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A GENERALIZATION OF THE PEANO KERNEL AND ITS
APPLICATIONS

GÜLTER BUDAKÇI AND HALIL ORUÇ

Abstract. Based on the q-Taylor Theorem, we introduce a more general form
of the Peano kernel (q-Peano) which is also applicable to non-differentiable
functions. Then we show that quantum B-splines are the q-Peano kernels of
divided differences. We also give applications to polynomial interpolation and
construct examples in which classical remainder theory fails whereas q-Peano
kernel works.

1. Introduction

Recent advances in the quantum B-splines, [4, 6, 17] have given us an opportunity
to arise the question if there is a way to link quantum B-splines with a more
general Peano kernel. The quantum B-spline functions are piecewise polynomials
whose quantum derivatives agree at the joins up to some order. The quantum B-
splines are introduced by Simeonov & Goldman [17] to generalize classical B-splines
by replacing ordinary derivatives by quantum derivatives. Their work constructs
not only a new type of de Boor algorithm but also novel identities via blossoms.
Actually the underlying idea in [17] goes back to the work [16] which aimed to find
a new form of blossoms to represent q-Bernstein polynomials. Just like classical
Bernstein polynomials, the q-Bernstein polynomials possesses remarkable geometric
and analytic properties, see [11, 13]. So, our objectives are to extend the Peano
kernel and then relate with the quantum B-splines. This extension is important
because there are functions whose q-derivatives exist but whose classical derivatives
fail to exist. Furthermore it will also lead us to investigate errors in approximations.
The classical Peano kernel theorem provides a useful technique for comput-

ing the errors of approximations such as interpolation, quadrature rules and B-
splines. The errors are represented by a linear functional that operates on functions
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f ∈ Cn+1[a, b] and annihilates all polynomials of degree at most n.

Namely, if L(f) = 0 for all f ∈ Pn, the space of polynomials of degree n, then

L(f) =

b∫
a

f (n+1)(t)K(x, t)dt,

where K(x, t) =
1

n!
L
(
(x− t)n+

)
.

An important application of this result is the Kowalewski’s interpolating poly-
nomial remainder. Let t0, t1, . . . , tn ∈ [a, b] be fixed and distinct, and

L(f) = f(x)−
n∑
k=0

f(tk)lnk(x)

where lnk(x) =
n∏
v=0
v 6=k

x− tv
tk − tv

. If f ∈ Cm+1[a, b], then

L(f) =
1

m!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)mf (m+1)(t)dt, for each m = 0, 1, . . . , n

is the error functional, see [7].
This paper is organized as follows: We begin with definitions and properties

of the quantum calculus needed for this work. In Section 3, we give the q-Taylor
theorem and develop a generalization of the Peano kernel (q-Peano kernel). We
present a simple way to find L(f) under the condition in which the kernel has no
sign change. Moreover, taking L(f) as divided differences we construct a relation
between q-B-splines and q-Peano kernel. Section 4 demonstrates how the q-Peano
kernel is used to find the error of Lagrange interpolation. Finally, the error bounds
of quadrature formula on the remainder involving q-integration is discussed.

2. Preliminaries

Throughout the paper we consider q as a real fixed parameter. Let us give basic
definitions and theorems of the q-calculus that are required in the next sections.
For a fixed parameter q 6= 1, the q-derivatives are defined by,

Dqf(t) =
f(qt)− f(t)
(q − 1)t

Dn
q f(t) = Dq(D

n−1
q f(t)), n > 2.

Note that q-derivatives are approximations to classical derivatives and if f is a
differentiable function, then

lim
q→1

Dqf(x) = Df(x).
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For polynomials the q-derivative is easy to compute. Indeed it follows easily from
the definition of the q-derivative that

Dqx
n = [n]qx

n−1,

where the q-integers [n]q are defined by,

[n]q =

{
(1− qn)/(1− q), q 6= 1,
n, q = 1.

Moreover, the q-factorial is defined by

[n]q! = [1]q · · · [n]q.

Quantum integrals are the analogues of classical integrals for the quantum cal-
culus. Quantum integrals satisfy a quantum version of the fundamental theorem of
calculus, see [9] for details.

