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Abstract

This is a survey of results mainly in metric fixed point theory, including the Darbo–Sadovskĭi theorem
using measures of noncompactness. Various different proofs are presented for some of the most important
historical results. Furthermore many examples and remarks are added to illustrate the topics of the paper.
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1. Introduction

Fixed point theory is a major branch of nonlinear functional analysis because of its wide applicability.
Numerous questions in physics, chemistry, biology, and economics lead to various nonlinear differential and
integral equations.

There are two fundamental results, namely Banach’s fixed point theorem and Darbos’s fixed point
theorem

The classical Banach contraction principle [2] of Banach’s theorem is one of the most useful results in
metric fixed point theory. Due to its applications in mathematics and other related disciplines, this principle
has been generalized in many directions. Extensions of Banach’s contraction principle have been obtained
either by generalizing the distance properties of the underlying domain or by modifying the contractive
condition on the mappings.

Darbo’s fixed point theorem [17] of 1955 uses the condensing principle connected to Kuratowski’s measure
of noncompactness α [33] of 1930; it is a very important generalization of Schauder’s fixed point theorem,
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Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 65

and includes the existence part of Banach’s fixed point theorem. Other measures of noncompactness were
introduced by Goldenštein, Goh’berg and Markus [GGM1], the ball or Hausdorff measure of noncompactness,
which was later studied by Goldenštein and Markus [GGM2] in 1968, Istrăţesku [27] in 1972, and others.
Apparently Goldenštein, Goh’berg and Markus were not aware of Kuratowski’s and Darbo’s work. It is
surprising that Darbo’s theorem was almost never noticed and applied until in the 1970’s mathematicians
working in functional analysis, operator theory and differential equations started to apply Darbo’s theorem
and developed the theory connected with measures of noncompactness. These measures of noncompactness
are studied in detail and their use is discussed, for instance, in the monographs [AKP, 53, 3, 28, 34, 35].

2. Banach contraction principle

In this section we are going to study the famous Banach fixed point theorem, usually called the Banach
contraction principle. This principle from 1922 marks the beginning of the fixed point theory in metric
spaces.

We also present several different proofs of Banach’s contraction principle

Definition 2.1. Let (X, d) be a metric space. A mapping f : X → X is a contraction if there exists some
q ∈ [0, 1) such that

d(fx, fy) ≤ q · d(x, y), for all x, y ∈ X. (2.1)

We observe that every contraction is a continuous mapping. The following theorem shows the existence
and uniqueness of a fixed point of an arbitrary contraction on a complete metric space. It is important to
mention that there exists a continuous mapping without fixed point property.

Theorem 2.2 (Banach; Banach contraction principle).
If (X, d) is a complete metric space and f : X → X is a contraction, then the mapping f has a unique fixed
point in X.

Proof. Let x0 ∈ X be arbitrary. We define a sequence (xn) in X such that xn = f(xn−1) for (n ∈ N,
and prove that (xn) is a Cauchy sequence, hence convergent in the complete metric space X.
We obtain for any n ∈ N,

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ q · d(xn−1, xn)

≤ · · · ≤ qn · d(x0, x1),

and therefore, if m > n,

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

qkd(x0, x1) ≤ qn

1− q
d(x0, x1). (2.2)

Since 0 ≤ q < 1, it follows that limn,m→∞ d(xn, xm) = 0, hence (xn) is a Cauchy sequence. Moreover, X is
a complete metric space, and so there exists some x ∈ X such that limn→∞ xn = x.
We show f(x) = x by estimating d(xn, f(x)) for n ∈ N;

0 ≤ d(xn, f(x)) = d(f(xn−1), f(x)) ≤ q · d(xn−1, x),

implies limn→∞ d(xn, f(x)) = 0, and by the uniqueness of the limit of any convergent sequence in a metric
space, we conclude f(x) = x.
It remains to prove that such x is uniquely determined. We assume f(y) = y for some y ∈ X, y 6= x, then

d(x, y) = d(f(x), f(y)) ≤ q · d(x, y)

and (1− q)d(x, y) ≤ 0, which contradicts our assumption because 0 < 1− q ≤ 1. �
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Corollary 2.3. Let f : X → X be a q–contraction on a complete metric space X and z ∈ X be the fixed
point of the function f . Then we have

(1) the sequence (fn(x)) converges for each x ∈ X and converges to z;

(2) d(x, z) ≤ 1/(1− q) · d(x, f(x));

(3) d(fn(x), z) ≤ qn/(1− q) · d(x, f(x));

(4) d(fn+1(x), z) ≤ q · d(f(x), x);

(5) d(fn+1(x), z) ≤ q/(1− q) · d(fn(x), fn+1(x)).

Proof. We only prove the second and third condition, the proofs of the other conditions are analogous.

