A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE

ELIF TAN

Abstract

In this paper, we introduce a q-analog of the bi-periodic Lucas sequence, called as the q-bi-periodic Lucas sequence, and give some identities related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give a matrix representation for the q-bi-periodic Fibonacci sequence which allow us to obtain several properties of this sequence in a simple way. Moreover, by using the explicit formulas for the q-bi-periodic Fibonacci and Lucas sequences, we introduce q-analogs of the bi-periodic incomplete Fibonacci and Lucas sequences and give a relation between them.

1. Introduction

It is well-known that the classical Fibonacci numbers F_{n} are defined by the recurrence relation

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2}, \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

with the initial conditions $F_{0}=0$ and $F_{1}=1$. The Lucas numbers L_{n}, which follows the same recursive pattern as the Fibonacci numbers, but begins with $L_{0}=2$ and $L_{1}=1$. There are a lot of generalizations of Fibonacci and Lucas sequences. In [6], Edson and Yayenie introduced a generalization of the Fibonacci sequence, called as bi-periodic Fibonacci sequence, as follows:

$$
q_{n}=\left\{\begin{array}{ll}
a q_{n-1}+q_{n-2}, & \text { if } n \text { is even } \tag{1.2}\\
b q_{n-1}+q_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial values $q_{0}=0$ and $q_{1}=1$, where a and b are nonzero numbers. Note that if we take $a=b=1$ in $\left\{q_{n}\right\}$, we get the classical Fibonacci sequence. These sequences are emerged as denominators of the continued fraction expansion of the quadratic irrational numbers. For detailed information related to these sequences,

[^0]Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics.
Communications de la Faculté des Sciences de l'Université d'Ankara-Séries A1 Mathematics and Statistics.
we refer to $[6,19,8,11,12,17,18,15,16]$. Yayenie [19] gave an explicit formula of q_{n} as:

$$
\begin{equation*}
q_{n}=a^{\xi(n-1)} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-i}{i}(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-i} \tag{1.3}
\end{equation*}
$$

where $\xi(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor$, i.e., $\xi(n)=0$ when n is even and $\xi(n)=1$ when n is odd.
Similar to (1.2), by taking initial conditions $p_{0}=2$ and $p_{1}=a$, Bilgici [2] introduced the bi-periodic Lucas numbers as follows:

$$
p_{n}=\left\{\begin{array}{ll}
b p_{n-1}+p_{n-2}, & \text { if } n \text { is even } \tag{1.4}\\
a p_{n-1}+p_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

It should also be noted that, it gives the classical Lucas sequence in the case of $a=b=1$ in $\left\{p_{n}\right\}$. In analogy with (1.3), Tan and Ekin [14] gave the explicit formula of the bi-periodic Lucas numbers as:

$$
\begin{equation*}
p_{n}=a^{\xi(n)} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-i}, n \geq 1 \tag{1.5}
\end{equation*}
$$

On the other hand, there are several different q-analogs for the Fibonacci and Lucas sequences [3, 4, 5, 13, 7, 1]. Particularly, Cigler [5] gave the (Carlitz-) q Fibonacci and q-Lucas polynomials

$$
\begin{align*}
& f_{n}(x, s)=x f_{n-1}(x, s)+q^{n-2} s f_{n-2}(x, s) ; f_{0}(x, s)=0, f_{1}(x, s)=1, \tag{1.6}\\
& l_{n}(x, s)=f_{n+1}(x, s)+s f_{n-1}(x, q s) ; l_{0}(x, s)=2, l_{1}(x, s)=x \tag{1.7}
\end{align*}
$$

respectively.
Additionally, Ramírez and Sirvent [10] introduced a q-analog of the bi-periodic Fibonacci sequence by

$$
F_{n}^{(a, b)}(q, s)=\left\{\begin{array}{ll}
a F_{n-1}^{(a, b)}(q, s)+q^{n-2} s F_{n-2}^{(a, b)}(q, s), & \text { if } n \text { is even } \tag{1.8}\\
b F_{n-1}^{(a, b)}(q, s)+q^{n-2} s F_{n-2}^{(a, b)}(q, s), & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial conditions $F_{0}^{(a, b)}(q, s)=0$ and $F_{1}^{(a, b)}(q, s)=1$. They derived the following equality to evaluate the q-bi-periodic Fibonacci sequence:

