Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 67, Number 2, Pages 139–146 (2018) DOI: 10.1501/Commua1_0000000868 ISSN 1303-5991

http://communications.science.ankara.edu.tr/index.php?series=A1

ON UNIVALENCE OF INTEGRAL OPERATORS

FATMA SAĞSÖZ

ABSTRACT. In this paper we consider functions of ψ_{λ} and we define integral operators denoted by $F_{\beta,\lambda}$ and $G_{\beta,\lambda}$ using by ψ_{λ} , then we proved sufficient conditions for univalence of these integral operators.

1. Introduction

Let A be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$.

We denote by S the subclass of A consisting of the functions $f \in A$ which are univalent in U.

Let ψ_{λ} defined by $\psi_{\lambda}(z) = (1 - \lambda) f(z) + \lambda z f'(z)$ for $z \in U, f \in A$ and $0 \le \lambda \le 1$. We consider the integral operators

$$F_{\beta,\lambda}(z) = \left[\beta \int_{0}^{z} u^{\beta-1} \psi_{\lambda}'(u) du\right]^{\frac{1}{\beta}} \quad (z \in U),$$

$$(1.1)$$

$$G_{\beta,\lambda}(z) = \int_{0}^{z} \left[\psi_{\lambda}^{'}(u) \right]^{\beta} du \quad (z \in U)$$
 (1.2)

for $\psi_{\lambda} \in A, 0 \leq \lambda \leq 1$ and for some complex numbers β . In the present paper, we obtain new univalence conditions for the integral operators $F_{\beta,\lambda}$ and $G_{\beta,\lambda}$ to be in the class S.

Recently the problem of univalence of some generalized integral operators have discussed by many authors such as: (see [2]-[8], [10], [14]-[16])

Received by the editors: March 08, 2017, Accepted: June 19, 2017.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 30C45.$

Key words and phrases. Analytic functions, univalent functions, univalence conditions, integral operators.

^{©2018} Ankara Universit

2. Preliminary Results

To discuss our problems for univalence of integral operators $F_{\beta,\lambda}$ and $G_{\beta,\lambda}$, we recall here some results.

Theorem 1. Let $\alpha \in \mathbb{C}$, Re $\alpha > 0$ and $f \in A$. If

$$\frac{1 - \left| z \right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1$$

for all $z \in U$, then for any complex number β , $\operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the function

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta - 1} f'(u) du\right]^{\frac{1}{\beta}}$$

is in the class S [12].

Theorem 2. Let $f \in A$. If for all $z \in U$

$$\left(1 - \left|z\right|^{2}\right) \left| \frac{zf^{''}(z)}{f^{'}(z)} \right| \leq 1$$

then the function f is univalent in U [1].

Theorem 3. If the function g is regular and |g(z)| < 1 in U, then for all $\eta \in U$ and $z \in U$ the following inequalities hold:

$$\left| \frac{g(\eta) - g(z)}{1 - \overline{g(z)}g(\eta)} \right| \le \left| \frac{\eta - z}{1 - \overline{z}\eta} \right| \tag{2.1}$$

and

$$\left| g^{'}(z) \right| \leq \frac{1 - \left| g(z) \right|^{2}}{1 - \left| z \right|^{2}}.$$

In here, the equalities hold only in the case $g(z) = \varepsilon \frac{z+u}{1+\overline{u}z}$ where $|\varepsilon| = 1$ and |u| < 1 [9].

Remark 1. For z = 0 and all $\eta \in U$, from inequality (2.1) we obtain

$$\left| \frac{g(\eta) - g(0)}{1 - \overline{g(0)}g(\eta)} \right| \le |\eta|$$

and, hence

$$|g(\eta)| \le \frac{|\eta| + |g(0)|}{1 + |g(0)||\eta|}.$$

Considering g(0) = a and $\eta = z$, then

$$|g(z)| \le \frac{|z| + |a|}{1 + |a||z|}$$

for all $z \in U$ [9].