(2) d(x, z) = lim
n→∞

d(x, fn(x))

≤ lim
n→∞

n−1∑
k=0

d(fk(x), fk+1(x))

=

∞∑
k=0

d(fk(x), fk+1(x))

≤
∞∑
k=0

qkd(x, f(x))

=
1

1− q
· d(x, f(x))

(3) It follows from f(z) = z, that

fn(z) = z, and from the first part of the prove, we have

d(fn(x), z) = d(fn(x), fn(z)) ≤ qnd(x, z) ≤ qn

1− q
· d(x, f(x)). �

Remark 2.4. There exist various approaches to the Banach fixed point theorem, but the proof above gives
a method of how to find the fixed point for a contraction f . It is also known as Picard’s iteration method or
fixed point iteration. It is based on the idea of defining a sequence of successive iterations. We start with
any x0 ∈ X and define xn = f(xn−1) for n ∈ N. The proof presented above guarantees the existence of a
limit limn→∞ xn = x ∈ X such that f(x) = x. If we let m→∞ in (2.2), then

d(xn, x) ≤ qn

1− q
d(x0, x1),

and this is an estimate for the error made by approximating the solution x by the n−th iteration xn.

We now present a few proofs of Theorem 2.2.
Proof of Theorem 2.2 (Joseph and Kwack [29]). Let c = inf{d(x, f(x)) : x ∈ X}. If c > 0, then c/q > c

and there exists x ∈ X such that

d(f(x), f(f(x))) ≤ q · d(x, f(x)) < c,

which is a contradiction. Hence we must have c = 0. Let (xn) be a sequence in X such that d(xn, f(xn))→ 0
as n→∞. We show that (xn) is a Cauchy sequence, since

d(xn, xm) ≤ d(xn, f(xn)) + d(f(xn), f(xm)) + d(f(xm, xm)

implies
(1− q)d(xn, xm) ≤ d(xn, f(xn)) + d(xm, f(xm)).
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Hence there exists p ∈ X such that limn→∞ xn = p, and limn→∞ d(xn, f(xn)) = 0 implies lim f(xn) = p. It
follows from d(f(xn), f(p)) ≤ qd(xn, p) that limn→∞ f(xn) = f(p), hence f(p) = p. The uniqueness of the
fixed point 0f the function f follows from the contractive condition of f . �

Proof of Theorem 2.2 (Palais [42]). Let x1, x2 ∈ X. Then we have

d(x1, x2) ≤ d(x1, f(x1)) + d(f(x1), f(x2)) + d(f(x2), x2),

that is,
(1− q)d(x1, x2) ≤ d(x1, f(x1)) + d(f(x2), x2).

Hence we obtain the fundamental contraction inequality

d(x1, x2) ≤ 1

1− q
· [d(x1, f(x1)) + d(x2, f(x2))], for all x1, x2 ∈ X. (2.3)

If x1 and x2 are fixed points of the function f , then it follows from (2.3) that x1 = x2, that is, the contraction
can have at most one fixed point.
Let x ∈ X, n,m ∈ N, and x1 = fn(x) and x2 = fm(x). We obtain from (2.3)

d(fn(x), fm(x)) ≤ 1

1− q
· [d(fn(x), f(fn(x))) + d(fm(x), f(fm(x)))] (2.4)

≤ qn + qm

1− q
· d(x, f(x)). (2.5)

Since 0 ≤ q < 1, it follows that limn→∞ q
n = 0, hence d(fn(x), fm(x)) → 0 as n → ∞ and m → ∞.

Therefore the Cauchy sequence (fn(x)) converges, that is, there exists p ∈ X such that limn f
n(x) = p.

Because of the continuity of the function f , we have f(p) = f(limn f
n(x)) = limn f(fn(x)) = p. We note

that letting m→∞ in (2.4), we obtain

d(fn(x), p) ≤ qn

1− q
· d(x, f(x)). � (2.6)

Proof of Theorem 2.2 (Boyd and Wong [6]). We define ϕ(x) = d(x, f(x)) for x ∈ X. Since f is a
contraction, the function ϕ : X → R is continuous and ϕ(fn(x))→ 0 as n→∞, for each x ∈ X. We put

Cm =

{
x ∈ X : ϕ(x) ≤ 1

m

}
.

It follows from the conditions above that Cm is a closed and nonempty subset of X for each m = 1, 2, . . . .
Now we estimate the diameter of the set Cm. Let x, y ∈ Cm. Then we have

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(f(y), y) ≤ 2

m
+ qd(x, y),

hence

diamCm ≤
2

m(1− q)
.

Since each Cm is a closed, nonempty subset of X, C1 ⊃ C2 ⊃ C3 ⊃ . . . and diamCm → 0 as m → ∞, it
follows by Cantor’s intersection theorem

⋂
mCm = {ξ}.

Since f(Cm) ⊂ Cm for each m, it follows that ξ is a fixed point of the function f , and clearly the fixed point
is unique. (We note f({ξ}) = f(

⋂
mCm) ⊂

⋂
m f(Cm) ⊂

⋂
mCm = {ξ}. )

We have for each x ∈ X

d(fn(x), ξ) = d(fn(x), fn(ξ)) ≤ qnd(x, ξ)→ 0 (n→∞).

Since
d(x, ξ) ≤ d(x, f(x)) + d(f(x), f(ξ)) ≤ d(x, f(x)) + qd(x, ξ),
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it follows that

d(x, ξ) ≤ d(x, f(x))

1− q
.

