Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 67, Number 2, Pages 306-316 (2018) DOI: 10.1501/Commual_0000000884 ISSN 1303-5991

http://communications.science.ankara.edu.tr/index.php?series=A1

FIXED POINTS FOR GENERALIZED $(\mathcal{F}, h, \alpha, \mu) - \psi$ -CONTRACTIONS IN b-METRIC SPACES

VILDAN OZTURK, DURAN TURKOGLU, AND ARSLAN HOJAT ANSARI

ABSTRACT. In this paper, we defined $(\mathcal{F}, h, \alpha, \mu) - \psi$ -contractions using pair of (\mathcal{F}, h) upper class functions for α -admissible and μ -subadmissible mappings. We proved some fixed point theorems for this type contractive mappings in b-metric spaces. Our results generalize α -admissible results in the literature.

1. Introduction

Definition 1. ([9]) Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is a b-metric if, for all $x, y, z \in X$, the following conditions are satisfied:

- (i) d(x,y) = 0 if and only if x = y,
- (ii) d(x, y) = d(y, x),
- (iii) $d(x,z) \le s [d(x,y) + d(y,z)]$.

In this case, the pair (X, d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of metric spaces, every metric is a b-metric with s=1.

Example 1. ([1]) Let (X,d) be a metric space and $\rho(x,y) = (d(x,y))^p$, where p>1 is a real number. Then ρ is a b-metric with $s=2^{p-1}$.

However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space. For example, if X = R is the set of real numbers and d(x,y) = |x-y| is usual Euclidean metric, then $\rho(x,y) = (x-y)^2$ is a b-metric on R with s=2.But is not a metric on R.

Definition 2. ([7]) Let $\{x_n\}$ be a sequence in a b-metric space (X, d).

Received by the editors: May 08, 2017; Accepted: September 09, 2017.

2010 Mathematics Subject Classification. 54H25, 47H10.

Key words and phrases. Fixed point, generalized $\alpha - \psi$ -contraction, b-metric space.

©2018 Ankara University.

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics Communications de la Faculté des Sciences de l'Université d'Ankara-Séries A1 Mathematics and Statistics.

- (a) $\{x_n\}$ is called b-convergent if and only if there is $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$.
- (b) $\{x_n\}$ is a b-Cauchy sequence if and only if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.

A b-metric space is said to be complete if and only if each b-Cauchy sequence in this space is b-convergent.

Proposition 1. ([7]) In a b-metric space (X,d), the following assertions hold:

- (p1) A b-convergent sequence has a unique limit.
- (p2) Each b-convergent sequence is b-Cauchy.
- (p3) In general, a b-metric is not continuous.

On the other hand the notion of $\alpha - \psi$ -contractive type mapping was introduced by Samet et al. [11],[17]. Also, see ([10],[12],[13-15])

Now we give some definitions that will be used throughout this paper.

A mapping $\psi: [0, \infty) \to [0, \infty)$ is called a comparison function if it is increasing and $\lim_{n\to\infty} \psi^n(t) = 0$ for all t > 0.

Lemma 1. ([5]) Let $\psi:[0,\infty)\to[0,\infty)$ is a comparison function then

- (a) each iterate ψ^n of ψ , $n \ge 1$, is also a comparison function,
- (b) ψ is continuous at t = 0,
- (c) $\psi(t) < t$ for all t > 0.

Definition 3. ([5]) A function $\psi : [0, \infty) \to [0, \infty)$ is said to be a (c)-comparison function if

- (c1) ψ is increasing,
- (c2) there exists $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_k, \text{ such that } \psi^{k+1}(t) \leq a\psi^k(t) + v_k, \text{ for } k \geq k_0 \text{ and any } t \in [0,\infty).$

Definition 4. ([6]) Let $s \ge 1$ be a real number. A function $\psi : [0, \infty) \to [0, \infty)$ is said to be a (b)-comparison function if

- (b1) ψ is monotonically increasing,
- (b1) there exists $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_k$, such that $s^{k+1}\psi^{k+1}(t) \leq as^k\psi^k(t) + v_k$, for $k \geq k_0$ and any $t \in [0,\infty)$.

