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SELFADJOINT SINGULAR DIFFERENTIAL OPERATORS FOR
FIRST ORDER

PEMBE IPEK AND ZAMEDDIN I. ISMAILOV

Abstract. The parametrization of all selfadjoint extensions of the minimal
operator generated by first order linear symmetric singular differential-operator
expression in the Hilbert space of vector-functions defined at the right semi-axis
has been given. To this end we use the Calkin-Gorbachuk method. Finally,
the structure of spectrum set of such extensions is researched.

1. Introduction

It is known that fundamental question on the parametrization of selfadjoint ex-
tensions of the linear closed densely defined with equal deficiency indices symmetric
operators in a Hilbert space has been investigated by J. von Neumann [11] and M.
H. Stone [10] firstly. Applications of these results to any scaler linear even or-
der symmetric differential operators and representation of all selfadjoint extensions
in terms of boundary conditions have been investigated by I. M. Glazman-M. G.
Krein- M. A. Naimark (see [5,8]). In mathematical literature there is co-called
Calkin-Gorbachuk method (see [6,9]).
The motivation of this paper originates from the interesting researches of W. N.

Everitt, L. Markus, A. Zettl, J. Sun, D. O’Regan, R. Agarwal [2,3,4,12] in scaler
cases. Throughout this paper A. Zettl’s and J. Suns’s view about these topics is
to be taken into consideration [12]. A selfadjoint ordinary differential operator in
a Hilbert space is generated by two things:
(1) a symmetric ( formally selfadjoint) differential expression;
(2) a boundary condition which consists selfadjoint differential operators.
And also the geometrical place in plane of the spectrum of given selfadjoint differ-
ential operator is one of the important questions of this theory.
In this work in Section 3 the representation of all selfadjoint extensions of

the symmetric singular differential operator, generated by first order symmetric
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differential-operator expression (for the definition see [4]) in the Hilbert spaces of
vector-functions defined at the semi-axis in terms of boundary conditions are de-
scribed. In Section 4 the structure of spectrum of these selfadjoint extensions is
investigated.

2. Statement of the Problem

Let usH is a separable Hilbert space and a ∈ R. In the Hilbert space L2(H, (a,∞))
consider the following differential-operator expression in a form (for scaler case see
[4])

l(u) = iρu′ +
1

2
iρ′u+Au,

where:
(1) ρ : (a,∞)→ (0,∞);
(2) ρ ∈ ACloc(a,∞);
(3)

∞∫
a

ds

ρ(s)
<∞;

(4) A∗ = A : D(A) ⊂ H → H.
By standard way the minimal operator L0 corresponding to differential-operator

expression l( . ) in L2(H, (a,∞)) can be defined (see [7]). The operator L = (L0)∗
is called the maximal operator corresponding to l( . ) in L2(H, (a,∞)) (see [7]).
It is clear that

D(L) = {u ∈ L2(H, (a,∞)) : l(u) ∈ L2(H, (a,∞)},
D(L0) = {u ∈ D(L) : (√ρu)(a) = (√ρu)(∞) = 0}.

In this case the operator L0 is symmetric and is not maximal in L2(H, (a,∞)).
In this paper, firstly the represention of all selfadjoint extensions of the mini-

mal operator L0 will be described. Secondly, structure of the spectrum of these
extensions shall be researched.
In special case when H = C the similar questions was investigated in [4] using

the Glazman-Krein-Naimark method.
In left and right semi-infinitive intervals case the similar problems have been

surveyed in [1].

3. Description of Selfadjoint Extensions

In this section, the general representation of selfadjoint extensions of the minimal
operator L0 will be investigated by using the Calkin-Gorbachuk method.
Firstly, let us prove the following proposition.

Lemma 1. The deficiency indices of the operator L0 is in form (m(L0), n(L0)) =
(dimH, dimH).
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Proof. For the simplicity of calculations it will be taken A = 0. It is clear that the
general solutions of following differential equations

iρ(t)u′±(t) +
1

2
iρ′(t)u±(t)± iu±(t) = 0,

in the L2(H, (a,∞)) are in forms

u±(t) = exp

∓ t∫
c

2± ρ′(s)
2ρ(s)

ds

 f, f ∈ H, t > a, c > a.