$$
\begin{equation*}
F_{n}^{(a, b)}(q, s)=\chi_{n} F_{n-1}^{(a, b)}(q, q s)-q s F_{n-2}^{(a, b)}\left(q, q^{2} s\right) \tag{1.9}
\end{equation*}
$$

where $\chi_{n}:=a^{\xi(n+1)} b^{\xi(n)}$. Also, they gave the relationship between the q-bi-periodic Fibonacci sequence and the (Carlitz-) q-Fibonacci polynomials as:

$$
\begin{equation*}
F_{n}^{(a, b)}(q, s)=\left(\sqrt{\frac{a}{b}}\right)^{\xi(n+1)} f_{n}(\sqrt{a b}, s) \tag{1.10}
\end{equation*}
$$

By using (1.10), they obtained the explicit formula of the q-bi-periodic Fibonacci sequence as:

$$
F_{n}^{(a, b)}(q, s)=a^{\xi(n-1)} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left[\begin{array}{c}
n-k-1 \tag{1.11}\\
k
\end{array}\right](a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-k} q^{k^{2}} s^{k}
$$

where $\left[\begin{array}{c}n \\ k\end{array}\right]:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$ is the q-binomial coefficients with $[n]_{q}:=1+q+q^{2}+$ $\cdots+q^{n-1}$ and $[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}$.

Motivated by the Ramirez's results in [10], here we introduce a q-analog of the biperiodic Lucas sequence, called as the q-bi-periodic Lucas sequence, and give some identities related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give a matrix representation for the q-bi-periodic Fibonacci sequence which allow us to obtain several properties of this sequence in a simple way. Moreover, by using the explicit formulas for the q-bi-periodic Fibonacci and Lucas sequences, we introduce q-analogs of the bi-periodic incomplete Fibonacci and Lucas sequences and give a relation between them.

2. A q-analog of the bi-Periodic Lucas sequence

First, we consider the (Carlitz-) q-Lucas polynomials in (1.7), and define the q-bi-periodic Lucas sequence by means of the (Carlitz-) q-Lucas polynomials.

Definition 1. The q-bi-periodic Lucas sequence is defined by

$$
\begin{equation*}
L_{n}^{(a, b)}(q, s)=\left(\sqrt{\frac{a}{b}}\right)^{\xi(n)} l_{n}(\sqrt{a b}, s) \tag{2.1}
\end{equation*}
$$

where $l_{n}(x, s)$ is the (Carlitz-) q-Lucas polynomials.
The terms of the q-bi-periodic Lucas sequence can be given as:

n	$L_{n}^{(a, b)}(q, s)$				
0	2				
1	a				
2	$a b+s q+s$				
3	$a^{2} b+a s+a s q+a s q^{2}$				
4	$a^{2} b^{2}+a b s+a b s q+a b s q^{2}+a b s q^{3}+s^{2} q^{2}+s^{2} q^{4}$				
5	$a^{3} b^{2}+a^{2} b s+a^{2} b s q+a^{2} b s q^{2}+a^{2} b s q^{3}+a^{2} b s q^{4}$				
$+a s^{2} q^{2}+a s^{2} q^{3}+a s^{2} q^{4}+a s^{2} q^{5}+a s^{2} q^{6}$		$	$	\vdots	\vdots
:---	:---				

Note that if we take $a=b=x$, we obtain the (Carlitz-) q-Lucas polynomials $l_{n}(x, s)$.

In the following lemma, we state the q-bi-periodic Lucas sequence in terms of the q-bi-periodic Fibonacci sequence.