Hence we again have the estimate

d(fn(x), ξ) ≤ qn

1− q
· d(x, f(x)). � (2.7)

Corollary 2.5. Let S be a closed subset of a complete metric space (X, d) and f : S → S be a contraction.
For an arbitrary point x0 ∈ S, the iterative sequence xn = f(xn−1) (n ∈ N) converges to the fixed point of
the mapping f .

The following example will show that the statement in Corollary 2.5 does not hold without the assumption
that the set S is closed, in general.

Example 2.6. Let d be the natural metric on R defined by d(x, y) = |x − y| for all x, y ∈ R, and S =
B0(1) = {x ∈ R : |x| < 1}. Then the mapping

f : S → S with f(x) =
x+ 1

2
,

is a contraction without a fixed point in S.

Banach’s fixed point theorem has wide and diverse applications, for instance, in solving various kinds of
equations, inclusions, etc.

Example 2.7. If X is a Banach space, A,B ∈ B(X), A is an invertible operator and ‖B −A‖ · ‖A−1‖ < 1,
then the invertibility of B follows from Banach’s fixed point theorem.

Proof. It is sufficient to show that, for any y ∈ X, the equation Bx = y has a unique solution x ∈ X.
We choose an arbitrary point y in X. If Bx0 = y for some x0 ∈ X, then

y = Bx0 = (B −A)x0 +Ax0 and A−1y = A−1(B −A)x0 + x0.

We put z = A−1y and C = A−1(B −A). Then we have x0 = z − Cx0.
The idea is to show that the function f : X → X defined by f(x) = z − Cx for x ∈ X is a contraction and
x0 is its fixed point.
The following inequalities hold for all x, y ∈ X

‖f(x)− f(y)‖ = ‖C(x− y)‖ ≤ ‖A−1‖ · ‖B −A‖ · ‖x− y‖.

Since ‖A−1‖ · ‖B −A‖ < 1, f is a contraction and x0 is the unique fixed point of f .
Based on a few elements of an iterative sequence (fn(x)),

z − Cx, z − C(z − Cx) = z − Cx+ C2x, z − Cx+ C2x− C3x, . . .

we may assume, and then easily prove that, because of ‖C‖ < 1, this sequence converges to z−Cx+C2x−
C3x+ · · · .
We observe that if A = I and ‖C‖ < 1, then I − C + C2 − C3 + · · · is an inverse of I + C. �

The following corollary shows a relation between fn and f in the case when fn is a contraction.

Corollary 2.8 (Bryant [10]). If (X, d) is a complete metric space and f : X → X is a mapping such that
fn is a contraction for some n ≥ 1, then f has a unique fixed point in X.
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Proof. By Banach’s fixed point theorem, there exists a unique z ∈ X such that fn(z) = z. Since
fn(f(z)) = f(fn(z)) = f(z), it follows that f(z) = z. Every fixed point of f is, at the same time, a fixed
point of fn, thus z is the unique fixed point of f . �

As observed in [10], the mapping f mentioned in Corollary 2.8 need not be continuous as in Theorem
2.2.

Example 2.9 (Bryant [10]). We define f : [0, 2] → [0, 2] by f(x) = 1 for x ∈ [0, 1), and f(x) = 2 for
x ∈ [1, 2]. Then f2(x) = 2 for x ∈ [0, 2] and f2 : [0, 2]→ [0, 2] is a contraction although f is not continuous.

Since the proof of Banach’s theorem is based on an iterative sequence for a point x ∈ X, the next
reasonable step in the research was to check local properties and modify this result.

Theorem 2.10. Let (X, d) be a complete metric space and Br(x0) = {x ∈ X : d(x, x0) < r} be the open
ball in X for some x0 ∈ X and r > 0. Also let f : Br(x0)→ X be a contraction, that is,

d(f(x), f(y)) ≤ q · d(x, y), (x, y ∈ Br(x0)) for some q ∈ [0, 1) (2.8)

and
d(f(x0), x0) < (1− q)r. (2.9)

Then the mapping f has a unique fixed point in Br(x0).

Proof. We choose r0 ∈ [0, r) such that (2.9) holds. Then f : Br0(x0) → Br0(x0), where Br0(x0) is the
closure of Br0(x0), since, for any x ∈ Br0(x0),

d(f(x), x0) ≤ d(f(x), f(x0)) + d(f(x0), x0)

≤ q · d(x, x0) + (1− q)r0 ≤ r0.

Hence f has a unique fixed point z ∈ Br0(x0). It easily follows from (2.8) that z is the unique fixed point
of f in Br(x0). �

3. Darbo’s fixed point theorem

If the contractive condition of f in Theorem 2.2 is relaxed, that is, if we consider so–called nonexpansive
mappings f , that is, functions f : X → X satisfying

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X,

then Banach’s fixed point theorem need no longer hold.
In 1965, Browder proved a fixed point theorem for nonexpansive maps.

Theorem 3.1 (Browder’s fixed point theorem). Let X be a Banach space, C be a convex and bounded
subset of X and T : C → C be a nonexpansive map. If X is either a Hilbert space, or a uniformly convex
or a reflexive Banach space, then T has a fixed point.