From these representations, we have

‖u+‖2L2(H,(a,∞)) =

∞∫
a

‖u+(t)‖2Hdt

=

∞∫
a

exp

− t∫
c

2 + ρ′(s)

ρ(s)
ds

 dt‖f‖2H

=

∞∫
a

ρ(c)

ρ(t)
exp

− t∫
c

2

ρ(s)
ds

 dt‖f‖2H

=
ρ(c)

2

∞∫
a

exp

− t∫
c

2

ρ(s)
ds

 d

 t∫
c

2

ρ(s)
ds

 ‖f‖2H
=

ρ(c)

2

exp
− a∫

c

2

ρ(s)
ds

− exp
− ∞∫

c

2

ρ(s)
ds

 ‖f‖2H <∞.

Consequently m(L0) = dim ker(L+ iE) = dimH.
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On the other hand it is clear that for any f ∈ H the solution

‖u−‖2L2(H,(a,∞)) =

∞∫
a

‖u−(t)‖2Hdt

=

∞∫
a

exp

 t∫
c

2− ρ′(s)
ρ(s)

ds

 dt‖f‖2H

=

∞∫
a

ρ(c)

ρ(t)
exp

 t∫
c

2

ρ(s)
ds

 dt‖f‖2H

=
ρ(c)

2

∞∫
a

exp

 t∫
c

2

ρ(s)
ds

 d

 t∫
c

2

ρ(s)
ds

 ‖f‖2H
=

ρ(c)

2

exp
 ∞∫
c

2

ρ(s)
ds

− exp
 a∫
c

2

ρ(s)
ds

 ‖f‖2H <∞.

It follows from that n(L0) = dim ker(L − iE) = dimH. This completes the
proof of theorem consequently, the minimal operator L0 has at least one selfadjoint
extensions (see [6]).

Definition 1. Let H be any Hilbert space and S : D(S) ⊂ H → H be a closed
densely defined symmetric operator in the Hilbert space H having equal finite or
infinite deficiency indices. A triplet (H, γ1, γ2), where H is a Hilbert space, γ1 and
γ2 are linear mappings from D(S∗) into H, is called a space of boundary values for
the operator S if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H

while for any F1, F2 ∈ H, there exists an element f ∈ D(S∗) such that γ1(f) = F1
and γ2(f) = F2.

Lemma 2. The triplet (H, γ1, γ2),

γ1 : D(L)→ H, γ1(u) =
1√
2
((
√
ρu)(∞)− (√ρu)(a)),

γ2 : D(L)→ H, γ2(u) =
1

i
√
2
((
√
ρu)(∞) + (√ρu)(a)), u ∈ D(L)

is a space of boundary values of the minimal operator L0 in L2(H, (a,∞)).
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Proof. In this case the direct calculations show for arbitrary u, v ∈ D(L) that

(Lu, v)L2(H,(a,∞)) − (u, Lv)L2(H,(a,∞)) = (iρu′ +
1

2
iρ′u+Au, v)L2(H,(a,∞))

−(u, iρv′ + 1

2
iρ′v +Av)L2(H,(a,∞))

= (iρu′, v)L2(H,(a,∞)) +
1

2
(iρ′u, v)L2(H,(a,∞))

−(u, iρv′)L2(H,(a,∞)) − (u,
1

2
iρ′v)L2(H,(a,∞))

= i
[
(ρu′, v)L2(H,(a,∞)) + (ρ

′u, v)L2(H,(a,∞))

+(ρu, v′)L2(H,(a,∞))

]
= i

[
((ρu)′, v)L2(H,(a,∞)) + (ρu, v

′)L2(H,(a,∞))

]
= i ((ρu, v))′L2(H,(a,∞))

= i ((
√
ρu,
√
ρv))′L2(H,(a,∞))

= i
[
((
√
ρu)(∞), (√ρv)(∞))H

− ((√ρ)u(a), (√ρ)v(a))H
]

= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .

Now for any given elements f, g ∈ H, let us find the function u ∈ D(L) satisfying

γ1(u) =
1√
2
((
√
ρu)(∞)−(√ρu)(a)) = f and γ2(u) =

1

i
√
2
((
√
ρu)(∞) + (√ρu)(a)) = g.