When s = 1, (b)-comparison function reduces to (c)-comparison function. We denote by Ψ_b for the class of (b)-comparison function.

Lemma 2. ([4]) If $\psi : [0, \infty) \to [0, \infty)$ is a (b)-comparison function then one has the following:

(i) $\sum_{k=0}^{\infty} s^k \psi^k$ (t) converges to any $t \in \mathbb{R}^+$,

(ii) the function $b_s: [0,\infty) \to [0,\infty)$ defined by $b_s(t) = \sum_{k=0}^{\infty} s^k \psi^k(t)$, $t \in \mathbb{R}^+$, increasing and continuous at 0.

Any (b)-comparison function is a comparison function.

Definition 5. ([17]) For any nonempty set X, let $T: X \to X$ and $\alpha: X \times X \to X$ $[0,\infty)$ be mappings. T is called α -admissible if for all $x,y\in X$,

$$\alpha(x,y) \ge 1 \Rightarrow \alpha(Tx,Ty) \ge 1.$$

Definition 6. ([16])Let $T: X \to X$, $\mu: X \times X \to R^+$. We say T is an μ subadmissible mapping if

$$x, y \in X$$
, $\mu(x, y) \le 1 \implies \mu(Tx, Ty) \le 1$.

Bota et. al. in ([8]) gave the definition of $\alpha - \psi$ contractive mapping of type (b) in b-metric space which is a generalization of Definition 9.

Definition 7. Let (X,d) be a b-metric space and $T: X \to X$ be a given mapping. T is called an $\alpha - \psi$ -contractive mapping of type (b), if there exists two functions $\alpha: X \times X \to [0, \infty)$ and $\psi \in \Psi_b$ such that

$$\alpha(x,y) d(Tx,Ty) \le \psi(d(x,y)), \quad \forall x,y \in X.$$

Definition 8. ([2],[3]) We say that the function $h: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is a function of subclass of type I, if $x \ge 1 \Longrightarrow h(1,y) \le h(x,y)$ for all $y \in \mathbb{R}^+$.

Example 2. ([2],[3]) Define $h: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

- (a) $h(x,y) = (y+l)^x, l > 1$;
- (b) $h(x,y) = (x+l)^y, l > 1$;
- (c) $h(x,y) = x^n y, n \in \mathbb{N};$
- (d) h(x, y) = y;
- (e) $h(x,y) = \frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) y, \ n \in \mathbb{N};$
- (f) $h(x,y) = \left[\frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i}\right) + l\right]^{y}, l > 1, n \in \mathbb{N}$

for all $x, y \in \mathbb{R}^+$. Then h is a function of subclass of type I.

Definition 9. ([2],[3]) Let $h, \mathcal{F} \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$, then we say that the pair (\mathcal{F}, h) is an upper class of type I, if h is a function of subclass of type I and: (i) $0 \le s \le$ $1 \Longrightarrow \mathcal{F}(s,t) \le \mathcal{F}(1,t), \ (ii) \ h(1,y) \le \mathcal{F}(1,t) \Longrightarrow y \le t \ for \ all \ t,y \in \mathbb{R}^+.$

Example 3. ([2],[3]) Define $h, \mathcal{F} \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

- (a) $h(x,y) = (y+l)^x, l > 1$ and $\mathcal{F}(s,t) = st + l$;
- (b) $h(x,y) = (x+l)^y, l > 1$ and $\mathcal{F}(s,t) = (1+l)^{st}$;
- (c) $h(x,y) = x^m y$, $m \in \mathbb{N}$ and $\mathcal{F}(s,t) = st$;

- (d) h(x,y) = y and $\mathcal{F}(s,t) = t$; (d) $h(x,y) = \frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) y, n \in \mathbb{N} \text{ and } \mathcal{F}(s,t) = st$; (e) $h(x,y) = \left[\frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) + l \right]^{y}, l > 1, n \in \mathbb{N} \text{ and } \mathcal{F}(s,t) = (1+l)^{st}$

for all $x, y, s, t \in \mathbb{R}^+$. Then the pair (\mathcal{F}, h) is an upper class of type I.

