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A Q-ANALOG OF THE BI-PERIODIC LUCAS SEQUENCE

ELIF TAN

Abstract. In this paper, we introduce a q-analog of the bi-periodic Lucas
sequence, called as the q-bi-periodic Lucas sequence, and give some identi-
ties related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give
a matrix representation for the q-bi-periodic Fibonacci sequence which allow
us to obtain several properties of this sequence in a simple way. Moreover,
by using the explicit formulas for the q-bi-periodic Fibonacci and Lucas se-
quences, we introduce q-analogs of the bi-periodic incomplete Fibonacci and
Lucas sequences and give a relation between them.

1. Introduction

It is well-known that the classical Fibonacci numbers Fn are defined by the
recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2 (1.1)

with the initial conditions F0 = 0 and F1 = 1. The Lucas numbers Ln, which follows
the same recursive pattern as the Fibonacci numbers, but begins with L0 = 2 and
L1 = 1. There are a lot of generalizations of Fibonacci and Lucas sequences. In [6],
Edson and Yayenie introduced a generalization of the Fibonacci sequence, called as
bi-periodic Fibonacci sequence, as follows:

qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd

, n ≥ 2 (1.2)

with initial values q0 = 0 and q1 = 1, where a and b are nonzero numbers. Note
that if we take a = b = 1 in {qn}, we get the classical Fibonacci sequence. These
sequences are emerged as denominators of the continued fraction expansion of the
quadratic irrational numbers. For detailed information related to these sequences,
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we refer to [6, 19, 8, 11, 12, 17, 18, 15, 16]. Yayenie [19] gave an explicit formula of
qn as:

qn = aξ(n−1)
bn−12 c∑
i=0

(
n− 1− i

i

)
(ab)b

n−1
2 c−i (1.3)

where ξ (n) = n− 2
⌊
n
2

⌋
, i.e., ξ (n) = 0 when n is even and ξ (n) = 1 when n is odd.

Similar to (1.2), by taking initial conditions p0 = 2 and p1 = a, Bilgici [2]
introduced the bi-periodic Lucas numbers as follows:

pn =

{
bpn−1 + pn−2, if n is even
apn−1 + pn−2, if n is odd

, n ≥ 2. (1.4)

It should also be noted that, it gives the classical Lucas sequence in the case of
a = b = 1 in {pn}. In analogy with (1.3), Tan and Ekin [14] gave the explicit
formula of the bi-periodic Lucas numbers as:

pn = aξ(n)
bn2 c∑
i=0

n

n− i

(
n− i
i

)
(ab)b

n
2 c−i , n ≥ 1. (1.5)

On the other hand, there are several different q-analogs for the Fibonacci and
Lucas sequences [3, 4, 5, 13, 7, 1]. Particularly, Cigler [5] gave the (Carlitz-) q-
Fibonacci and q-Lucas polynomials

fn (x, s) = xfn−1 (x, s) + q
n−2sfn−2 (x, s) ; f0 (x, s) = 0, f1 (x, s) = 1, (1.6)

ln (x, s) = fn+1 (x, s) + sfn−1 (x, qs) ; l0 (x, s) = 2, l1 (x, s) = x, (1.7)

respectively.
Additionally, Ramírez and Sirvent [10] introduced a q-analog of the bi-periodic

Fibonacci sequence by

F (a,b)n (q, s) =

{
aF

(a,b)
n−1 (q, s) + q

n−2sF
(a,b)
n−2 (q, s) , if n is even

bF
(a,b)
n−1 (q, s) + q

n−2sF
(a,b)
n−2 (q, s) , if n is odd

, n ≥ 2 (1.8)

with initial conditions F (a,b)0 (q, s) = 0 and F
(a,b)
1 (q, s) = 1. They derived the

following equality to evaluate the q-bi-periodic Fibonacci sequence:

F (a,b)n (q, s) = χnF
(a,b)
n−1 (q, qs)− qsF

(a,b)
n−2

(
q, q2s

)
, (1.9)

where χn := aξ(n+1)bξ(n). Also, they gave the relationship between the q-bi-periodic
Fibonacci sequence and the (Carlitz-) q-Fibonacci polynomials as:

F (a,b)n (q, s) =

(√
a

b

)ξ(n+1)
fn

(√
ab, s

)
. (1.10)
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By using (1.10), they obtained the explicit formula of the q-bi-periodic Fibonacci
sequence as:

F (a,b)n (q, s) = aξ(n−1)
bn−12 c∑
k=0

[
n− k − 1

k

]
(ab)b

n−1
2 c−k qk

2

sk, (1.11)

where
[
n
k

]
:=

[n]q !