Theorem 4. Let β be a complex number, $\operatorname{Re} \beta \geq 1$ and $f \in A$, $\frac{f(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in (0, m(r)]$, where

$$m\left(r\right) = \frac{1 - 2\left|a_{2}\right|r\left(1 - r^{2}\right) + \sqrt{\left[1 - 2\left|a_{2}\right|r\left(1 - r^{2}\right)\right]^{2} + 8\left|a_{2}\right|r^{3}\left(1 - r^{2}\right)}}{2r^{2}\left(1 - r^{2}\right)}$$

 $r = |z|, r \in (0,1)$ such that

$$\left| \frac{f^{''}\left(z\right)}{f^{'}\left(z\right)} \right| \le K$$

for all $z \in U^* = U - \{0\}$, then the function

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} u^{\beta - 1} f'(u) du\right]^{\frac{1}{\beta}}$$

is regular and univalent in U^* [11].

Theorem 5. Let $\beta \in \mathbb{C}$ and $g \in A$. If

$$\left| \frac{g^{''}(z)}{g^{'}(z)} \right| < 1$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$|\beta| \le \frac{1}{\max\limits_{|z| \le 1} \left[\left(1 - |z|^2 \right) |z| \frac{|z| + 2|a_2|}{1 + 2|a_2||z|} \right]}$$

then the function

$$G_{eta}\left(z
ight)=\int_{0}^{z}\left[g^{'}\left(u
ight)
ight]^{eta}du$$

is univalent in U [13].

3. Main Results

Theorem 6. Let $\beta \in \mathbb{C}$, Re $\beta \geq 1$ and ψ_{λ} a regular function in U, $\frac{\psi_{\lambda}(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in (0, m(r)]$, where

$$m\left(r\right) = \frac{1 - 2\left(1 + \lambda\right)\left|a_{2}\right|r\left(1 - r^{2}\right) + \sqrt{\left[1 - 2\left(1 + \lambda\right)\left|a_{2}\right|r\left(1 - r^{2}\right)\right]^{2} + 8\left(1 + \lambda\right)\left|a_{2}\right|r^{3}\left(1 - r^{2}\right)}}{2r^{2}\left(1 - r^{2}\right)}$$
(3.1)

 $r = |z|, r \in (0,1)$ such that

$$\left| \frac{\psi_{\lambda}^{"}(z)}{\psi_{\lambda}^{'}(z)} \right| \le K$$

for all $z \in U^*$, then the function (1.1) is regular and univalent in U^* .

Proof. Let's consider the function $g(z) = \frac{1}{K} \frac{\psi_{\lambda}''(z)}{\psi_{\lambda}'(z)}$ where K is a real positive constant. Applying Theorem3 and Remark1 to the function g, we obtain

$$\left|\frac{1}{K}\frac{\psi_{\lambda}^{''}\left(z\right)}{\psi_{\lambda}^{'}\left(z\right)}\right|\leq\frac{|z|+\frac{2(1+\lambda)|a_{2}|}{K}}{1+\frac{2(1+\lambda)|a_{2}|}{K}|z|},\quad z\in U^{*}$$

and hence, we have

$$\left(1 - |z|^{2}\right) \left| \frac{z\psi_{\lambda}^{"}(z)}{\psi_{\lambda}^{'}(z)} \right| \le K \left(1 - |z|^{2}\right) |z| \frac{|z| + \frac{2(1+\lambda)|a_{2}|}{K}}{1 + \frac{2(1+\lambda)|a_{2}|}{K}|z|}.$$
 (3.2)

Let's consider the inequality

$$K \le \frac{1}{\left(1 - |z|^2\right)|z|\frac{|z| + \frac{2(1+\lambda)|a_2|}{K}}{1 + \frac{2(1+\lambda)|a_2|}{K}|z|}}.$$
(3.3)