Definition 10. ([2],[3]) We say that the function $h: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is a function of subclass of type II, if $x, y \ge 1 \Longrightarrow h(1, 1, z) \le h(x, y, z)$ for all $z \in \mathbb{R}^+$.

Example 4. ([2],[3]) Define $h: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

- (a) $h(x, y, z) = (z + l)^{xy}, l > 1$;
- (b) $h(x, y, z) = (xy + l)^z, l > 1;$
- (c) h(x, y, z) = z;
- (d) $h(x, y, z) = x^m y^n z^p, m, n, p \in \mathbb{N};$
- (e) $h(x, y, z) = \frac{x^m + x^n y^p + y^q}{3} z^k, m, n, p, q, k \in \mathbb{N}$

for all $x, y, z \in \mathbb{R}^+$. Then h is a function of subclass of type II.

Definition 11. ([2],[3])Let $h: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ and $\mathcal{F}: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$, then we say that the pair (\mathcal{F}, h) is an upper class of type II, if h is a subclass of type II and: (i) $0 \le s \le 1 \Longrightarrow \mathcal{F}(s,t) \le \mathcal{F}(1,t)$, (ii) $h(1,1,z) \le \mathcal{F}(s,t) \Longrightarrow z \le st$ for all $s, t, z \in \mathbb{R}^+$.

Example 5. ([2],[3]) Define $h: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ and $\mathcal{F}: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

- (a) $h(x, y, z) = (z + l)^{xy}, l > 1, \mathcal{F}(s, t) = st + l;$
- (b) $h(x, y, z) = (xy + l)^z, l > 1, \mathcal{F}(s, t) = (1 + l)^{st};$
- (c) h(x, y, z) = z, F(s, t) = st;
- (d) $h(x, y, z) = x^m y^n z^p, m, n, p \in \mathbb{N}, \mathcal{F}(s, t) = s^p t^p$ (e) $h(x, y, z) = \frac{x^m + x^n y^p + y^q}{3} z^k, m, n, p, q, k \in \mathbb{N}, \mathcal{F}(s, t) = s^k t^k$

for all $x, y, z, s, t \in \mathbb{R}^+$. Then the pair (\mathcal{F}, h) is an upper class of type II.

2. Main results

Definition 12. ([13])Let (X,d) be a b-metric space and $T: X \to X$ be a given mapping. T is called generalized $\alpha - \psi$ -contractive mapping of type (I), if there exists two functions $\alpha: X \times X \to [0, \infty)$ and $\psi \in \Psi_b$ such that for all $x, y \in X$

$$\alpha(x,y) d(Tx,Ty) \le \psi(M_s(x,y))$$

where,

$$M_{s}\left(x,y\right)=\max\left\{ d\left(x,y\right),d\left(Tx,x\right),d\left(Ty,y\right),\frac{d\left(Tx,y\right)+d\left(x,Ty\right)}{2s}\right\} .$$

Theorem 1. ([13])Let (X, d) be a complete b-metric space. Suppose that $T: X \to \mathbb{R}$ X be a generalized $\alpha - \psi$ -contractive mapping of type (I) and satisfies:

- (i) T is α -admissible
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$
- (iii) T is continuous.

Then T has a fixed point.

Definition 13. ([13])Let (X, d) be a b-metric space and $T: X \to X$ be a given mapping. T is called generalized $\alpha - \psi$ -contractive mapping of type (II), if there exists two functions $\alpha: X \times X \to [0, \infty)$ and $\psi \in \Psi_b$ such that for all $x, y \in X$

$$\alpha(x,y) d(Tx,Ty) \le \psi(N_s(x,y))$$

where,

$$N_{s}\left(x,y\right)=\max\left\{ d\left(x,y\right),\frac{d\left(Tx,x\right)+d\left(Ty,y\right)}{2s},\frac{d\left(Tx,y\right)+d\left(Ty,x\right)}{2s}\right\} .$$