[k]q ![n−k]q !
is the q-binomial coeffi cients with [n]q := 1 + q + q2 +

· · ·+ qn−1 and [n]q! := [1]q [2]q · · · [n]q .
Motivated by the Ramirez’s results in [10], here we introduce a q-analog of the bi-

periodic Lucas sequence, called as the q-bi-periodic Lucas sequence, and give some
identities related to the q-bi-periodic Fibonacci and Lucas sequences. Also, we give
a matrix representation for the q-bi-periodic Fibonacci sequence which allow us to
obtain several properties of this sequence in a simple way. Moreover, by using the
explicit formulas for the q-bi-periodic Fibonacci and Lucas sequences, we introduce
q-analogs of the bi-periodic incomplete Fibonacci and Lucas sequences and give a
relation between them.

2. A q-analog of the bi-periodic Lucas sequence

First, we consider the (Carlitz-) q-Lucas polynomials in (1.7), and define the
q-bi-periodic Lucas sequence by means of the (Carlitz-) q-Lucas polynomials.

Definition 1. The q-bi-periodic Lucas sequence is defined by

L(a,b)n (q, s) =

(√
a

b

)ξ(n)
ln

(√
ab, s

)
(2.1)

where ln (x, s) is the (Carlitz-) q-Lucas polynomials.

The terms of the q-bi-periodic Lucas sequence can be given as:

n L
(a,b)
n (q, s)

0 2
1 a
2 ab+ sq + s
3 a2b+ as+ asq + asq2

4 a2b2 + abs+ absq + absq2 + absq3 + s2q2 + s2q4

5 a3b2 + a2bs+ a2bsq + a2bsq2 + a2bsq3 + a2bsq4

+as2q2 + as2q3 + as2q4 + as2q5 + as2q6

...
...

Note that if we take a = b = x, we obtain the (Carlitz-) q-Lucas polynomials
ln (x, s) .
In the following lemma, we state the q-bi-periodic Lucas sequence in terms of

the q-bi-periodic Fibonacci sequence.
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Lemma 1. For any integer n ≥ 0, we have

L(a,b)n (q, s) = F
(a,b)
n+1 (q, s) + sF

(a,b)
n−1 (q, qs) . (2.2)

Proof. By using the definition of the q-bi-periodic Lucas sequence and the relations
(1.7) and (1.10), we have

L(a,b)n (q, s) =

(√
a

b

)ξ(n)
ln

(√
ab, s

)
=

(√
a

b

)ξ(n) (
fn+1

(√
ab, s

)
+ sfn−1

(√
ab, qs

))
=

(√
a

b

)ξ(n)(√
b

a

)ξ(n) (
F
(a,b)
n+1 (q, s) + sF

(a,b)
n−1 (q, qs)

)
which gives the desired result. �

Now we give an another relation between the q-bi-periodic Fibonacci sequence
and q-bi-periodic Lucas sequence.

Theorem 1. For any integer n ≥ 0, we have

χnL
(a,b)
n (q, qs) = F

(a,b)
n+2 (q, s)− qn+1s2F

(a,b)
n−2

(
q, q2s

)
(2.3)

where χn := aξ(n+1)bξ(n).

Proof. By using the definition of the q-bi-periodic Fibonacci sequence in (1.8) and
the relations (2.2) and (1.9), we get

χnL
(a,b)
n (q, qs) = χn

(
F
(a,b)
n+1 (q, qs) + qsF

(a,b)
n−1

(
q, q2s

))
= F

(a,b)
n+2 (q, s)− qsF (a,b)n

(
q, q2s

)
+ χnqsF

(a,b)
n−1

(
q, q2s

)
= F

(a,b)
n+2 (q, s)− qs

(
F (a,b)n

(
q, q2s

)
− χnF

(a,b)
n−1

(
q, q2s

))
= F

(a,b)
n+2 (q, s)− qn+1s2F

(a,b)
n−2

(
q, q2s

)
.