Definition 1. Let 0 < a < b. Then the definite q-integral of a function f(x) is
defined by a convergent series∫ b

0

f(x)dqx = (1− q)b
∞∑
i=0

qif(qib)

and ∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx.

Theorem 1. [Fundamental Theorem of q-Calculus]
If F (x) is continuous at x = 0, then∫ b

a

DqF (x)dqx = F (b)− F (a)

where 0 6 a < b 6∞.

The work [15] gives the mean value theorem in the q-calculus which will be
needed in one of our results.

Theorem 2. If F is continuous and G is 1/q-integrable and is non-negative(or
non-positive) on [a, b], then there exists q̃ ∈ (1,∞) such that for all q > q̃ there
exists ξ ∈ (a, b) for which

b∫
a

F (x)G(x)d1/qx = F (ξ)

b∫
a

G(x)d1/qx.

We also require a q-Hölder inequality and appropriate notions of distance in
q-integrals, see [2, 5, 18].
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Definition 2. We will denote by Lp,q([0, b]) with 1 6 p <∞, the set of all functions
f on [0, b] such that

||f ||p,q :=

 b∫
0

|f |pd1/qt


1
p

<∞.

Furthermore let L∞,q([0, b]) denote the set of all functions f on [0, b] such that

||f ||∞,q := sup
x∈[0,b]

|f(x)| <∞.

Theorem 3. Let x ∈ [0, b], q ∈ [1,∞) and p1, p2 > 1 be such that 1
p1
+ 1

p2
= 1.

Then

x∫
0

|f(x)||g(x)|d1/qt 6

 x∫
0

|f(x)|p1d1/qt

 1
p1
 x∫
0

|g(x)|p2d1/qt

 1
p2

. (2.1)

3. q-Peano Kernel Theorem

In this section we derive a more general form of the Peano kernel theorem based
on a q-Taylor expansion. So we start by giving the q-Taylor Theorem with integral
remainder. A detailed treatment of the classical Peano kernel theorem can be found
in [7, 12, 14].
We use the notation q-Ck[a, b] to denote the space of bounded functions whose

q-derivatives of order up to k are continuous on [a, b].

Theorem 4. (q-Taylor Theorem) Let f be n + 1 times 1/q-differentiable in the
closed interval [a, b]. Then

f(x) =

n∑
k=0

qk(k−1)/2
(Dk

1/qf)(q
ka)

[k]q!
(x− a)k,q +Rn(f), (3.1)

where
(x− t)n,q = (x− qn−1t) · · · (x− qt)(x− t)

and

Rn(f) =
qn(n+1)/2

[n]q!

∫ x

a

(Dn+1
1/q f)(q

nt)(x− t)n,qd1/qt.

Another way to express the remainder Rn(f) is to employ the truncated power
function. That is

Rn(f) =
qn(n+1)/2

[n]q!

∫ b

a

(Dn+1
1/q f)(q

nt)(x− t)n,q+ d1/qt, (3.2)

where
(x− t)n,q+ = (x− qn−1t) · · · (x− qt)(x− t)+.



A GENERALIZATION OF THE PEANO KERNEL AND ITS APPLICATIONS 233

Here (x− t)+ is the truncated power function

(x− t)+ =
{
x− t, if x > t
0, otherwise.

Although the latter representation of the remainder Rn(f) associated with our
results is new, we omit the proof since it can be done in a similar way as in [9].
There are other forms of q-Taylor Theorem, see for example [1, 8, 10]. The work
[3] investigates the convergence of q-Taylor series for q-difference operators using
q-Cauchy integral formula.

Theorem 5. Let gt(x) = (x− t)n,q+ and let L be a linear functional that commutes
with the operation of q-integration and also satisfies the conditions: L(gt) exists
and L(f) = 0 for all f ∈ Pn. Then for all f ∈ 1/q − Cn+1[a, b]

L(f) =

∫ b

a

(Dn+1
1/q f)(q

nt)K(x, t)d1/qt,

where

K(x, t) =
qn(n+1)/2

[n]q!
L(gt).