Definition 14. Let (X,d) be a b-metric space and $T: X \to X$ be a given mapping. T is called generalized $(\mathcal{F}, h, \alpha, \mu)$ - ψ -contractive mapping of type (I), if there exists two functions $\alpha, \mu: X \times X \to [0, \infty)$ and $\psi \in \Psi_b$ such that for all $x, y \in X$

$$h(\alpha(x,y),d(Tx,Ty)) \le \mathcal{F}(\mu(x,y),\psi(M_s(x,y)))$$
(2.1)

where, pair (\mathcal{F}, h) is an upper class of type I and

$$M_{s}\left(x,y\right) = \max \left\{ d\left(x,y\right), d\left(Tx,x\right), d\left(Ty,y\right), \frac{d\left(Tx,y\right) + d\left(x,Ty\right)}{2s} \right\}.$$

Theorem 2. Let (X,d) be a complete b-metric space. Suppose that $T: X \to X$ be a generalized $(\mathcal{F}, h, \alpha, \mu)$ - ψ -contractive mapping of type (I) and satisfies:

- (i) T is α -admissible and μ -subadmissible
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1, \mu(x_0, Tx_0) \le 1$
- (iii) T is continuous.

Then T has a fixed point.

Proof. By assumption (ii), there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$, $\mu(x_0, Tx_0) \le 1$. Define the sequence $\{x_n\}$ in X by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N}$, then x_n is a fixed point of T.

Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$.

Since T is α -admissible, then

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1 \Longrightarrow \alpha(Tx_0, Tx_1) = \alpha(x_1, x_2) \ge 1.$$

 $\mu(x_0, x_1) = \mu(x_0, Tx_0) \le 1 \Longrightarrow \mu(Tx_0, Tx_1) = \mu(x_1, x_2) \le 1.$

By induction, we get for all $n \in \mathbb{N}$,

$$\alpha(x_n, x_n + 1) \ge 1$$
 , $\mu(x_n, x_n + 1) \le 1$. (2.2)

Using (2.1) and (2.2)

$$\begin{array}{lcl} h(1,d\left(x_{n},x_{n+1}\right)) & = & h(1,d\left(Tx_{n-1},Tx_{n}\right)) \\ & \leq & h(\alpha\left(x_{n-1},x_{n}\right),d\left(Tx_{n-1},Tx_{n}\right)) \\ & \leq & \mathcal{F}(\mu\left(x_{n-1},x_{n}\right),\psi(M_{s}\left(x_{n-1},x_{n}\right))) \\ & \leq & \mathcal{F}(1,\psi(M_{s}\left(x_{n-1},x_{n}\right))) \end{array}$$

$$d(x_n, x_{n+1}) \le \psi(M_s(x_{n-1}, x_n)). \tag{2.3}$$

where

$$M_{s}(x_{n-1}, x_{n}) = \max \left\{ \begin{array}{l} d(x_{n-1}, x_{n}), d(Tx_{n-1}, x_{n-1}), d(Tx_{n}, x_{n}), \\ \frac{d(Tx_{n-1}, x_{n}) + d(Tx_{n}, x_{n-1})}{2s}, \end{array} \right\},$$

$$= \max \left\{ \begin{array}{l} d(x_{n-1}, x_{n}), d(x_{n}, x_{n-1}), d(x_{n+1}, x_{n}), \\ \frac{d(x_{n}, x_{n}) + d(x_{n+1}, x_{n-1})}{2s}, \end{array} \right\},$$

$$= \max \left\{ \begin{array}{l} d(x_{n-1}, x_{n}), d(x_{n+1}, x_{n}), \\ \frac{s[d(x_{n+1}, x_{n}) + d(x_{n}, x_{n-1})]}{2s} \end{array} \right\},$$

$$\leq \max \left\{ d(x_{n-1}, x_{n}), d(x_{n+1}, x_{n}) \right\}.$$

If $M_s(x_{n-1}, x_n) = d(x_n, x_{n+1})$, then from (2.3) and definition of ψ ,

$$d(x_n, x_{n+1}) \le \psi(d(x_n, x_{n+1})) < d(x_n, x_{n+1})$$

a contradiction. Thus $M_s(x_{n-1}, x_n) = d(x_{n-1}, x_n)$. Hence,

$$d(x_n, x_{n+1}) \le \psi(d(x_{n-1}, x_n)) < d(x_{n-1}, x_n)$$

for all $n \ge 1$. If operations are continued in this way,

$$d(x_n, x_{n+1}) \le \psi^n (d(x_0, x_1)).$$
 (2.4)