This result uses the convexity hypothesis which is more usual in topological fixed point theory, and the
geometric properties of Banach spaces commonly used in linear functional analysis.

The following Brouwer fixed point theorem should be considered in a different setting.

Theorem 3.2 (Brouwer’s fixed point theorem). Every continuous map from the closed unit ball of Rn into
itself has a fixed point.

Remark 3.3. In the case of one variable, the Brouwer fixed point theorem is the following:
Every continuous function of the interval [−1, 1] onto itself has a fixed point.
or equivalently
Every continuous function of the interval [−1, 1] onto itself intersects the main diagonal at some point.
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One cannot expect uniqueness of the fixed point in Brouwer’s theorem (Theorem 3.2), in general. So we
must consider the non–empty set F(f) of fixed points of a function f . If f is continuous, then the set

F(f) = ker(f − id) = (f − id)−1({0}), where id is the identity,

is closed. It is natural to study what other properties the set F(f) has. The following theorem shows that
no other special features can be inferred, since we will see that for any given non–empty closed subset of
the closed unit ball B

n
1 (0) of Euclidean Rn there exists a continuous function f : B

n
1 (0)→ B

n
1 (0) which has

F(f) as the set of its fixed points.

Theorem 3.4. Let F 6= ∅ be a closed subset of B
n
1 (0). Then there exists a continuous function f : B

n
1 (0)→

B
n
1 (0) with F = F(f).

Proof. For every x ∈ Bn
1 (0), let d(x, F ) = inf{‖x− y‖ : y ∈ F}. Obviously this function is continuous.

We define the function f : B
n
1 (0)→ B

n
1 (0) by

f(x) =


x− d(x, F )

x− x0

‖x− x0‖
(x 6= x0)

x0 (x = x0),

where x0 is an arbitrary point in F .
It is easy to show that f is well defined and continuous. Moreover F(f) = F and the theorem is proved.

An important generalization of Brouwer’s fixed point theorem was obtained by Schauder.

Theorem 3.5 (Schauder’s fixed point theorem). Every continuous map from a nonempty, compact and
convex subset C of a Banach space X into C has a fixed point.

Clearly the conditions in the hypothesis are preserved if the norm of X is replaced by an equivalent
norm, so Theorem 3.5 cannot be viewed as a metric fixed point theorem. Schauder’s fixed point theorem
can be used to prove Peano’s existence theorem for the solution of systems of first order ordinary differential
equations with initial conditions.

The situation is completely different when certain generalizations are considered, in particular those
concerning condensing maps, where a condensing map is one under which the image of any set is – in a
certain sense – more compact than the set itself. The degree of noncompactness of a set is measured by
certain functions called measures of noncompactness.

Darbo’s fixed point theorem, which uses Kuratowski’s measure of noncompactness α mentioned in the
introduction, is a generalization of Schauder’s fixed point theorem.

Theorem 3.6 (Darbo’s fixed point theorem). Let C be a non–empty bounded, closed and convex subset of a
Banach space X and α be the Kuratowski measure of noncompactness on X. If T : C → C is a continuous
map such that there exists a constant c ∈ [0, 1) with

α(T (Q)) ≤ k · α(Q) for every Q ⊂ C, (3.1)

then T has a fixed point in C.

We will prove a generalization of Theorem 3.6, namely the Darbo–Sadovskĭi theorem, in the next section.

4. Measures if noncompactness and the
Darbo–Sadovskĭi theorem

Darbo’s fixed point theorem generalizes from compact sets to bounded and closed sets in infinite dimen-
sional Banach spaces, and needs the additional hypothesis of the condensing property in (3.1). As is well
known, when we pass from finite to infinite dimensional Banach spaces, bounded and closed subsets need
not necessarily be compact. So it is natural to ask if Schauder’s fixed point theorem (Theorem 3.5) holds in
infinite dimensional Banach spaces for convex, closed and bounded subsets. The following example provides
a strong negative answer to this question.
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Example 4.1 (Kakutani). There is a fixed point free continuous map on the unit ball of

`2(Z) =

{
x = (xn) :

∑
n∈Z
|xn|2 <∞

}
.

Proof. We consider `2(Z) with the standard Schauder basis (e(n))n∈Z, where for each n ∈ N, e(n) is the

sequence with e
(n)
n = 1 and e

(n)
k = 0 for k 6= n, and with the natural norm given by

‖x‖ = ‖x‖2 =

(∑
n∈Z
|xn|2

)1/2

for all x ∈ `2(Z).

We write B`2(Z) for the closed unit ball in `2(Z). Every sequence x = (xn)n∈Z ∈ `2(Z) has a unique

representation x =
∑

n∈Z xne
(n). We define the left shift operator U : `2(Z)→ `2(Z) by

U(x) =
∑
n∈Z

xne
(n+1).

The relation
x− U(x) =

∑
n∈Z

(xn − xn−1) e(n) = c · e(0)

implies xn = x0 for all n > 0 and xn = x1 for all n < 0. For a sequence in `2(Z), this is only possible if
x0 = x1 = 0. So x− U(x) is a multiple of e(0) if and only if x = 0.
We define the map T : `2(Z)→ `2(Z) by

T (x) = (1− ‖x‖) e(0) + U(x).