Proof. Recall that here the function (x− t)n,q+ is a function of t and x behaves as a
parameter. When we say L(gt) we mean that L is applied to the truncated power
function, regarded as a function of x with t as a parameter. Hence we find real
number that depends on t. We apply L to the equation (3.1). Since L is linear and
annihilates polynomials, we have

L(f) =
qn(n+1)/2

[n]q!
L

(∫ b

a

(Dn+1
1/q f)(q

nt)(x− t)n,q+ d1/qt

)
.

Since L commutes with the operation of q-integration,

L(f) =
qn(n+1)/2

[n]q!

∫ b

a

(Dn+1
1/q f)(q

nt)L
(
(x− t)n,q+

)
d1/qt.

�
Corollary 1. If the conditions in Theorem 5 are satisfied and also the kernel
K(x, t) does not change sign on [a, b], then

L(f) =

(
Dn+1
1/q f

)
(ξ)

[n+ 1]q!
qn(n+1)/2L(xn+1).

Proof. Since Dn+1
1/q f is continuous and K(x, t) does not change sign on [a, b], we

can apply the Mean Value Theorem 2. Thus we have

L(f) =
(
Dn+1
1/q f

)
(ξ)

b∫
a

K(x, t)d1/qt, a < ξ < b.
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Replacing f(x) by xn+1 gives

L(xn+1) =
[n+ 1]q!

qn(n+1)/2

b∫
a

K(x, t)d1/qt,

so
b∫
a

K(x, t)d1/qt =
qn(n+1)/2

[n+ 1]q!
L(xn+1),

and this completes the proof. �

We now establish a relation between q-B-splines and q-Peano kernels. Recently
q-analogue or quantum B-splines which generalize B-splines have been investigated
in several aspects in [4, 6, 17]. The work [4] finds out that q-B-splines are essentially
divided differences of q-truncated power functions. That is, the q-B-spline of degree
n is given by

Nk,n(t; q) = (tk+n+1 − tk)[tk, . . . , tk+n+1](x− t)n,q+ .

Although classical truncated power function has n multiple zero at t = x, q-
truncated power function has n distinct zeros for q 6= 0 or q 6= 1. This property
drastically alters certain characteristics of the basis functions. For example while
the basis functions forms partition of unity, the non-negativity property is lost. On
the other hand when q is near one, the additional real parameter q provides extra
flexibility to change the shape of basis functions. Sometimes this effect may be
useful and practical to match smoothness of piecewise curves and surfaces up to
some tolerance, see [6].
Now recall the fact that a divided difference f [t0, t1, . . . , tn+1] can be represented

as symmetric sum of f(tj), see [14],

f [t0, t1, . . . , tn+1] =

n+1∑
i=0

f(ti)/

n+1∏
j=0
j 6=i

(ti − tj). (3.3)

Hence we can readily derive

Nk,n(t; q) = (tk+n+1 − tk)
k+n+1∑
i=k

(ti − t)n,q+ /

k+n+1∏
j=k
j 6=i

1

(ti − tj)
.

The following theorem shows that q-B-splines are indeed the q-Peano kernels of
divided differences.

Theorem 6. Let f ∈ 1/q − Cn+1[a, b]. Then

f [t0, t1, . . . , tn+1] =
qn(n+1)/2

[n]q!

∫ b

a

N0,n(t; q)

tn+1 − t0

(
Dn+1
1/q f

)
(qnt)d1/qt.
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Proof. We first set L as

f [t0, t1, . . . , tn+1] =

n+1∑
i=0

f(ti)/

n+1∏
j=0
j 6=i

(ti − tj)

=L(f).

We see that for any fixed and distinct points {ti : i = 0, 1, . . . , n+1}, L is a bounded
linear operator. From the q-Peano Kernel Theorem 5, we have

L(f) =

∫ b

a

K(x, t)(Dn+1
1/q f)(q

nt)d1/qt,

where

K(x, t) =
qn(n+1)/2

[n]q!
L
(
(x− t)n,q+

)
.

This can be written as

K(x, t) =
qn(n+1)/2

[n]q!

n+1∑
i=0

(ti − t)n,q+ /

n+1∏
j=0
j 6=i

(ti − tj).

Thus

K(x, t) =
qn(n+1)/2

[n]q!

N0,n(t; q)

tn+1 − t0
.