Thus, for all $p \geq 1$,

$$\begin{split} d\left(x_{n},x_{n+p}\right) & \leq & sd\left(x_{n},x_{n+1}\right) + s^{2}d\left(x_{n+1},x_{n+2}\right) + \dots \\ & + s^{p-1}d\left(x_{n+p-2},x_{n+p-1}\right) + s^{p}d\left(x_{n+p-1},x_{n+p}\right) \\ & \leq & s\psi^{n}\left(d\left(x_{0},x_{1}\right)\right) + s^{2}\psi^{n+1}\left(d\left(x_{0},x_{1}\right)\right) + \dots \\ & + s^{p-1}\psi^{n+p-2}\left(d\left(x_{0},x_{1}\right)\right) + s^{p}\psi^{n+p-1}\left(d\left(x_{0},x_{1}\right)\right) \\ & = & \frac{1}{s^{n-1}}[s^{n}\psi^{n}\left(d\left(x_{0},x_{1}\right)\right) + s^{n+1}\psi^{n+1}\left(d\left(x_{0},x_{1}\right)\right) + \dots \\ & + s^{p-n-2}\psi^{p-n-2}\left(d\left(x_{0},x_{1}\right)\right) + s^{p+n-1}\psi^{p+n-1}\left(d\left(x_{0},x_{1}\right)\right)]. \end{split}$$

Denoting $S_n = \sum_{k=n}^{\infty} s^k \psi^k \left(d\left(x_0, x_1 \right) \right), n \geq 1$, we obtain

$$d(x_n, x_{n+p}) \le \frac{1}{s^{n-1}} [S_{n+p-1} - S_{n-1}]$$
(2.5)

for $n \ge 1$, $p \ge 1$. From Lemma 2, we conclude that the series $\sum_{k=0}^{\infty} s^k \psi^k \left(d\left(x_0, x_1\right) \right)$ is convergent. Thus, there exists

$$S = \lim_{n \to \infty} S_n \in [0, \infty)$$
.

Regarding $s \ge 1$ and by (2.5) $\{x_n\}$ is a Cauchy sequence in b-metric space (X, d). Since (X, d) is complete, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. Using continuity of T,

$$x_{n+1} = Tx_n \to Tx^*$$

as $n \to \infty$. By the uniqueness of the limit, we get $x^* = Tx^*$. Hence x^* is a fixed point of T.

Definition 15. Let (X, d) be a b-metric space and $T: X \to X$ be a given mapping. T is called generalized $(\mathcal{F}, h, \alpha, \mu)$ - ψ -contractive mapping of type (II), if there exists two functions $\alpha: X \times X \to [0, \infty)$ and $\psi \in \Psi_b$ such that for all $x, y \in X$

$$h(\alpha(x,y),d(Tx,Ty)) \le \mathcal{F}(\mu(x,y),\psi(N_s(x,y)))$$
(2.6)

where, pair (\mathcal{F}, h) is an upper class of type I and

$$N_{s}\left(x,y\right)=\max\left\{ d\left(x,y\right),\frac{d\left(Tx,x\right)+d\left(Ty,y\right)}{2s},\frac{d\left(Tx,y\right)+d\left(Ty,x\right)}{2s}\right\} .$$

Theorem 3. Let (X,d) be a complete b-metric space. Suppose that $T: X \to X$ be a generalized $(\mathcal{F}, h, \alpha, \mu)$ - ψ -contractive mapping of type (II) and satisfies:

- (i) T is α -admissible, μ -subadmissible
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1, \mu(x_0, Tx_0) \le 1$
- (iii) T is continuous.

Then T has a fixed point.

Proof. By assumption (ii), there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$, $\mu(x_0, Tx_0) \le 1$. Define the sequence $\{x_n\}$ in X by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N}$, then x_n is a fixed point of T.

Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$.