Then T maps B`2(Z) into B`2(Z), since we have for ‖x‖ ≤ 1

‖T (x)‖ ≤ |1− ‖x‖ | · ‖e(0)‖+ ‖U(x)‖ = (1− ‖x‖) + ‖x‖ = 1.

Finally, T is a fixed point free map. Indeed, if

x− T (x) = (1− ‖x‖) e(0) + U(x),

then x−U(x) = (1−‖x‖)e(0), which is clearly impossible if x = 0, and impossible if x 6= 0, as we have seen
above. �

To be able to prove the Darbo–Sadovskĭi theorem we need to recall the concepts of measures of noncom-
pactness, in particular, the Kuratowski measure of noncompactness, and their most important properties.
The results presented here and their proofs can be found, for instance, in [53, 35, 36].

Since notion of a measure of noncompactness was originally introduced in metric spaces, we are going to
give our axiomatic definition in this class of spaces as given in the monograph [53]. In the books [1] and [3],
two different patterns are provided for the axiomatic introduction of measures of noncompactness in Banach
spaces.

Definition 4.2. Let (X, d) be a complete metric space. A set function φ :MX → [0,∞) is called a measure
of noncompactness on fX, if it satisfies the following conditions

(MNC.1) φ(Q) = 0 if and only if Q is relatively compact

(regularity)

(MNC.2) φ(Q) = φ(Q) for all Q ∈MX

(invariance under closure)

(MNC.3) φ(Q1 ∪Q2) = max{φ(Q1), φ(Q2)} for all Q1, Q2 ∈MX

(semi–additivity).

The number φ(Q) is called the measure of noncompactness of the set Q.
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The following properties can easily be deduced from the axioms in Definition 4.2.

Proposition 4.3. Let φ be a measure of noncompactness on a complete metric space (X, d). Then φ has
the following properties

Q ⊂ Q̃ implies φ(Q) ≤ φ(Q̃) (monotonicity); (4.1)

φ(Q1 ∩Q2) ≤ min{φ(Q1), φ(Q2)} for all Q1, Q2 ∈MX . (4.2)

If Q is finite then φ(Q) = 0 (non–singularity). (4.3)

Generalised Cantor’s intersection property
If (Qn) is a decreasing sequence of nonempty sets in Mc

X and limn→∞ φ(Qn) = 0,
then the intersection

Q∞ =
⋂
Qn 6= ∅

is compact.

(4.4)

Remark 4.4. IfX is a Banach space then a measure of noncompactness φmay have some additional properties
related to the linear structure of a normed space, for instance

φ(λQ) = |λ|φ(Q) for any scalar λ and all Q ∈MX (homogeneity) (4.5)

φ(Q1 +Q2) ≤ φ(Q1) + φ(Q2) for all Q1, Q2 ∈MX (subadditivity) (4.6)

φ(x+Q) = φ(Q) for any x ∈ X and all Q ∈MX (translation invariance). (4.7)

For every Q0 ∈ MX and for all ε > 0 there is δ > 0 such that
|φ(Q0)− φ(Q)| < ε for all Q ∈ MX with dH(Q0, Q) < δ

(continuity)
(4.8)

φ (co(Q)) = φ(Q) for all Q ∈ MX

(invariance under the passage to the convex hull).
(4.9)

The two most important measures of noncompactness are the Kuratowski and Hausdorff measures of
noncompactness

First we define the measure of noncompactness introduced by Kuratowski in 1930.

Definition 4.5. Let (X, d) be a complete metric space. The function

α :MX → [0,∞)

with

α(Q) = inf

{
ε > 0 : Q ⊂

n⋃
k=1

Sk, Sk ⊂ X, diam(Sk) < ε (k = 1, 2, . . . , n ∈ N)

}
is called the Kuratowski measure of noncompactness (KMNC), and the real number α(Q) is called the
Kuratowski measure of noncompactness of Q.

Now we define the Hausdorff or ball measure of noncompactness which was first introduced by Goldenštein,
Goh’berg and Markus in 1957 [GGM1] and later studied by Goldenštein and Markus in 1965 [GGM2].

The definition of the Hausdorff measure of noncompactness is similar to that of the Kuratowski measure
of noncompactness and the results are analogous.

Definition 4.6. Let (X, d) be a complete metric space. The function

χ :MX → [0,∞)

with

χ(Q) = inf

{
ε > 0 : Q ⊂

n⋃
k=1

Brk(xk), xk ∈ X, rk < ε (k = 1, 2, . . . , n ∈ N)

}
is called the Hausdorff, or ball measure of noncompactness, and the real number χ(Q) is called the Hausdorff
or ball measure of noncompactness of Q.
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Both the Kuratowski and the Hausdorff measure of noncompactness are a measure of noncompactness
in the sense of Definition 4.2.

Theorem 4.7. Let (X, d) be a complete metric space. Then the Kuratowski and Hausdorff measures mea-
sures of noncompactness α and χ are measures of noncompactness in the sense of Definition 4.2.

In Banach spaces the functions α and χ satisfy some additional properties related to the linear structures
of normed spaces. The statements of the following results for the Kuratowski measure of noncompactness
are due to Darbo.