Combining the last equation with (3.3) we derive

f [t0, t1, . . . , tn+1] =
qn(n+1)/2

[n]q!

∫ b

a

N0,n(t; q)

tn+1 − t0

(
Dn+1
1/q f

)
(qnt)d1/qt.

�

When q = 1, the above Theorem 3.3 reduces to its classical counterpart which
can be found in [14]. The work [4] extends several classical formulas of B-splines to
quantum B-splines.

4. Application to polynomial interpolation

The main idea in this section is to apply the q-Peano kernel Theorem on the
remainder of polynomial interpolation. Findings demonstrate the advantage of
using the q-Peano kernel Theorem where the classical theorem does not work. The
following theorem has weaker assumption than the classical one and thus gives
stronger results.

Theorem 7. Let f ∈ 1/q−Cn+1[a, b] and suppose t0, t1, . . . , tn ∈ [a, b] are distinct
points. For a fixed x ∈ [a, b], define the corresponding error functional by

L(f) = f(x)−
n∑
k=0

f(tk)lnk(x).
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Then

L(f) =
qm(m+1)/2

[m]q!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt, m = 0, 1, . . . , n.

Proof. Since
n∑
k=0

lnk(x) = 1, by the q-Peano kernel Theorem 5 we get,

[m]q!

qm(m+1)/2
K(x, t) = L

(
(x− t)m,q+

)
= (x− t)m,q+ −

n∑
k=0

(tk − t)m,q+ lnk(x)

=

n∑
k=0

[
(x− t)m,q+ − (tk − t)m,q+

]
lnk(x).

It follows that

[m]q!

qm(m+1)/2

b∫
a

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt =

x∫
a

{(
Dm+1
1/q f

)
(qmt)

n∑
k=0

[(x− t)m,q − (tk − t)m,q] lnk(x)
}
d1/qt

+

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt.

For each m 6 n, since the interpolation operator is a projection operator, it repro-
duces polynomials and hence the term in the first summation of the last equation
vanishes for f(x) = (x− t)m,q. Accordingly,

L(f) =

b∫
a

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt

=
qm(m+1)/2

[m]q!

n∑
k=0

lnk(x)

x∫
tk

(tk − t)m,q
(
Dm+1
1/q f

)
(qmt)d1/qt

for each m = 0, 1, . . . , n. �

Now, we give examples that show how we can find the q-Peano kernel.
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Example: Let

f(x) =



q3x3

6
, 0 6 x < 1

1

6

(
4− 4[3]qx+ 4q[3]qx2 − 3q3x3

)
, 1 6 x < 2

1

6

(
−44 + 20[3]qx− 8q[3]qx2 + 3q3x3

)
, 2 6 x < 3

−1
6
(−4 + x)(−4 + qx)(−4 + q2x), 3 6 x < 4

0, otherwise.

It is obvious that for q 6= 1, f ∈ C[0, 4] but f /∈ C1[0, 4]. However, one may check
that f ∈ 1/q − C2[0, 4]. Classical error functionals cannot work but we may find
the error via the q-Peano kernel theorem. Let t0 = 0, t1 = 2 and t2 = 4. Then it is
appropriate to take the error functional

L(f) = q

2∑
k=0

l2k(x)

x∫
tk

(tk − t)
(
D2
1/qf

)
(qt)d1/qt,

where l20(x) = 1
8 (x−2)(x−4), l21(x) = −

1
4x(x−4) and l22(x) =

1
8x(x−2). Hence

1

q
L(f) = l20(x)

x∫
0

(−t)
(
D2
1/qf

)
(qt)d1/qt+ l21(x)

x∫
2

(2− t)
(
D2
1/qf

)
(qt)d1/qt

+ l22(x)

x∫
4

(4− t)
(
D2
1/qf

)
(qt)d1/qt.

Now we will find the kernel. If 0 6 x < 2, then

K(x, t) =


−l20(x)t, 0 6 t < x

l21(x)(2− t)− l22(x)(4− t), x 6 t < 2

−l22(x)(4− t), 2 6 t < 4.
Similarly, for 2 6 x < 4,

K(x, t) =


−l20(x)t, 0 6 t < 2

−l20(x)t+ l21(x)(2− t), 2 6 t < x

l21(x)(2− t)− l22(x)(4− t), x 6 t < 4.
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One may notice that the function f(x) given above is indeed a cubic q-B-spline.
A more recent work [6] on the q-B-splines demonstrates that these functions prove
useful in several aspects including geometric modelling.