Since T is α -admissible, then

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1 \Longrightarrow \alpha(Tx_0, Tx_1) = \alpha(x_1, x_2) \ge 1,$$

 $\mu(x_0, x_1) = \mu(x_0, Tx_0) < 1 \Longrightarrow \mu(Tx_0, Tx_1) = \mu(x_1, x_2) < 1.$

By induction, we get for all $n \in \mathbb{N}$,

$$\alpha(x_n, x_n + 1) > 1$$
 , $\mu(x_n, x_n + 1) < 1$.

Using (2.6)

$$\begin{array}{lcl} h(1,d\left(x_{n},x_{n+1}\right)) & = & h(1,d\left(Tx_{n-1},Tx_{n}\right)) \\ & \leq & h(\alpha\left(x_{n-1},x_{n}\right),d\left(Tx_{n-1},Tx_{n}\right)) \\ & \leq & \mathcal{F}(\mu\left(x_{n-1},x_{n}\right),\psi(N_{s}\left(x_{n-1},x_{n}\right))) \\ & \leq & \mathcal{F}(1,\psi(N_{s}\left(x_{n-1},x_{n}\right))) \\ \Longrightarrow & \end{array}$$

$$d(x_n, x_{n+1}) \le \psi(N_s(x_{n-1}, x_n)) \le \psi(M_s(x, y)).$$

The rest of proof is evident due to Theorem 2.

In the following two theorems we are able to remove the continuity condition for the $\alpha - \psi$ contractive mappings of type (I) and type (II).

Theorem 4. Let (X,d) be a complete b-metric space. Suppose that $T: X \to X$ be a generalized $\alpha - \psi$ -contractive mapping of type (I) and satisfies:

- (i) T is α -admissible,
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$, as $n \to \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \ge 1$, for all k.

Then T has a fixed point.

Proof. Following the proof of Theorem 2, we know that the sequence $\{x_n\}$ defined by $x_{n+1} = Tx_n$ for all $n \ge 0$, is Cauchy and converges to some $u \in X$.

We shall show that Tu = u. Suppose on the contrary that d(Tu, u) > 0. From (2.2) and (iii), there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, u) \ge 1$ for all k. By (2.1)

$$\begin{array}{lcl} h(1,d\left(x_{n(k)+1},Tu\right)) & = & h(1,d\left(Tx_{n(k)},Tu\right)) \\ & \leq & h(\alpha\left(x_{n(k)},u\right),d\left(Tx_{n(k)},Tu\right)) \\ & \leq & \mathcal{F}(\mu\left(x_{n(k)},u\right),\psi(M_s\left(x_{n(k)},u\right))) \\ & \leq & \mathcal{F}(1,\psi(M_s\left(x_{n(k)},u\right))) \\ \Longrightarrow & \end{array}$$

$$d\left(x_{n(k)+1}, Tu\right) \le \psi\left(M_s\left(x_{n(k)}, u\right)\right),\tag{2.7}$$

where

$$M_{s}(x_{n(k)}, u) = \max \left\{ \begin{array}{c} d(x_{n(k)}, u), d(Tx_{n(k)}, x_{n(k)}), d(Tu, u), \\ \frac{d(Tx_{n(k)}, u), d(Tu, x_{n(k)})}{2s} \end{array} \right\}.$$

As $k \to \infty$, $\lim_{k \to \infty} M_s(x_{n(k)}, u) = d(Tu, u)$. In (2.7), as $k \to \infty$

$$d(u, Tu) \le \psi(d(u, Tu)) < d(u, Tu)$$

which is a contradiction. Hence, u = Tu and u is a fixed point of T.

Theorem 5. Let (X,d) be a complete b-metric space. Suppose that $T: X \to X$ be a generalized $\alpha - \psi$ -contractive mapping of type (II) and satisfies:

- (i) T is α -admissible,
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$,
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in X$, as $n \to \infty$, then there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \ge 1$, for all k.

then T has a fixed point.

Proof. Following the proof of Theorem 2.5, we know that the sequence $\{x_n\}$ defined by $x_{n+1} = Tx_n$, for all $n \ge 0$, is Cauchy and converges to some $u \in X$.