Theorem 4.8. Let X be a normed space ψ denote the Kuratowski or Hausdorff measure of noncompactness,
and Q,Q1, Q2 ∈MX . Then we have

ψ(Q1 +Q2) ≤ ψ(Q1) + ψ(Q2) (subadditivity), (4.10)

ψ(Q+ x) = ψ(Q) for each x ∈ X (translation invariance), (4.11)

ψ(λQ) = |λ|ψ(Q) for each scalar λ (homogeneity), (4.12)

and
ψ(Q) = ψ(co(Q)) (invariance under the passage to the convex hull). (4.13)

Now we state and prove the Darbo–Sadovskĭi theorem.

Theorem 4.9 (Darbo–Sadovskĭı). Let X be a Banach space, φ be a measure of noncompactness which
is invariant under passage to the convex hull, C 6= ∅ be a bounded, closed and convex subset of X and
T : C → C be a φ– condensing operator, that is, T is continuous and satisfies

φ(T (Q)) < φ(Q) for all bounded non–precompact subsets Q of C. (4.14)

Then T has a fixed point.

Proof. We choose a point c ∈ C and denote by Σ the class of all closed and convex subsets K of C such
that c ∈ K and T (K) ⊂ K. Furthermore, we put

B =
⋂
K∈Σ

K and A = co (T (B) ∪ {c}) .

Obviously Σ 6= ∅, since C ∈ Σ, and B 6= ∅, since c ∈ B. We also have

T (B) = T

( ⋂
K∈Σ

K

)
⊂
⋂
K∈Σ

T (K) ⊂
⋂
K∈Σ

K = B,

and consequently T : B → B.
Moreover, we have B = A. Indeed, since c ∈ B and T (B) ⊂ B, it follows that A ⊂ B. This implies
T (A) ⊂ T (B) ⊂ A, and so A ∈ Σ, and hence B ⊂ A.
Therefore the properties of φ now imply

φ(B) = φ(C) = φ (co (T (B) ∪ {c})) = φ (co (T (B) ∪ {c})) = φ (T (B) ∪ {c})
= max {φ(T (B)), φ({c})} = φ(T (B)).

Since T is φ–condensing, it follows that φ(B) = 0, and so B is compact. Obviously B is also convex. Thus
it follows from Schauder’s fixed point theorem, Theorem 3.5, that the operator T : C → C has a fixed point.
�

The following example will show that the theorem of Darbo and Sadovskĭı fails to be true, if we assume
that T is a k–contractive operator with constant k = 1, that is, if we replace the the condensing condition
(4.14) by the condition

φ(T (Q)) ≤ φ(Q) for all bounded Q of C. (4.15)
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Example 4.10. Let B`2 be the closed unit ball in `2. We define the operator T : B`2 → B`2 by

T (x) = T ((xk)
∞
k=1) =

(√
1− ‖x‖2, x1, x2, . . .

)
Then we can write T = D + S where D is the one dimensional mapping

D(x) = D ((xk)
∞
k=1) =

√
1− ‖x‖2e(1) and S(x) = (0, x1, x2, . . . )

is an isometry. Hence T is a well–defined, continuous operator, and for every bounded subset Q of B`2 , we
have

α(T (Q)) ≤ α(D(Q) + S(Q)) ≤ α(D(Q)) + α(S(Q)) = 0 + α(Q).

So T is a k–set–contractive operator with constant k = 1. But T has no fixed points. If T had a fixed point
x ∈ B`2 , then we would have xk = xk+1 for all k ∈ N. Since x ∈ `2, this implies xk = 0 for all k ∈ N, and
then T (x) =

√
1− ‖x‖2e(0) = e(0) = (0, 0, 0, . . . ), a contradiction.

5. Edelstein’s results

For a function f : X → X on a complete metric space (X, d) which satisfies the condition

d(f(x), f(y)) < λd(x, y) for all x, y ∈ X with x 6= y, (5.1)

where 0 ≤ λ < 1, the Banach contraction principle yields the existence and uniqueness of fixed points.
If we take λ = 1 in the condition in (5.1) then we we obtain a contractive map, that is, a map which

satisfies the condition
d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y. (5.2)

In 1962, Edelstein [20] published a paper in which he studied the fixed points of contractive maps using
the next condition and assumption

The condition in (5.2) together with the assumption of the existence of x ∈ X such that the iterative
sequence (fn(x)) contains a convergent subsequence (fnk(x)) in X, that is,

there exists x ∈ X such that {fn(x)} ⊃ {fnk(x)} such that lim
k→∞

fnk(x) ∈ X, (5.3)

provides the existence of a fixed point of f .

Theorem 5.1 (Edelstein [20]). Let X be a metric space and f : X → X be a contractive map that satisfies
the condition in (5.3). Then u = limk→∞ f

nkx is the unique fixed point of f .

