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MORREY SPACES
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ABSTRACT. In this paper we study the potential operator Z¢ in the Morrey
space L, » and the spaces BMO defined on Carleson curves I'. We prove that
for 0 < a < 1, Z% is bounded from the Morrey space Ly, »(I') to Lg A (") on
simple Carleson curves if (and only if in the infinite simple Carleson curve I')
1/p—1/g=0a/(1 =X), 1 <p < (1—A)/a, and from the spaces L1 »(T') to

WLy x(T") if (and only if in the infinite case) 1 — % = 5

1. INTRODUCTION

Morrey spaces were introduced by C. B. Morrey [11] in 1938 in connection with
certain problems in elliptic partial differential equations and calculus of varia-
tions. Later, Morrey spaces found important applications to Navier-Stokes and
Schrodinger equations, elliptic problems with discontinuous coefficients, and poten-
tial theory.

The main purpose of this paper is to establish the boundedness of potential
operator Z¢ in Morrey spaces L, » defined on Carleson curves I'. We prove Sobolev-
Morrey inequalities for the operator Z¢. In particular, we get the analog of the
theorem by D.R. Adams [1] regarding the inequality for the Riesz potentials in
Morrey spaces defined on Carleson curves. We emphasize that in the infinite case
of I the derived conditions are necessary and sufficient for appropriate inequalities.

Note that the results we obtain here the potential operators are valid not only on
Carleson curves, but also in a more general context of metric spaces or homogeneous
type spaces at least under the condition u(B(z,7)) ~ 7 (see [4, 5, 8, 12]).

The paper is organized as follows. In Section 2, we present some definitions
and auxiliary results. In Section 3, we establish the main result of the paper:
We prove that for 0 < o < 1, Z% is bounded from the Morrey space L, »(I") to
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L, (T') on simple Carleson curves if (and only if in the infinite simple Carleson
curves) 1/p—1/g=a/(1 - X), 1 <p < (1 —=A)/a, and from the spaces L »(I') to

W Lg () if (and only if in the infinite case) 1 — % =125

2. PRELIMINARIES

Let ' = {t e C: ¢t =t(s), 0 < s <[ < oo} be a rectifiable Jordan curve in the
complex plane C with arc-length measure v(t) = s, here [ = vI" = lengths of I". We
denote

L, ry=T"nNB(tr), tel, r>0,
where B(t,7) ={z € C: |z —t| <r}.
A rectifiable Jordan curve I is called a Carleson curve if the condition

vI(t,r) < cor

holds for all t € I" and r > 0, where the constant ¢y > 0 does not depend on ¢ and
r. Let L,(T'), 1 < p < oo be the space of measurable functions on I' with finite

o e, = f<t>|pdu<t>)1/p.

Let 1 <p < 00,0 <X <1. We denote by L, »(I') the Morrey space as the set of
locally integrable functions f on I with the finite norm
2
= sup 7 > )
(PAIFNEY) i £, o)
Note that L, o(I') = L,(I'), and if A < 0 or A > 1, then L, z(I') = O, where O is
the set of all functions equivalent to 0 on T'.
We denote by WL, x(T') the weak Morrey space as the set of locally integrable
functions f with finite norm

1/p
Hf”WLp A([) = Sup B sup (7")\/ dV(T)> ‘
' p>0  r>0,tel {rel(t,r): |f(m)[>B}

Let f € L{°¢(T'). The maximal operator M and the potential operator Z% on I'
are defined by
ME® =sup (e [ o),
t>0 T'(t,r)
and

gy = [LOMD g oy,
A Il
respectively.
Maximal operators and potential operators in various spaces defined on Carleson
curves has been widely studied by many authors (see, for example [2, 3, 6, 7, 8, 9,

10, 12)).



190 AHMET EROGLU AND IRADA B. DADASHOVA

N. Samko [12] studied the boundedness of the maximal operator M defined
on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces
Lp’)\(l—‘):

Theorem A. Let T" be a Carleson curve, 1 <p <oo,0<a<1land0<X\<I1.
Then M is bounded from L, x(T') to L, A(T).

V. Kokilashvili and A. Meskhi [9] studied the boundedness of the potential op-
erator defined on quasimetric measure spaces, in particular on Carleson curves in
Morrey spaces and proved the following:

Theorem B. Let T be a Carleson curve, 1 <p<qg<oo,0<a<l,0<A < g,
A A2 gl

S = a. Then the operator Z® is bounded from the spaces Ly, », (I')
to Lq7)\2 (F)

1
q

3. SOBOLEV-MORREY INEQUALITY FOR POTENTIAL OPERATOR ON CARLESON
CURVES

In this section we prove Sobolev-Morrey inequalities for the potential operators
in Morrey space defined on Carleson curves.
Theorem 1. Let I' be a simple Carleson curve, 0 < a <1, 0 < A < 1—«a and
1<p< %

1)Ifl<p< %, then the condition % — % = 125 s sufficient and in the
infinite case also necessary for the boundedness of T from Ly, x(I') to Ly A(T).