Lemma 1. For any integer $n \geq 0$, we have

$$
\begin{equation*}
L_{n}^{(a, b)}(q, s)=F_{n+1}^{(a, b)}(q, s)+s F_{n-1}^{(a, b)}(q, q s) \tag{2.2}
\end{equation*}
$$

Proof. By using the definition of the q-bi-periodic Lucas sequence and the relations (1.7) and (1.10), we have

$$
\begin{aligned}
L_{n}^{(a, b)}(q, s) & =\left(\sqrt{\frac{a}{b}}\right)^{\xi(n)} l_{n}(\sqrt{a b}, s) \\
& =\left(\sqrt{\frac{a}{b}}\right)^{\xi(n)}\left(f_{n+1}(\sqrt{a b}, s)+s f_{n-1}(\sqrt{a b}, q s)\right) \\
& =\left(\sqrt{\frac{a}{b}}\right)^{\xi(n)}\left(\sqrt{\frac{b}{a}}\right)^{\xi(n)}\left(F_{n+1}^{(a, b)}(q, s)+s F_{n-1}^{(a, b)}(q, q s)\right)
\end{aligned}
$$

which gives the desired result.
Now we give an another relation between the q-bi-periodic Fibonacci sequence and q-bi-periodic Lucas sequence.
Theorem 1. For any integer $n \geq 0$, we have

$$
\begin{equation*}
\chi_{n} L_{n}^{(a, b)}(q, q s)=F_{n+2}^{(a, b)}(q, s)-q^{n+1} s^{2} F_{n-2}^{(a, b)}\left(q, q^{2} s\right) \tag{2.3}
\end{equation*}
$$

where $\chi_{n}:=a^{\xi(n+1)} b^{\xi(n)}$.
Proof. By using the definition of the q-bi-periodic Fibonacci sequence in (1.8) and the relations (2.2) and (1.9), we get

$$
\begin{aligned}
\chi_{n} L_{n}^{(a, b)} & (q, q s)=\chi_{n}\left(F_{n+1}^{(a, b)}(q, q s)+q s F_{n-1}^{(a, b)}\left(q, q^{2} s\right)\right) \\
= & F_{n+2}^{(a, b)}(q, s)-q s F_{n}^{(a, b)}\left(q, q^{2} s\right)+\chi_{n} q s F_{n-1}^{(a, b)}\left(q, q^{2} s\right) \\
= & F_{n+2}^{(a, b)}(q, s)-q s\left(F_{n}^{(a, b)}\left(q, q^{2} s\right)-\chi_{n} F_{n-1}^{(a, b)}\left(q, q^{2} s\right)\right) \\
= & F_{n+2}^{(a, b)}(q, s)-q^{n+1} s^{2} F_{n-2}^{(a, b)}\left(q, q^{2} s\right)
\end{aligned}
$$

If we take $a=b=x$ in (2.3), it reduces to the relation between q-bi-periodic Fibonacci sequence and Lucas polynomials

$$
x l_{n}(x, q s)=f_{n+2}(x, s)-q^{n+1} s^{2} f_{n-2}\left(x, q^{2} s\right)
$$

which can be found in [5, Equation (3.15)].
In the following theorem, we give the explicit expression of the q-bi-periodic Lucas sequence $L_{n}^{(a, b)}(q, s)$. Since we define the incomplete sequences by using its explicit formula, the following theorem play a key role for our further study in the next section.

Theorem 2. For any integer $n \geq 0$, we have

$$
L_{n}^{(a, b)}(q, s)=a^{\xi(n)} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \tag{2.4}\\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}-k} s^{k}
$$

Proof. By using the relations (2.2) and (1.11), we have
$L_{n}^{(a, b)}(q, s)=F_{n+1}^{(a, b)}(q, s)+s F_{n-1}^{(a, b)}(q, q s)$

$$
\left.\begin{array}{rl}
= & a^{\xi(n)} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\begin{array}{c}
n-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k} \\
& +a^{\xi(n-2)} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor-1}\left[\begin{array}{c}
n-2-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-1-k} q^{k^{2}+k} s^{k+1} \\
= & a^{\xi(n)}\left(\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\begin{array}{c}
n-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k}\right. \\
& +\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}-k} s^{k}
\end{array}\right) .
$$

By using the identity

$$
q^{k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]+\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]=\frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]
$$

we obtain the desired result.
If we take $a=b=x$ in the above theorem, it reduces to the (Carlitz-) q-Lucas polynomials

$$
l_{n}(x, s)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] q^{k^{2}-k} s^{k} x^{n-2 k}
$$

which can be found in [5, Equation (3.14)].
Now we give a matrix representation for the q-bi-periodic Fibonacci sequence which can be proven by induction. By using matrix formula, one can obtain several properties of this sequence.