Proof. Let ∆ = {(x, x) : x ∈ X}, Y = (X ×X) \∆, and r : Y → R be the map defined by

r(x, y) =
d(f(x), f(y))

d(x, y)
. (5.4)

The function r is continuous on Y , and there exists a neighborhood U of points (u, f(u)) such that (x, y) ∈ U
implies

0 ≤ r(x, y) < R < 1. (5.5)

Let B1 = B1
ρ(u) and B2 = B2

ρ(f(u)) be the open balls with centers in u and f(u), and radius ρ such that

ρ <
1

3
d(u, f(u)) (5.6)

and B1 ×B2 ⊂ U .
It follows from (5.3) that there exists a natural number N such that k > N implies fnk(x) ∈ B1, and (5.2)
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implies fnk+1(x) ∈ B2.
For k > N , (5.6) implies

d(fnk(x), fnk+1(x)) > ρ, (5.7)

and it follows from (5.4) and (5.5) that

d(fnk+1(x), fnk+2(x)) < Rd(fnk(x), fnk+1(x)). (5.8)

Hence, (5.8) implies for l > j > N

d(fnl(x), fnl+1(x)) ≤ d(fnl−1+1(x), fnl−1+2(x))

< Rd(fnl−1(x), fnl−1+1(x)) ≤ . . .
< Rl−jd(fnj (x), fnj+1(x))→ 0 (l→∞),

which is a contradiction to (5.7). This we must have f(u) = u.
We assume that v 6= u is also a fixed point of the function f . Then we have

d(f(u), f(v)) = d(u, v),

which is a contradiction to (5.2). �

The condition in (5.3) is always satisfied for a compact space. Therefore we have

Theorem 5.2 (Edelstein [20]). Let (X, d) be a compact metric space and f : X → X be a map. We assume

d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y.

Then the function f has a unique fixed point.

We obtain the following result on the iteration sequence from Theorem 5.1.

Theorem 5.3 (Edelstein [20]).
We assume that the conditions of Theorem 5.1 are satisfied. If the sequence (fn(p)) for p ∈ X contains a
convergent subsequence (fnk(p)) then its limit u = limn→∞ f

n(p) in X exists and u is a fixed point of f .

Proof. By Theorem 5.1, we have u = limk→∞ f
nk(p). For given δ > 0, there exists n0 ∈ N such that

k > n0 implies d(u, fnk(p)) < δ. If m = nk + l > nk, then we have

d(u, fm(p)) = d(f l(u), fnk+l(p)) < d(u, fnk(p)) < δ. �

6. Rakotch’s results

The problem of defining a family of functions F = {α(x, y)} which satisfy the conditions 0 ≤ α < 1
and supα(x, y) = 1 such that Banach’s theorem is satisfied when the constant α is replaced by α(x, y) ∈ F
was suggested by H. Hanani, and Rakotch published a result related to this problem in 1962 [43] In this
subssection, we present some results from the mentioned paper.

Definition 6.1. Let (X, d) be a metric space. We denote by F1 the family of all functions α(x, y) which
satisfy the following conditions:

(1) α(x, y) = α(d(x, y)), that is, α depends only on the distance of x and y.

(2) 0 ≤ α(d) < 1 for all d > 0.

(3) α(d) is a monotone decreasing function of d.
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Theorem 6.2. Let (X, d) be a metric space, f : X → X be a contractive map, M ⊂ X and x0 ∈ M such
that

d(x, x0)− d(f(x), f(x0)) ≥ 2d(x0, f(x0)) for all x ∈ X \M, (6.1)

and let f(M) be a subset of a compact subset of X. Then there exists a unique fixed point of f .

Proof. We assume f(x0) 6= x0 and put xn = fn(x0) for n = 1, 2, . . . , that is,

xn+1 = f(xn) for n = 0, 1, . . . . (6.2)

By Edelstein’s theorem (Theorem 5.1), it suffices to show that xn ∈M for each n.
Since f is a contractive map, the sequence (d(xn, xn+1)) is not increasing. Hence f(x0) 6= x0 implies

d(xn, xn+1) < d(x0, x1) for n = 1, 2, . . . . (6.3)

We obtain from the triangle inequality

d(x0, xn) ≤ d(x0, x1) + d(x1, xn+1) + d(xn, xn+1).

Now (6.2) and (6.3) yield
d(x0, xn)− d(f(x0), f(xn)) < 2d(x0, f(x0)),

and (6.1) implies xn ∈M for all n. �

Corollary 6.3. Let f be a contractive map for which there exists a point x0 ∈ X such that for all x ∈ X

d(f(x), f(x0)) ≤ α(x, x0)d(x, x0), (6.4)

where α(x, y) = α(d(x, y)) ∈ F1. If Br(x0) is the open ball in X, where

r =
2d(x0, f(x0))

1− α(2d(x0, f(x0)))
,

and f(Br(x0)) is a subset of a compact subset of X, then the function f has a unique fixed point.

Proof. If we put M = B(x0, r) in Theorem 6.2, then by (6.4), the monotony of α(d) and r ≥ 2d(x0, fx0),
the condition d(x, x0) ≥ r implies

d(x, x0)− d(f(x), f(x0)) ≥ d(x, x0)− α(d(x, x0))d(x, x0)

= [1− α(d(x, x0))]d(x, x0) ≥ [1− α(r)]r

≥ [1− α(2d(x0, f(x0)))]r = 2d(x0, f(x0)),

that is, we have (6.1).