4.1. Trapezoidal rule in q-integration. Consider the 1/q-integral of a function
f on the interval [a, b]. We want to evaluate the q-integral approximately using
linear interpolation formula. Let us define the operator L as

L(f) =

b∫
a

f(x)d1/qx−
b− aq
[2]q

f(a)− bq − a
[2]q

f(b).

Since L(f) = 0 for all functions f ∈ P1 and for all f ∈ 1/q − C2[a, b], we have

L(f) =

b∫
a

(
D2
1/qf

)
(qt)K(x, t)d1/qt

and
K(x, t) = qL((x− t)+).

Thus,

K(x, t) =
q

[2]q
(b− t)(a− t), a 6 t 6 b.

Notice that K(x, t) < 0 on [a, b]. Then by applying Mean Value Theorem 2 we have

L(f) =
D2
1/qf(ξ)

[2]q!
qL(x2),

where

L(x2) =
−(b− a)(bq − a)(b− aq)

[3]q!

Therefore we find that

L(f) =
−q(b− a)(bq − a)(b− aq)

[3]q![2]q!
D2
1/qf(ξ), a < ξ < b.

While q = 1 reduces the above L(f) to the classical error functional of the trape-
zoidal rule, on the other hand it provides extra flexibility on the control of error
functional by changing the parameter q appropriately.

4.2. The remainder on quadrature. We now discuss error bounds of quadrature
formulas on remainders given by

Rn(f ; q) =

b∫
0

f(x)d1/qx−
n∑
k=0

γnkf(tnk).
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For q = 1, this formula is well-known in the context of numerical integration.
Assuming f ∈ 1/q − Cm+1[0, b] and Rn(f ; q) = 0 for all f ∈ Pm,m = 0, 1, . . . , n ,
we can apply the q-Peano kernel theorem. Hence

Rn(f ; q) =

b∫
0

K(x, t)
(
Dm+1
1/q f

)
(qmt)d1/qt.

By applying the q-Hölder inequality (2.1), we have

|Rn(f ; q)| 6

 b∫
0

∣∣∣(Dm+1
1/q f

)
(qmt)

∣∣∣p1 d1/qt


1
p1
 b∫
0

|K(x, t)|p2 d1/qt


1
p2

for all 1 6 p1, p2 6 ∞ and 1
p1
+ 1

p2
= 1. Since the second integral in the last

inequality is independent of f , by choosing coeffi cients and nodes appropriately we
can minimize the remainder Rn(f ; q).

(i) For p1 =∞ and p2 = 1,

|Rn(f ; q)| 6 ||Dm+1
1/q f ||∞

b∫
0

|K(x, t)|d1/qt.

(ii) For p1 = p2 = 2,

|Rn(f ; q)| 6 ||Dm+1
1/q f ||2

 b∫
0

|K(x, t)|2d1/qt


1
2

.

The q-Peano kernel K(x, t) in the latter inequality can be written as

K(x, t) = qm(m+3)/2
(b− t

q )
m+1,q

[m+ 1]q!
− s(t; q),

where s(t; q) =
qm(m+1)/2

[m]q!

n∑
k=0

γnk(tnk − t)
m,q
+ is a quantum spline with the knot

sequence {tn0, . . . , tnn}. Eventually, the problem of minimizing the q-integral[∫ b

0

|K(x, t)|p1d1/qt
] 1
p1

is equivalent to finding the best approximation of the polynomial

qm(m+3)/2
(b− t

q )
m+1,q

[m+ 1]q!

in t by a quantum spline with respect to the norm ||.||p1 .
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5. Conclusion

In this work, we investigated a generalization of classical Peano Kernel theorem
via quantum calculus. Applications to polynomial interpolation, q-integration and
quantum spline functions, and best approximation were also presented. In the
future, we aim to establish relations between q-Peano kernels and Green’s functions
using q-difference equations and quantum calculus.
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