From this

(
√
ρu)(∞) = (ig + f)/

√
2 and (

√
ρu)(a) = (ig − f)/

√
2

is obtained.
If we choose the function u in following form

u(t) =
1√
ρ(t)

(1− ea−t)(ig + f)/
√
2 +

1√
ρ(t)

ea−t(ig − f)/
√
2,

u ∈ D(L), γ1(u) = f and γ2(u) = g.
Finally, using the method given in [6], we can introduce the following result.

Theorem 1. If L̃ is a selfadjoint extension of the minimal operator L0 in L2(H, (a,∞))
, then it is generated by the differential-operator expression l( . ) and boundary con-
dition

(
√
ρu)(∞) =W (

√
ρu)(a),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H
is determined uniquely by the extension L̃, i.e. L̃ = LW and vice versa.

Proof. It is known from [6] or [9] that all selfadjoint extensions of the minimal
operator L0 are described by differential-operator expression l( . ) and the boundary
condition

(V − E)γ1(u) + i(V + E)γ2(u) = 0,
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where V : H → H is a unitary operator. So from Lemma 2, we have

(V − E) ((√ρu)(∞)− (√ρu)(a)) + (V + E) ((√ρu)(∞) + (√ρu)(a)) = 0.

Hence, we obtain

(
√
ρu)(a) = −V (√ρu)(∞).

Choosing W = −V −1 in last boundary condition, we have

(
√
ρu)(∞) =W (

√
ρu)(a).

4. The Spectrum of the Selfadjoint Extensions

In this section the structure of the spectrum of the selfadjoint extensions LW of
the minimal operator L0 in L2(H, (a,∞)) will be investigated.
First of all let us prove the following result.

Theorem 2. The spectrum of any selfadjoint extension LW is in form

σ(LW ) =

λ ∈ C : λ =
 ∞∫
a

ds

ρ(s)

−1 (2nπ − argµ), n ∈ Z, µ ∈ σ
Wexp

−iA ∞∫
a

ds

ρ(s)

 .

Proof. Consider the following problem to spectrum of the extension LW

l(u) = λu+ f, u, f ∈ L2(H, (a,∞)), λ ∈ R,

(
√
ρu)(∞) =W (

√
ρu)(a),

that is,

iρ(t)u′(t) +
1

2
iρ′(t)u(t) +Au(t) = λu(t) + f(t), t > a,

(
√
ρu)(∞) =W (

√
ρu)(a).

The general solution of the last differential equation is in the following form

u(t;λ) =

√
ρ(c)

ρ(t)
exp

i(A− λE) t∫
c

ds

ρ(s)

 fλ

+
i√
ρ(t)

∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds, fλ ∈ H, t > a, c > a.

In this case

‖

√
ρ(c)

ρ(t)
exp

i(A− λE) t∫
c

ds

ρ(s)

 fλ‖2L2(H,(a,∞)) = ρ(c)

∞∫
a

dt

ρ(t)
‖fλ‖2H <∞
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and

‖ i√
ρ(t)

∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds‖2L2(H,(a,∞))

=

∞∫
a

1

ρ(t)
‖
∞∫
t

exp

i(A− λE) t∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds‖2Hdt

≤
∞∫
a

1

ρ(t)

 ∞∫
t

‖ exp

i(A− λE) t∫
s

dτ

ρ(τ)

 ‖H ‖f(s)‖H√
ρ(s)

ds

2 dt
≤

∞∫
a

1

ρ(t)

 ∞∫
t

ds

ρ(s)

 ∞∫
t

‖f(s)‖2Hds

 dt

≤
∞∫
a

1

ρ(t)

 ∞∫
a

ds

ρ(s)

 ∞∫
a

‖f(s)‖2Hds

 dt

=

∞∫
a

dt

ρ(t)

∞∫
a

ds

ρ(s)
‖f(s)‖2L2(H,(a,∞))ds

=

 ∞∫
a

dt

ρ(t)

2

‖f‖2L2(H,(a,∞)) <∞.