�

If we take a = b = x in (2.3), it reduces to the relation between q-bi-periodic
Fibonacci sequence and Lucas polynomials

xln (x, qs) = fn+2 (x, s)− qn+1s2fn−2
(
x, q2s

)
which can be found in [5, Equation (3.15)].
In the following theorem, we give the explicit expression of the q-bi-periodic

Lucas sequence L(a,b)n (q, s). Since we define the incomplete sequences by using its
explicit formula, the following theorem play a key role for our further study in the
next section.
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Theorem 2. For any integer n ≥ 0, we have

L(a,b)n (q, s) = aξ(n)
bn2 c∑
k=0

[n]

[n− k]

[
n− k
k

]
(ab)b

n
2 c−k qk

2−ksk. (2.4)

Proof. By using the relations (2.2) and (1.11), we have

L(a,b)n (q, s) = F
(a,b)
n+1 (q, s)+sF

(a,b)
n−1 (q, qs)

= aξ(n)
bn2 c∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+ aξ(n−2)
bn2 c−1∑
k=0

[
n− 2− k

k

]
(ab)b

n
2 c−1−k qk

2+ksk+1

= aξ(n)

bn2 c∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+

bn2 c∑
k=1

[
n− k − 1
k − 1

]
(ab)b

n
2 c−k qk

2−ksk



= aξ(n)
bn2 c∑
k=0

(
qk
[
n− k
k

]
+

[
n− k − 1
k − 1

])
(ab)b

n
2 c−k qk

2−ksk.

By using the identity

qk
[
n− k
k

]
+

[
n− k − 1
k − 1

]
=

[n]

[n− k]

[
n− k
k

]
,

we obtain the desired result. �

If we take a = b = x in the above theorem, it reduces to the (Carlitz-) q-Lucas
polynomials

ln (x, s) =

bn2 c∑
k=0

[n]

[n− k]

[
n− k
k

]
qk

2−kskxn−2k

which can be found in [5, Equation (3.14)].
Now we give a matrix representation for the q-bi-periodic Fibonacci sequence

which can be proven by induction. By using matrix formula, one can obtain several
properties of this sequence.
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Theorem 3. For n ≥ 1, let define the matrix C (χn, s) :=
(
0 1
s χn

)
. Then we

have

Mn (χn, s) := C
(
χn, q

n−1s
)
C
(
χn−1, q

n−2s
)
· · ·C (χ2, qs)C (χ1, s)

=

(
sF

(a,b)
n−1 (q, qs)

(
b
a

)ξ(n+1)
F
(a,b)
n (q, s)

sF
(a,b)
n (q, qs)

(
b
a

)ξ(n)
F
(a,b)
n+1 (q, s)

)
. (2.5)

In the following theorem, we give the q-Cassini formula for the q-bi-periodic
Fibonacci sequence by taking the determinant of the both sides of the equation
(2.5).

Theorem 4. For any integer n > 0, we have(
b

a

)ξ(n)
F
(a,b)
n−1 (q, qs)F

(a,b)
n+1 (q, s)−

(
b

a

)ξ(n+1)
F (a,b)n (q, s)F (a,b)n (q, qs)

= (−1)n sn−1q
n(n−1)

2 . (2.6)

Note that by taking a = b = x, we obtain the result in [5, Equation (3.12)].

Theorem 5. For any integer n > 0, we have

F
(a,b)
2n (q, s) =

(a
b

)ξ(n)
qnsF

(a,b)
n−1

(
q, qn+1s

)
F (a,b)n (q, s) + F (a,b)n (q, qns)F

(a,b)
n+1 (q, s) .

(2.7)

Proof. SinceMm+n (χn, s) =Mm (χn, q
ns)Mn (χn, s) , if we equate the correspond-

ing entries of each matrices and take m = n in the resulting equality, we get the
desired result. �
One can get several properties of the q-bi-periodic Fibonacci sequence by taking

proper powers of the matrix in (2.5).

3. q−bi-periodic incomplete Fibonacci and Lucas sequences

In this section, we define q-bi-periodic incomplete Fibonacci and Lucas sequences.
Let n be a positive integer and l be an integer.
Ramirez [9] defined the bi-periodic incomplete Fibonacci numbers by using the

explicit formula of the bi-periodic Fibonacci sequences in (1.3) as:

qn (l) = aξ(n−1)
l∑
i=0

(
n− 1− i

i

)
(ab)b

n−1
2 c−i , 0 ≤ l ≤

⌊
n− 1
2

⌋
Similarly, by using the explicit formula of the bi-periodic Lucas sequence in (1.5),
Tan and Ekin [14] defined the bi-periodic incomplete Lucas numbers as:

pn (l) = aξ(n)
l∑
i=0

n

n− i

(
n− i
i

)
(ab)b

n
2 c−i , 0 ≤ l ≤

⌊n
2

⌋
.
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Analogously, by using the explicit formulas of the q-bi-periodic Fibonacci sequence
in (1.11) and the q-bi-periodic Lucas sequence in (2.4), we define the q-bi-periodic
incomplete Fibonacci and Lucas sequences as follows.