We shall show that Tu = u. Suppose on the contrary that d(Tu, u) > 0. From (2.2) and (iii), there exists a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, u) \ge 1$ for all k. Applying (2.6),

$$\begin{array}{lcl} h(1,d\left(x_{n(k)+1},Tu\right)) & = & h(1,d\left(Tx_{n(k)},Tu\right)) \\ & \leq & h(\alpha\left(x_{n(k)},u\right),d\left(Tx_{n(k)},Tu\right)) \\ & \leq & \mathcal{F}(\mu\left(x_{n(k)},u\right),\psi(N_s\left(x_{n(k)},u\right))) \\ & \leq & \mathcal{F}(1,\psi(N_s\left(x_{n(k)},u\right))) \\ & \Longrightarrow & \end{array}$$

$$d\left(x_{n(k)+1}, Tu\right) < \psi\left(N_s\left(x_{n(k)}, u\right)\right) \tag{2.8}$$

where

$$N_s\left(x_{n(k)}, u\right) = \max \left\{ \begin{array}{c} d\left(x_{n(k)}, u\right), \frac{d\left(Tx_{n(k)}, x_{n(k)}\right) + d\left(Tu, u\right)}{2s}, \\ \frac{d\left(Tx_{n(k)}, u\right), d\left(Tu, x_{n(k)}\right)}{2s} \end{array} \right\}.$$

As $k \to \infty$, $\lim_{k \to \infty} N_s(x_{n(k)}, u) = \frac{d(Tu, u)}{2s}$, for $s \ge 1$. In (2.8), as $k \to \infty$

$$d(u,Tu) \le \psi\left(\frac{d(Tu,u)}{2s}\right) < \frac{d(Tu,u)}{2s}$$

which is a contradiction. Hence, u = Tu and u is a fixed point of T.

Example 6. Let $X = (0, \infty)$ endowed with b-metric

$$d: X \times X \to R^+, \ d(x,y) = (x-y)^2$$

with constant s=2. (X,d) is a complete b-metric space. Let the functions $T:X\to X$, $\alpha:X\times X\to [0,\infty)$ and $\eta:X\times X\to [0,\infty)$ be defined by

$$T(x) = \begin{cases} \frac{x+1}{4}, & x \in (0,1] \\ 2x, & x > 1 \end{cases},$$

$$\alpha(x,y) = \begin{cases} 1, x \in (0,1] \\ 0, otherwise, \end{cases}$$

$$\eta(x,y) = \begin{cases} \frac{1}{2}, x \in (0,1] \\ 1, otherwise. \end{cases}$$

Clearly, T is α -admissible, continuous and η -subadmissible. Let $h,\mathcal{F} \colon R^+ \times R^+ \to R$ be defined by;

 $h(x,y)=(y+l)^x, l>1$ and $\mathcal{F}(s,t)=st+l.$ $(\mathcal{F},h,\alpha,\eta)-\psi$ -contraction of type (I) is satisfied with $\psi(t)=\frac{t}{2}$, for all $t\geq 0$.

Let $x, y \in X$ if $\alpha(x, y) \ge 1$ and $\eta(x, y) \ge 1$, then $x, y \in (0, 1]$. Thus

$$h(\alpha(x,y) d(Tx,Ty)) = h\left(1, \left(\frac{x+1}{4} - \frac{y+1}{4}\right)^2\right) = \frac{1}{16} (x-y)^2 + l$$

$$\leq \frac{1}{2} \cdot \frac{1}{2} (x-y)^2 + l = \mathcal{F}(\eta(x,y), \psi(d(x,y)))$$

$$\leq \mathcal{F}(\eta(x,y), \psi(M_s(x,y)).$$

Then all conditions of Theorem 5 are satisfied. $\frac{1}{3}$ is fixed point of T.

Corollary 1. Let (X,d) be a complete b-metric space and $T: X \to X$ be continuous mapping. Suppose that there exists a function $\psi \in \Psi_b$ such that

$$d\left(Tx, Ty\right) \le \psi\left(M_s\left(x, y\right)\right)$$

for all $x, y \in X$, then T has a fixed point.