Hence for u( . , λ) ∈ L2(H, (a,∞)) for λ ∈ R. From this and boundary condition,
we haveexp

−iλ ∞∫
a

ds

ρ(s)

−Wexp

−iA ∞∫
a

ds

ρ(s)

 exp

iA ∞∫
c

ds

ρ(s)

 exp

−iλ a∫
c

ds

ρ(s)

 fλ

=
i√
ρ(c)

W

∞∫
a

exp

i(A− λ) a∫
s

dτ

ρ(τ)

 f(s)√
ρ(s)

ds

In order to get λ ∈ σ(LW ), the necessary and suffi cient condition is

exp

−iλ ∞∫
a

ds

ρ(s)

 = µ ∈ σ

Wexp

−iA ∞∫
a

ds

ρ(s)


Consequently,

λ

∞∫
a

ds

ρ(s)
= 2nπ − argµ, n ∈ Z,
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that is,

λ =

 ∞∫
a

ds

ρ(s)

−1 (2nπ − argµ), n ∈ Z.
This completes proof of theorem.
Example. All selfadjoint extensions Lϕ of the minimal operator L0 generated by
differential expression

l(u) = it2
∂u(t, x)

∂t
+ itu(t, x) +Au,

A : D(A) ⊂ L2(0, 1)→ L2(0, 1),

where Av(t) = −∂
2v(t)

∂t2
,

D(A) =
{
u ∈W 2

2 (0, 1) : v(0) = v(1), v′(0) = v′(1)
}
,

in the Hilbert space L2((1,∞)×(0, 1)) in terms of boundary conditions are described
by following form

(tu(t, x))(∞) = eiϕ(tu(t, x))(1), ϕ ∈ [0, 2π), x ∈ (0, 1).
Moreover, the spectrum of such extension is

σ(Lϕ) = {λ ∈ C : λ = 2nπ + (ϕ− α), n ∈ Z, α ∈ σ (A)} .

References

[1] Bairamov, E., Öztürk, M.R. and Ismailov, Z., Selfadjoint extensions of a singular differential
operator. J. Math. Chem. (2012), 50, 1100-1110.

[2] El-Gebeily, M.A., O’Regan, D. and Agarwal R., Characterization of self-adjoint ordinary
differential operators. Mathematical and Computer Modelling (2011) , 54, 659-672.

[3] Everitt, W.N., Markus, L., The Glazman-Krein-Naimark Theorem for ordinary differential
operators. Operator Theory, Advances and Applications, (1997); 98: 118-130.

[4] Everitt, W.N. and Poulkou, A., Some observations and remarks on differential operators
generated by first order boundary value problems. Journal of Computational and Applied
Mathematics (2003), 153: 201-211.

[5] Glazman, I.M., On the theory of singular differential operators. Uspehi Math Nauk (1962) ,
40: 102-135,(English translation in Amer Math Soc Translations (1) 1962; 4: 331-372).

[6] Gorbachuk, V.I. and Gorbachuk M.I., Boundary Value Problems for Operator Differential
Equations. Kluwer, Dordrecht: 1991.

[7] Hörmander, L., On the theory of general partial differential operators. Acta Mathematica
(1955), 94: 161-248.

[8] Naimark, M.A., Linear Differential Operators II. NewYork, Ungar, 1968.
[9] Rofe-Beketov, F.S. and Kholkin, A.M., Spectral analysis of differential operators. World

Scientific Monograph Series in Mathematics 7, 2005.
[10] Stone, M.H., Linear transformations in Hilbert space and their applications in analysis. Amer.

Math. Soc. Collog. Publications (1932) , 15: 49-31.
[11] von Neumann, J., Allgemeine eigenwerttheories hermitescher funktionaloperatoren. Math.

Ann. (1929− 1930) , 102: 49-31.



164 PEMBE IPEK AND ZAMEDDIN I. ISMAILOV

[12] Zettl, A and Sun, J., Survey Article: Self-Adjoint ordinary differential operators and their
spectrum. Roky Mountain Journal of Mathematics (2015) , 45,1: 763-886.

Current address : Pembe IPEK: Institute of Natural Sciences, Karadeniz Technical University,
61080, Trabzon, Turkey

E-mail address : ipekpembe@gmail.com
ORCID Address: http://orcid.org/0000-0002-6111-1121
Current address : Zameddin I. ISMAILOV: Institute of Natural Sciences, Karadeniz Technical

University, 61080, Trabzon, Turkey
E-mail address : zameddin.ismailov@gmail.com
ORCID Address: http://orcid.org/0000-0001-5193-5349