Definition 2. For any non negative integer n, the q-bi-periodic incomplete Fi-
bonacci and Lucas sequences are defined by

F
(a,b)
n,l (q, s) = aξ(n−1)

l∑
k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk, 0 ≤ l ≤
⌊
n− 1
2

⌋
(3.1)

and

L
(a,b)
n,l (q, s) = aξ(n)

l∑
k=0

[n]

[n− k]

[
n− k
k

]
(ab)b

n
2 c−k qk

2−ksk, 0 ≤ l ≤
⌊n
2

⌋
, (3.2)

respectively.

If we take l =
⌊
n−1
2

⌋
in (3.1), we obtain the q-bi-periodic Fibonacci sequence,

and if we take l =
⌊
n
2

⌋
in (3.2), we obtain the q-bi-periodic Lucas sequence.

Next, we give non-homogenous recurrence relation for the q-bi-periodic incom-
plete Fibonacci sequence.

Theorem 6. For 0 ≤ l ≤ n−2
2 , the non-linear recurrence relation of the q-bi-

periodic incomplete Fibonacci sequence is

F
(a,b)
n+2,l+1 (q, s) =

{
aF

(a,b)
n+1,l+1 (q, s) + q

nsF
(a,b)
n,l (q, s) , if n is even

bF
(a,b)
n+1,l+1 (q, s) + q

nsF
(a,b)
n,l (q, s) , if n is odd

. (3.3)

The relation (3.3) can be transformed into the non-homogeneous recurrence relation

F
(a,b)
n+2,l (q, s) = aF

(a,b)
n+1,l (q, s)+q

nsF
(a,b)
n,l (q, s)−a

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1

(3.4)
for even n, and

F
(a,b)
n+2,l (q, s) = bF

(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s)−

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1

(3.5)
for odd n.

Proof. If n is even, then
⌊
n+1
2

⌋
=
⌊
n
2

⌋
. By using the Definition (3.1), we can write

the RHS of (3.3) as

a1+ξ(n)
l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+qnsaξ(n−1)
l∑

k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk
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= a

l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk + qn a

l∑
k=0

[
n− 1− k

k

]
(ab)b

n−1
2 c−k qk

2

sk+1

= a

l+1∑
k=0

[
n− k
k

]
(ab)b

n
2 c−k qk

2

sk

+qn a

l+1∑
k=1

[
n− k
k − 1

]
(ab)b

n
2 c−k q(k−1)

2

sk

= a

l+1∑
k=0

([
n− k
k

]
+ qn−2k+1

[
n− k
k − 1

])
(ab)b

n
2 c−k qk

2

sk (ab)b
n
2 c−k − 0

= a

l+1∑
k=0

[
n− k + 1

k

]
(ab)b

n
2 c−k qk

2

sk (ab)b
n
2 c−k

= F
(a,b)
n+2,l+1 (q, s) .

Also from equation (3.3), we have

F
(a,b)
n+2,l (q, s) = aF

(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l−1 (q, s)

= aF
(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s) + qns(F

(a,b)
n,l−1 (q, s)− F

(a,b)
n,l (q, s))

= aF
(a,b)
n+1,l (q, s) + q

nsF
(a,b)
n,l (q, s)− a

[
n− 1− l

l

]
(ab)b

n−1
2 c−l qn+l

2

sl+1.

If n is odd, the proof is completely analogous. �

Note that the q-bi-periodic Lucas sequence does not satisfy a recurrence like (3.3),
since F (a,b)n+1 (q, s) and F

(a,b)
n+1 (q, qs) do not satisfy the same recurrence relation.

Finally we give the relationship between the q-bi-periodic incomplete Fibonacci
and Lucas sequences as follows:

Theorem 7. For 0 ≤ l ≤
⌊
n
2

⌋
, we have

L
(a,b)
n,l (q, s) = F

(a,b)
n+1,l (q, s) + F

(a,b)
n−1,l−1 (q, qs) . (3.6)

Proof. It can be proved easily by using the definitions (3.1) and (3.2). �
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