Similarly, be taken $\alpha(x,y) = 1$ in Theorem 4, the following result is obtained.

Corollary 2. Let (X,d) be a complete b-metric space and $T: X \to X$ be continuous mapping. Suppose that there exists a function $\psi \in \Psi_b$ such that

$$d\left(Tx,Ty\right) \leq \psi\left(N_s\left(x,y\right)\right)$$

for all $x, y \in X$, then T has a fixed point.

References

- Aghajani, A., Abbas M., and Roshan, J.R., Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca (2014), 64(4), 941–960.
- [2] Ansari, A. H., Note on "α-admissible mappings and related fixed point theorems", The 2nd Regional Conference On Mathematics And Applications, PNU (2014), 373-376.
- [3] Ansari, A.H. and Shukla, S., Some fixed point theorems for ordered F-(F,h)-contraction and subcontractions in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud. (2016), 9(1), 37-53.
- [4] Berinde, V., Generalized contractions in quasimetric spaces, in Seminar on Fixed Point Theory, BabesÂ-Bolyai University, Cluj-Napoca, Romania (1993), 93(3), 3-9,
- [5] Berinde, V., Contractii Generalizate ÅŸi Aplicatii, Editura Cub Press, Baia Mare (1997),
 22
- [6] Berinde, V., Sequences of operators and fixed points in quasimetric spaces, Mathematica (1996), 41(4), 23-27.
- [7] Boriceanu, M., Bota, M. and Petrusel, A., Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. (2010), 8, 367-377.
- [8] Bota, M.F., Karapinar, E. and Mlesnite, O., Ulam-Hyers stability results for fixed point problems via $\alpha \psi$ -contractive mapping in b-metric space, Abstract and Applied Analysis (2013), 2013, Article ID 825293.
- [9] Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena (1998), 46(2), 263-276.
- [10] Huang, H., Ansari, A.H., Dolićanin-Dekić, D. and Radenović, S., Some fixed point results for rational type and subrational type contractive mappings, Acta Univ. Sapientiae Mathematica (2017), 9(1), 185-201.

- [11] Karapinar, E. and Samet, B., Generalized $\alpha \psi$ —contractive type mappings and related fixed point theorems with applications, Abstract And Applied Anal. (2012), Article ID 793486.
- [12] Mınak, G. and Altun, I.,On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings, Nonlinear Analysis: Modelling and Control (2016), 21(5), 673–686.
- [13] Ozturk, V. and Turkoglu, D., Fixed Points For Generalized $\alpha \psi$ -contractions in b-metric spaces, J.Nonlinear Convex Anal. (2015), 16(10), 2059-2066.
- [14] Radenović, S., Došenović, T., Ozturk, V. and Dolićanin, Ć., A note on the paper: "Nonlinear integral equations with new admissibility types in b-metric spaces", Journal Of Fixed Point Theory And Appl. DOI 10.1007/s11784-017-0416-2,
- [15] Rezapour, S. and Samei, M. E., Some fixed point results for α φ- contractive type mappings on intuitionistic fuzzy metric spaces, *Journal of Advanced Mathematical Studies* (2013), 7(1), 176-181.
- [16] Salimi, P. Latif, A.and Hussain, N., Modifed α-contractive mappings with applications, Fixed Point Theory and Applications (2013), 2013, Article ID 151.
- [17] Samet, B., Vetro, C. and Vetro, P., Fixed point theorems for $\alpha \psi$ contractive type mappings, Nonlinear Analysis Theory, Methods, Applications (2012), 75(4), 2154-2165.

Current address: Vildan Ozturk: Department of Mathematics and Sciences Education, Faculty of Education, Artvin Coruh University, Artvin, Turkey

E-mail address: vildanozturk84@gmail.com

ORCID Address: http://orcid.org/0000-0001-5825-2030

Current address: Duran Turkoglu: Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey.

E-mail address: dturkoglu@gazi.edu.tr

ORCID Address: http://orcid.org/0000-0002-8667-1432

Current address: Arslan H. Ansari: Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

 $E ext{-}mail\ address:$ analsisamirmath20gmail.com

ORCID Address: http://orcid.org/0000-0002-5527-1284