Theorem 3. For $n \geq 1$, let define the matrix $C\left(\chi_{n}, s\right):=\left(\begin{array}{cc}0 & 1 \\ s & \chi_{n}\end{array}\right)$. Then we have

$$
\begin{align*}
M_{n}\left(\chi_{n}, s\right) & :=C\left(\chi_{n}, q^{n-1} s\right) C\left(\chi_{n-1}, q^{n-2} s\right) \cdots C\left(\chi_{2}, q s\right) C\left(\chi_{1}, s\right) \\
& =\left(\begin{array}{cc}
s F_{n-1}^{(a, b)}(q, q s) & \left(\frac{b}{a}\right)^{\xi(n+1)} F_{n}^{(a, b)}(q, s) \\
s F_{n}^{(a, b)}(q, q s) & \left(\frac{b}{a}\right)^{\xi(n)} F_{n+1}^{(a, b)}(q, s)
\end{array}\right) . \tag{2.5}
\end{align*}
$$

In the following theorem, we give the q-Cassini formula for the q-bi-periodic Fibonacci sequence by taking the determinant of the both sides of the equation (2.5).

Theorem 4. For any integer $n>0$, we have

$$
\begin{align*}
& \left(\frac{b}{a}\right)^{\xi(n)} F_{n-1}^{(a, b)}(q, q s) F_{n+1}^{(a, b)}(q, s)-\left(\frac{b}{a}\right)^{\xi(n+1)} F_{n}^{(a, b)}(q, s) F_{n}^{(a, b)}(q, q s) \\
= & (-1)^{n} s^{n-1} q^{\frac{n(n-1)}{2}} . \tag{2.6}
\end{align*}
$$

Note that by taking $a=b=x$, we obtain the result in [5, Equation (3.12)].
Theorem 5. For any integer $n>0$, we have

$$
\begin{equation*}
F_{2 n}^{(a, b)}(q, s)=\left(\frac{a}{b}\right)^{\xi(n)} q^{n} s F_{n-1}^{(a, b)}\left(q, q^{n+1} s\right) F_{n}^{(a, b)}(q, s)+F_{n}^{(a, b)}\left(q, q^{n} s\right) F_{n+1}^{(a, b)}(q, s) \tag{2.7}
\end{equation*}
$$

Proof. Since $M_{m+n}\left(\chi_{n}, s\right)=M_{m}\left(\chi_{n}, q^{n} s\right) M_{n}\left(\chi_{n}, s\right)$, if we equate the corresponding entries of each matrices and take $m=n$ in the resulting equality, we get the desired result.

One can get several properties of the q-bi-periodic Fibonacci sequence by taking proper powers of the matrix in (2.5).

3. q-Bi-Periodic incomplete Fibonacci and Lucas sequences

In this section, we define q-bi-periodic incomplete Fibonacci and Lucas sequences. Let n be a positive integer and l be an integer.

Ramirez [9] defined the bi-periodic incomplete Fibonacci numbers by using the explicit formula of the bi-periodic Fibonacci sequences in (1.3) as:

$$
q_{n}(l)=a^{\xi(n-1)} \sum_{i=0}^{l}\binom{n-1-i}{i}(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-i}, 0 \leq l \leq\left\lfloor\frac{n-1}{2}\right\rfloor
$$

Similarly, by using the explicit formula of the bi-periodic Lucas sequence in (1.5), Tan and Ekin [14] defined the bi-periodic incomplete Lucas numbers as:

$$
p_{n}(l)=a^{\xi(n)} \sum_{i=0}^{l} \frac{n}{n-i}\binom{n-i}{i}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-i}, 0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor .
$$

Analogously, by using the explicit formulas of the q-bi-periodic Fibonacci sequence in (1.11) and the q-bi-periodic Lucas sequence in (2.4), we define the q-bi-periodic incomplete Fibonacci and Lucas sequences as follows.