Considering $|z| = r, r \in (0,1)$ and $2|a_2| = p, p > 0$, the inequality (3.3) becomes

$$K \le \frac{K + (1 + \lambda) pr}{(1 - r^2) r [Kr + (1 + \lambda) p]}.$$
(3.4)

We note that

$$(1 - r^2) r [Kr + (1 + \lambda) p] > 0$$
(3.5)

for every $K>0, p>0, r\in (0,1)$ and $0\leq \lambda \leq 1.$ Using (3.5) the inequality (3.4) becomes

$$r^{2}(1-r^{2})K^{2} + [(1+\lambda)pr(1-r^{2}) - 1]K - (1+\lambda)pr \le 0.$$

Let us consider the equation

$$r^{2}(1-r^{2})K^{2} + [(1+\lambda)pr(1-r^{2}) - 1]K - (1+\lambda)pr = 0,$$
 (3.6)

with the unknown K. From (3.6) we obtain

$$K_{1,2} = \frac{1 - (1 + \lambda) pr (1 - r^2) \pm \sqrt{[1 - (1 + \lambda) pr (1 - r^2)]^2 + 4 (1 + \lambda) pr^3 (1 - r^2)}}{2r^2 (1 - r^2)}$$
(3.7)

For every p > 0, $r \in (0,1)$ and $0 \le \lambda \le 1$ the following inequality holds

$$[1 - (1 + \lambda) pr (1 - r^2)]^2 + 4 (1 + \lambda) pr^3 (1 - r^2) > 0.$$
 (3.8)

Using (3.7) and (3.8) it results that K_1, K_2 are real solutions. Considering $a = 1 - r^2$, $a \in (0, 1)$ and b = pr, b > 0 from (3.7) we get

$$K_{1,2} = \frac{1 - (1 + \lambda) ab \pm \sqrt{[1 - (1 + \lambda) ab]^2 + 4(1 + \lambda) ab(1 - a)}}{2a(1 - a)}.$$
 (3.9)

We have the following cases:

Case 1. For $|a_2| > \frac{1}{2(1+\lambda)r(1-r^2)}$ it results that $1 - (1+\lambda)ab < 0$, so that

$$K_{1} = \frac{1 - (1 + \lambda) ab - \sqrt{[1 - (1 + \lambda) ab]^{2} + 4(1 + \lambda) ab(1 - a)}}{2a(1 - a)}$$

is real negative solution. Clearly,

$$K_{2} = \frac{1 - (1 + \lambda) ab + \sqrt{[1 - (1 + \lambda) ab]^{2} + 4(1 + \lambda) ab(1 - a)}}{2a(1 - a)}$$

is real positive solution. In this case, for $K \in (0, K_2]$ the inequality (3.3) is verified.

Case 2. For
$$|a_2| < \frac{1}{2(1+\lambda)r(1-r^2)}$$
 it results that $1 - (1+\lambda)ab > 0$.

Let's prove that $K_1 < 0$. Supposing that $K_1 > 0$, we obtain $4(1 + \lambda) ab(1 - a) < 0$ the fact which is false. It results that $K_1 < 0$. We note that $K_2 > 0$, and the inequality (3.3) is verified for $K \in (0, K_2]$.

Case 3. For $|a_2| = \frac{1}{2(1+\lambda)r(1-r^2)}$ using (3.9) we obtain

$$K_{1,2} = \frac{\pm \sqrt{(1+\lambda) ab (1-a)}}{a (1-a)}$$

and the inequality (3.3) is verified only for $K \in (0, K_2]$ where

$$K_2 = \frac{\sqrt{(1+\lambda)ab(1-a)}}{a(1-a)}.$$

Considering equality (3.1) in conclusion for $|a_2|$, r stable and $K \in (0, m(r)]$, the inequality (3.3) is verified and using (3.2) it results that

$$\left(1 - |z|^2\right) \left| \frac{z\psi_{\lambda}^{"}(z)}{\psi_{\lambda}^{'}(z)} \right| \le 1, z \in U^*. \tag{3.10}$$

From (3.10) and Theorem 1 in the case $\alpha = 1$ we obtain that the function $F_{\beta,\lambda}(z)$ is regular and univalent in U^* .