2) If p =1, then the condition 1 — % = 125 1s sufficient and in the infinite case
also necessary for the boundedness of T* from L1 x(T') to WLy (T).
Proof. 1) Sufficiency. Let T be a simple Carleson curve, 0 < a < 1,0 <A< 1—a,
f €Ly and 1 <p< =2 Then

Zef(t) = Nt — 7| tdv(r) = A(t,r) + C(t,r). 1
1) (/F(mﬁ/r\r(m)f( it = 7|*tdu(r) = At,r) + C(t,r). (1)
For A(t,r) we have

At )] < / | Ol avt)

oo

S ()t

(277) T (¢, 270 ) M£(1)

IN

/ | @)
T(t,2- 91 r)\T(¢,2—97)

<.
Il
—

M

<.
Il
—

< 2cor® Mf(t) Y2797
j=1
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Hence
26()

20 —1°

|A(t, )] < Cir"Mf(t)  with  Cp =

For C(t,r) by the Holder’s inequality we have

1/p
[C(t,r)] < (/F\F(t )It—Tl_ﬁlf(T)pdV(T)>

1/p’
) / =Gy | =g
T\ (¢,r)

Let A < 8 <1—ap. For J; we get

= 1/p
Ji = (Z/ [f()P|t — T|-ﬂdy(7))
=0 D (¢,29t1r)\I'(¢,297)
A 1/p A—8
<2 oA (D) (22“ D7) = G Wl
1/p
where CQ = % .
For Jy we obtain
. 1/p'
Jo = / it — 7| (5o qu(r)
o3 e\ (s2ir)
o 1/p’
C (Bia—1)y )
< Z (QJT)(‘”L Hr vI(t, 27 r)
j=1
1/p’
(oS @t sonte
l
where C3 = C{’ii_a
1-2°»

Then from (3) and (4) we have

C(t,r)| < 047" 7 ||f||LpA(r)7

where 04 = CQ . 03.
Thus, from (2) and (5) we have

A—1
Iz F()] < Crr® MF(@) + Car ™7 | fll, oy -

191
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we arrive at

e : ~1 p/(1=2)
Minimizing with respect to r, at t = [(Mf(t)) Hf||Lp J

[Z° £ ()] < Cs (M@ IIFIL )
where C5 = Cy + Cy.

Hence, by Theorem B, we have

[ mrorae <l e [ oy e
T(t,r) ' r(t,r)
= CSCp,AT)\ ||f||qL;Z;(p) ”f”ip,x(l‘) = Cgr Hf”qu,A(r) )
where C = Cs - Cp x.
Therefore Z*f € Ly »(T") and
IZ% fllzy o) < Coll fllz, Ay

Necessity. Let " be an infinite simple Carleson curve, 1 < p < % and Z¢
bounded from L, x(T') to L, A(T).
Define f,.(7) =: f(r7). Then

r1>0, 7€l

1/p
_1 _ _ 1=
1olly, oy =77 sup ( /m )|f<7>|?du<7>) =T Wl
FLAY

and
Ifr(t) = r=*Z*f(rt),

1/q
IZ°Fely, oy =7 sup ( / . )|Iaf<rt>|qdu<t>)
571

r1>0,tel

1/q
_ ot s (qk / |I“f(t)|qdz/(t)>
r1>0,tel T(t,rr1)

el lA
=T TN, -

By the boundedness Z¢ from L, »(T") to Ly x(T)

1—X 1—X

1Z%fll NOES Cp,q,AraJrT_T||f||Lp,A(F)a
ax(T)

where C), 4 » depends only on p, ¢ and .

If % < % + 125, then for all f € L, z(T'), we have [Z°f|, =~ =0asr—0.

Similarly, if % > % + 1%, then for all f € L, z(T'), we obtain HIafHLM(F) =0
as r — 00
1 1 o
Therefore > =g T Tox
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2) Sufficiency. Let f € Ly x(T'). We have
v{reTl(t,r):|Z°f(r)] > 28} <v{r eT(tr): |A(r,r)| > 5}
+v{r el (t,r):|C(r,7)] > B}.

Taking into account inequality (2) and Theorem A we have

v{rel(tr) : |A(7,7’)|>,3}§1/{T€F(t,7’) : Mf(T)>Cﬁ“a}
C (6%
<=5 P Ml

where C7 = C; - C1 ) and thus if Cyr’c £z, \y = B, then [C(r,7)] < B and

consequently, | {7 € I'(¢,r) : |C(r,r)| > B}]|=0.
Finally

o C7 A a NYAEATANG !
v{reTl(t,r) : |Z¢f(r)| > 28} < FT T Hf||LM(F) = Cgr —5 |

where Cg = Cr - C171,
Necessity. Let T bounded from L; »(I') to WLy »(T"). We have

1/q
||Iafr||WLq , — Sup B sup (7"1)\/ dV(7)>
' B>0 r1>0,7€l {rel(t,r1) : |Z«fr(7)|>B}
1/q
=r %sup Br® sup 7'7)‘/ dv(T)
B>0 r1>0, 7€l {rel(t,r1) : |Zof(rT)|>Br>}

1/q
=7~ Tgup Br®  sup r/\(rlr)_)‘/ dv(T)
B>0 r1>0, 7€l {rel(t,rr1) : |Zof(T)|>Br}

o 1=
=TT 2 f s, -

By the boundedness Z¢ from Ly »(T") to WL, (T')

1=X_ 1\
||Iaf||WLq,,\ < Crgar®t “ )||f||L1,>\(F)7

where C' 4, depends only on g and A.
If1< % + 725, then for all f € Ly x(T'), we have [|Z%f[|y,,  =0asr—0.
Similarly, if 1 > % + 1%, then for all f € L; x\(T"), we obtain HI‘“]"HWLmA
as r — 0o. Therefore 1 = % + 125
Thus Theorem 1 is proved.

=0
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