Definition 2. For any non negative integer n, the q-bi-periodic incomplete Fibonacci and Lucas sequences are defined by

$$
F_{n, l}^{(a, b)}(q, s)=a^{\xi(n-1)} \sum_{k=0}^{l}\left[\begin{array}{c}
n-1-k \tag{3.1}\\
k
\end{array}\right](a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-k} q^{k^{2}} s^{k}, 0 \leq l \leq\left\lfloor\frac{n-1}{2}\right\rfloor
$$

and

$$
L_{n, l}^{(a, b)}(q, s)=a^{\xi(n)} \sum_{k=0}^{l} \frac{[n]}{[n-k]}\left[\begin{array}{c}
n-k \tag{3.2}\\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}-k} s^{k}, 0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor,
$$

respectively.
If we take $l=\left\lfloor\frac{n-1}{2}\right\rfloor$ in (3.1), we obtain the q-bi-periodic Fibonacci sequence, and if we take $l=\left\lfloor\frac{n}{2}\right\rfloor$ in (3.2), we obtain the q-bi-periodic Lucas sequence.

Next, we give non-homogenous recurrence relation for the q-bi-periodic incomplete Fibonacci sequence.

Theorem 6. For $0 \leq l \leq \frac{n-2}{2}$, the non-linear recurrence relation of the q-biperiodic incomplete Fibonacci sequence is

$$
F_{n+2, l+1}^{(a, b)}(q, s)=\left\{\begin{array}{ll}
a F_{n+1, l+1}^{(a, b)}(q, s)+q^{n} s F_{n, l}^{(a, b)}(q, s), & \text { if } n \text { is even } \tag{3.3}\\
b F_{n+1, l+1}^{(a, b)}(q, s)+q^{n} s F_{n, l}^{(a, b)}(q, s), & \text { if } n \text { is odd }
\end{array} .\right.
$$

The relation (3.3) can be transformed into the non-homogeneous recurrence relation

$$
F_{n+2, l}^{(a, b)}(q, s)=a F_{n+1, l}^{(a, b)}(q, s)+q^{n} s F_{n, l}^{(a, b)}(q, s)-a\left[\begin{array}{c}
n-1-l \tag{3.4}\\
l
\end{array}\right](a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-l} q^{n+l^{2}} s^{l+1}
$$

for even n, and

for odd n.
Proof. If n is even, then $\left\lfloor\frac{n+1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$. By using the Definition (3.1), we can write the RHS of (3.3) as

$$
\begin{aligned}
& a^{1+\xi(n)} \sum_{k=0}^{l+1}\left[\begin{array}{c}
n-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k} \\
& +q^{n} s a^{\xi(n-1)} \sum_{k=0}^{l}\left[\begin{array}{c}
n-1-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-k} q^{k^{2}} s^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =a \sum_{k=0}^{l+1}\left[\begin{array}{c}
n-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k}+q^{n} a \sum_{k=0}^{l}\left[\begin{array}{c}
n-1-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-k} q^{k^{2}} s^{k+1} \\
& =a \sum_{k=0}^{l+1}\left[\begin{array}{c}
n-k \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k} \\
& +q^{n} a \sum_{k=1}^{l+1}\left[\begin{array}{c}
n-k \\
k-1
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{(k-1)^{2}} s^{k} \\
& =a \sum_{k=0}^{l+1}\left(\left[\begin{array}{c}
n-k \\
k
\end{array}\right]+q^{n-2 k+1}\left[\begin{array}{c}
n-k \\
k-1
\end{array}\right]\right)(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k}-0 \\
& =a \sum_{k=0}^{l+1}\left[\begin{array}{c}
n-k+1 \\
k
\end{array}\right](a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} q^{k^{2}} s^{k}(a b)^{\left\lfloor\frac{n}{2}\right\rfloor-k} \\
& =F_{n+2, l+1}^{(a, b)}(q, s) .
\end{aligned}
$$

Also from equation (3.3), we have

$$
\begin{aligned}
F_{n+2, l}^{(a, b)}(q, s) & =a F_{n+1, l}^{(a, b)}(q, s)+q^{n} s F_{n, l-1}^{(a, b)}(q, s) \\
& =a F_{n+1, l}^{(a, b)}(q, s)+q^{n} s F_{n, l}^{(a, b)}(q, s)+q^{n} s\left(F_{n, l-1}^{(a, b)}(q, s)-F_{n, l}^{(a, b)}(q, s)\right) \\
& =a F_{n+1, l}^{(a, b)}(q, s)+q^{n} s F_{n, l}^{(a, b)}(q, s)-a\left[\begin{array}{c}
n-1-l \\
l
\end{array}\right](a b)^{L^{\left.\frac{n-1}{2}\right\rfloor-l} q^{n+l^{2}} s^{l+1}}
\end{aligned}
$$

If n is odd, the proof is completely analogous.
Note that the q-bi-periodic Lucas sequence does not satisfy a recurrence like (3.3), since $F_{n+1}^{(a, b)}(q, s)$ and $F_{n+1}^{(a, b)}(q, q s)$ do not satisfy the same recurrence relation.

