manifold M̃ is integrable and its leaves are totally geodesic in M, then
(i) σ(D1, D2) ∈ ν,
(ii) S(D1, D2) ∈ D1.

Proof. By hypothesis,
g(∇ZW,φX) = 0,

for any Z,W ∈ D2 and X ∈ D1. By applying (2.5), (2.7) and (2.9)

g(σ(X,Z), FW ) = 0.

That proves (i). Now by using equation (3.14)

g(S(X,Z),W ) = g(AFZTX + tσ(TX,Z)− tσ(TZ,X)− TAFZX,W ),

for X ∈ D1 and Z,W ∈ D2. The right hand side of the above equation is zero by
part (i). This proves (ii) and the theorem. �

Example: For any θ ∈ [0, π2 ]

x(u1, u2, u3, u4, u5) = (u1, 0, u3, 0, u2, 0, u4cosθ, u4sinθ, u5)
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defines a five dimensional semi-slant submanifoldM , with slant angle θ, in R9 with
its usual (k, µ)-contact structure (φ0, ξ, η, g) [13]. Further,

e1 = 2(
∂

∂x1
+ x5

∂

∂t
); e2 = 2

∂

∂x5
; e3 = 2(

∂

∂x3
+ x7

∂

∂t
);

e4 = cosθ(2
∂

∂x7
+ sinθ(2

∂

∂x8
); e5 =

∂

∂t
= ξ, (3.15)

form a local orthonormal frame of TM . If we define the distributionD1 =< e1, e2 >
and D2 =< e3, e4 >, then it is easy to check that the distribution D1 is invariant
under φ and D2 is slant with slant angle θ. That is M is semi-slant submanifold.

4. Totally umbilical submanifolds of (k, µ)-contact manifold

Definition 1. A submanifold M is said to be totally umbilical submanifold if
its second fundamental form satisfies

σ(X,Y ) = g(X,Y )H,

for all X,Y ∈ TM , where H is the mean curvature vector.
To investigate totally umbilical submanifolds of a (k, µ)-contact manifold, we

first establish the following preliminary result.

Proposition 4.5. Let M be a semi-slant submanifold of a (k, µ)-contact manifold
M̃ with σ(X,TX) = 0 for each X ∈ D1⊕ < ξ >. If D1⊕ < ξ > is integrable then
each of its leaves are totally geodesic in M as well as in M̃ .

Proof. For X ∈ D1⊕ < ξ >, by equation (2.15)

(∇XF )X = −σ(X,TX) + fσ(X,X),
by using (2.13) and the fact that FX = 0 for each X ∈ D1, we get

F∇XX = fσ(X,X). (4.1)

Now, making use of Proposition 3.2 and the assumption that σ(X,TX) = 0, we
obtain σ(X,TY ) = 0 i.e., σ(X,Y ) = 0 for each X,Y ∈ D1⊕ < ξ >. This proves
that the leaves of D1⊕ < ξ > are totally geodesic in M̃ . Thus by (4.1), we obtain
that ∇XY ∈ D1⊕ < ξ > i.e., the leaves of D1⊕ < ξ > are totally geodesic in
M . �

As an immediate consequence of the above, we have

Corollary 4.2. Let M be a totally umbilical semi-slant submanifold of a (k, µ)-
contact manifold M̃ . If D1⊕ < ξ > is integrable, then each of its leaves are totally
geodesic in M as well as in M̃ .

Definition 2. [10] A submanifold M of an almost contact metric manifold is
said to be totally contact umbilical submanifold if

σ(X,Y ) = g(φX, φY )K + η(Y )σ(X, ξ) + η(X)σ(Y, ξ),
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for all X,Y ∈ TM , where K is a normal vector field onM . If K = 0 thenM is said
to be a totally contact geodesic submanifold. For a submanifold of a (k, µ)-contact
manifold, the condition for totally contact umbilicalness reduces to

σ(X,Y ) = g(φX, φY )K.

Theorem 4.6. Let M be a totally contact umbilical semi-slant submanifold of a
(k, µ)-contact manifold M̃ , with dim(D1) 6= 0. Then the mean curvature vector is
a global section of FD2.

Proof. Let X ∈ D1 be a unit vector field and V ∈ ν, then

g(H,V ) = g(σ(X,X), V ) = g(∇̃XφX, φV ) = g(σ(X,φX, φV )) = 0

=⇒ H ∈ FD2. �

In view of Theorem 4.6, we have the following:

Theorem 4.7. A totally contact umbilical semi-slant submanifold of a (k, µ)-
contact manifold is totally contact geodesic if the invariant distribution D1 is inte-
grable.
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