Theorem 7. Let β be a complex number and the function $\psi_{\lambda} \in A, \psi_{\lambda}(z) = (1 - \lambda) f(z) + \lambda z f'(z)$ for $f \in A$ and $0 \le \lambda \le 1$. If

$$\left| \frac{\psi_{\lambda}^{"}(z)}{\psi_{\lambda}^{'}(z)} \right| < 1 \tag{3.11}$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$|\beta| \le \frac{1}{\max_{|z| \le 1} \left[\left(1 - |z|^2 \right) |z| \frac{|z| + 2(1+\lambda)|a_2|}{1 + 2(1+\lambda)|a_2||z|} \right]}$$
(3.12)

then the function $G_{\beta,\lambda}$ is univalent in U.

Proof. The function $G_{\beta,\lambda}$ defined by (1.2) is regular in U. Let us consider the function

$$p(z) = \frac{1}{|\beta|} \frac{G''_{\beta,\lambda}(z)}{G'_{\beta,\lambda}(z)}$$
(3.13)

where the constant $|\beta|$ satisfies the inequality (3.12). The function p is regular in U and from (1.2) and (3.13) we have

$$p(z) = \frac{\beta}{|\beta|} \frac{\psi_{\lambda}^{"}(z)}{\psi_{\lambda}^{'}(z)}.$$
(3.14)

Using (3.14) and (3.11) we obtain

for all $z \in U$ and $|p(0)| = 2(1 + \lambda)|a_2|$. When Remark1 applied to the function p, it gives

$$\frac{1}{|\beta|} \frac{G_{\beta,\lambda}''(z)}{G_{\beta,\lambda}'(z)} \le \frac{|z| + 2(1+\lambda)|a_2|}{1 + 2(1+\lambda)|a_2||z|}$$
(3.15)

for all $z \in U$. From (3.15) we get

$$\left(1 - |z|^{2}\right) \left| \frac{zG_{\beta,\lambda}^{"}(z)}{G_{\beta,\lambda}^{'}(z)} \right| \leq |\beta| \left(1 - |z|^{2}\right) |z| \frac{|z| + 2(1 + \lambda) |a_{2}|}{1 + 2(1 + \lambda) |a_{2}| |z|}$$

for all $z \in U$. Hence we have

$$\left(1 - |z|^{2}\right) \left| \frac{zG_{\beta,\lambda}^{"}(z)}{G_{\beta,\lambda}^{"}(z)} \right| \leq |\beta| \max_{|z| \leq 1} \left(1 - |z|^{2}\right) |z| \frac{|z| + 2(1+\lambda)|a_{2}|}{1 + 2(1+\lambda)|a_{2}||z|}.$$
 (3.16)

From (3.16) and (3.12) we obtain

$$\left(1-\left|z\right|^{2}\right)\left|\frac{zG_{eta,\lambda}^{"}\left(z\right)}{G_{eta,\lambda}^{'}\left(z\right)}\right|\leq1$$

for all $z \in U$. From Theorem2, it follows that the function $G_{\beta,\lambda}$ defined by (1.2) is univalent in U.

Remark 2. Taking $\lambda = 0$ in Theorem6 and Theorem7, we obtain Theorem4 and Theorem5, respectively.

If we take $\lambda = 1$ in Theorem6 and Theorem7, we have the following corollaries.