Finally we give the relationship between the q-bi-periodic incomplete Fibonacci and Lucas sequences as follows:

Theorem 7. For $0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{equation*}
L_{n, l}^{(a, b)}(q, s)=F_{n+1, l}^{(a, b)}(q, s)+F_{n-1, l-1}^{(a, b)}(q, q s) \tag{3.6}
\end{equation*}
$$

Proof. It can be proved easily by using the definitions (3.1) and (3.2).

4. Acknowledgement

This research is supported by Ankara University Scientific Research Project Unit (BAP). Project No:17H0430002.

References

[1] Andrews, G. E., Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart. 42(1) (2004), 3-19.
[2] Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation 245 (2014) 526-538.
[3] Carlitz, L., Fibonacci notes 4: q-Fibonacci Polynomials. The Fibonacci Quarterly 13(2) (1975), 97-102.
[4] Cigler, J., A new class of q-Fibonacci polynomials, Electron. J. Comb. 10 (2003), ArticleR19.
[5] Cigler, J., Some beautiful q-analogues of Fibonacci and Lucas polynomials, arXiv:11042699.
[6] Edson, M. and Yayenie, O., A new generalizations of Fibonacci sequences and extended Binet's Formula, Integers 9, (A48) (2009), 639-654.
[7] Jia, C. Z., Liu, H. M., and Wang, T. M., q-Analogs of Generalized Fibonacci and Lucas Polynomials, The Fibonacci Quarterly (451) 2007, 26-34.
[8] Panario, D., Sahin, M. and Wang, Q., A family of Fibonacci-like conditional sequences, Integers 13 (2013).
[9] Ramírez, J. L., Bi-periodic incomplete Fibonacci sequences, Ann. Math. Inform. 42(2013), 83-92.
[10] Ramírez, J. L. and Sirvent, V. F., A q-Analoque of the Biperiodic Fibonacci Sequence, Journal of Integer Sequences, Vol. 19 (2016).
[11] Sahin, M., The generating function of a family of the sequences in terms of the continuant, Applied Mathematics and Computation 217 (2011) 5416-5420.
[12] Sahin, M., The Gelin-Cesaro identity in some conditional sequences, Hacet. J. Math. Stat. 40(6) (2011), 855-861.
[13] Schur, I., Ein beitrag zur additiven zahlentheorie. Sitzungsber, Akad. Wissencsh. Berlin, Phy.-Math. Klasse (1917), 302-321.
[14] Tan, E. and Ekin, A. B., Bi-periodic Incomplete Lucas Sequences, Ars Combinatoria. 123 (2015), 371-380.
[15] Tan, E. and Ekin, A. B., Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes. 18 (1) (2017), 469-477.
[16] Tan,E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria. 133 (2017), 107-113.
[17] Tan, E., Yilmaz, S. and Sahin, M., On a new generalization of Fibonacci quaternions, Chaos, Solitons and Fractals 82 (2016) 1-4.
[18] Tan, E., Yilmaz, S. and Sahin, M., A note on bi-periodic Fibonacci and Lucas quaternions, Chaos, Solitons and Fractals 85 (2016) 138-142.
[19] Yayenie, O., A note on generalized Fibonacci sequeence, Appl. Math. Comput. 217 (2011) 5603-5611.

E-mail address: etan@ankara.edu.tr
Current address: Department of Mathematics, Faculty of Sciences, Ankara University, 06100
Tandogan Ankara, Turkey
ORCID Address: http://orcid.org/0000-0002-8381-8750

[^0]: Received by the editors: April 04, 2017, Accepted: June 06, 2017.
 2010 Mathematics Subject Classification. 05A15, 05A30.
 Key words and phrases. bi-periodic Fibonacci and Lucas sequences, bi-periodic incomplete Fibonacci and Lucas sequences, q-analog, matrix formula.