Corollary 1. Let β be a complex number, $\operatorname{Re} \beta \geq 1$ and ψ_1 a regular function in $U, \psi_1(z) = zf'(z)$ and $\frac{\psi_1(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in (0, m(r)]$, where

$$m(r) = \frac{1 - 4|a_2|r(1 - r^2) + \sqrt{[1 - 4|a_2|r(1 - r^2)]^2 + 16|a_2|r^3(1 - r^2)}}{2r^2(1 - r^2)},$$

 $r = |z|, r \in (0,1]$ such that

$$\left|\frac{\psi_{1}^{''}\left(z\right)}{\psi_{1}^{'}\left(z\right)}\right| = \left|\frac{f^{''}\left(z\right)}{f^{'}\left(z\right)}\right| \le K$$

for all $z \in U^*$, then the function

$$F_{\beta,1}\left(z\right) = \left[\beta \int_{0}^{z} u^{\beta-1} \psi_{1}^{'}\left(u\right) du\right]^{\frac{1}{\beta}}$$

is regular and univalent in U^* .

Corollary 2. Let β be a complex number and the function $\psi_1(z) = zf'(z)$ where $f \in A$. If

$$\left|\frac{\psi_{1}^{''}\left(z\right)}{\psi_{1}^{'}\left(z\right)}\right|<1$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$|\beta| \le \frac{1}{\max\limits_{|z| < 1} \left[\left(1 - |z|^2 \right) |z| \frac{|z| + 4|a_2|}{1 + 4|a_2||z|} \right]}$$

then the function

$$G_{eta,1}\left(z
ight)=\int_{0}^{z}\left[\psi_{1}^{'}\left(u
ight)
ight]^{eta}du$$

is univalent in U.

References

- Becker, J., Löwnersche Differentialgleichung und quasiconform fortsetzbare schichte functionen, J. Reine Angev. Math. 255 (1972), 23-43.
- [2] Breaz, D. and Pescar, V., On conditions for univalence of some integral operators, *Hacet. J. Math. Stat.* 45(2)(2016), 337-342.
- [3] Çağlar, M. and Orhan, H., Some generalizations on the univalence of an integral operator and quasiconformal extensions, Miskolc Math. Notes 14 (1)(2013),49-62.
- [4] Deniz, E., Univalence criteria for a general integral operator, Filomat 28(1) (2014), 11–19.
- [5] Deniz, E., On the univalence of two general integral operators, Filomat 29(7) (2015), 1581-1586.
- [6] Deniz, E. and Orhan, H., An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Sklodowska Sect. A 64(2) (2010) 29-35.
- [7] Frasin, B. A., Univalence of two general integral operators, Filomat 23(3) (2009), 223-229.
- [8] Frasin, B. A., Univalence criteria for general integral operator, Math. Commun. 16(1) (2011), 115–124.
- [9] Nehari, Z., Conformal Mapping, Mc. Graw-Hill Book Comp., New York, 1952. (Dover. Publ. Inc. 1975.)
- [10] Orhan, H., Raducanu, D. and Çağlar, M., Some sufficient conditions for the univalence of an integral operator, J. Class. Anal., 5(1)(2014), 61-70.
- [11] Pascu, N. N. and Pescar, V., New criteria of Kudriasov type univalence, Scripta Scientiarum Mathematicarum, Tomus I, Anno MCMXCVII, 210-215.

- [12] Pascu, N. N., An improvement of Becker's univalence criterion, Proceeding of the Commenorative Session Simion Stoilow, Braşov, (1987), 43-48.
- [13] Pescar, V., Some integral operators and their univalence, The Journal of Analysis, 5(1997), 157-162.
- [14] Pescar, V., On the univalence of an integral operator, Appl. Math. Lett. 23(5) (2010) 615-619.
- [15] Pescar, V. and Breaz, D., On an integral operator, Appl. Math. Lett. 23(5) (2010) 625-629.
- [16] Srivastava, H. M., Deniz E. and Orhan, H., Some general univalence critera for a family of integral operators, Appl. Math. Comp. 215(2010) 3696-3701.

 $Current\ address$: Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey

 $E ext{-}mail\ address: faltuntas@atauni.edu.tr}$

ORCID Address: http://orcid.org/0000-0003-4459-0615