Theorem 6.4. Let f : X → X be a contractive map on a complete metric space. We assume that there
exist M ⊂ X and a point x0 ∈M such that

d(x, x0)− d(f(x), f(x0)) ≥ 2d(x0, f(x0))for each x ∈ X \M, (6.5)

d(f(x), f(y)) ≤ α(x, y)d(x, y) for all x, y ∈M, (6.6)

where
α(x, y) = α(d(x, y)) ∈ F1.

Then the function f has a unique fixed point.
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Proof. We assume f(x0) 6= x0 and define the sequence (xn) by xn = fn(x0) for n = 1, 2, . . . . As in
Theorem 6.2, we have by (6.5)

d(xn, xn+1) < d(x0, x1) for n = 1, 2, . . . (6.7)

and xn ∈M for each n.
We are going to prove that the sequence (xn) is bounded. It follows from (6.6) and the definition of the
sequence (xn) that

d(x1, xn+1) = d(f(x0), f(xn)) ≤ α(d(x0, xn))d(x0, xn), (6.8)

and, by the triangle inequality, we have

d(x0, xn) ≤ d(x0, x1) + d(x1, xn+1) + d(xn, xn+1).

Hence (6.7) and (6.8) imply
[1− α(d(x0, xn))]d(x0, xn) < 2d(x0, x1).

If d(x0, xn) ≥ d0 for some given d0, then we have by the monotony of α

α(d(x0, xn)) ≤ α(d0).

So we obtain

d(x0, xn) <
2d(x0, x1)

1− α(d(x0, xn))
≤ 2d(x0, x1)

1− α(d0)
= C.

Hence we have for R = max{d0, C}

d(x0, xn) ≤ R for n = 1, 2, . . . , (6.9)

that is, the sequence (xn) is bounded.
Let p > 0 be an arbitrary natural number. It follows from (6.6) that

d(xk+1, xk+p+1) ≤ α(xk, xk+p)d(xk, xk+p),

that is,

d(xn, xn+p) ≤ d(x0, xp)
n−1∏
k=0

α(xk, xk+p).

Now (6.9) implies

d(xn, xn+p) ≤ R
n−1∏
k=0

α(xk, xk+p). (6.10)

We prove that (xn) is a Cauchy sequence. It is enough to show that, for every ε > 0, there exists N which
depends only on ε (and not on p) such that, for all p > 0, we have d(xN , xN+p) < ε (since the sequence
(d(xn, xn+p)) is not increasing).
If d(xk, xk+p) ≥ ε for k = 0, 1, . . . , n−1, then we obtain from (6.6) (because of the monotony of the function
α)

α(xk, xk+p) = α(d(xk, xk+p)) ≤ α(ε),

and then (6.10) implies
d(xn, xn+p) ≤ R[α(ε)]n.

Since α(ε) < 1 and [α(ε)]n → 0 as n → ∞, there exists a natural number N , independent of p, such that
d(xN , xN+p) < ε for each p > 0. Hence (xn) is a Cauchy sequence.
Since X is a complete metric space, there exists u ∈ X such u = limn→∞ xn. Because of the continuity of
the function f , u is a fixed point of f . �

In particular, if M = X, we obtain the next corollary.
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Corollary 6.5. Let (X, d) be a complete metric space and

d(f(x), f(y)) ≤ α(x, y)d(x, y) for all x, y ∈ X, (6.11)

where α(x, y) ∈ F1. Then the function f has a unique fixed point.

Remark 6.6. The preceding corollary and Theorem 6.4 are generalizations of Banach’s fixed point theorem.

7. Boyd and Wong’s nonlinear contraction

In this section, we present some results by Boyd and Wong [7] in 1969. In [7], Boyd and Wong studied
fixed points for maps of the kind introduced in the next definition.

Definition 7.1. Let (X, d) be a metric space. A map f : X → X which satisfies the condition

d(f(x), f(y)) ≤ Ψ(d(x, y)) for all x, y ∈ X, (7.1)

where Ψ is a function defined on the closure of the range of d, is called a Ψ contraction.
We denote the image of d by P and the closure of P by P . Hence P = {d(x, y) : x, y ∈ X}.

Rakotch [43] proved that if Ψ(t) = α(t)t, where α is a decreasing function with α(t) < 1 for all t > 0,
then the map f satisfying (7.1) has a unique fixed point u. It can be shown that if Ψ(t) = α(t)t and α is an
increasing function with α(t) < 1 for all t ≥ 0, then the conclusion of Banach’s theorem holds true. Boyd
and Wong proved that it is enough to assume that Ψ(t) < t for all t > 0 and Ψ is semicontinuous, and if a
metric space is convex, then the last condition can be omitted.

We recall that a function ϕ : X → E (E ⊂ R) is said to be upper semi–continuous from the right at
t0 ∈ X if tn → t0+ implies lim supn→∞ ϕ(tn) ≤ ϕ(t0). A function ϕ : X 7→ E (E ⊂ R) is said to be upper
semi–continuous from the right on X if it is upper semi–continuous from the right at every t ∈ X.

Theorem 7.2. Let (X, d) be a complete metric space and f : X → X be a map satisfying (7.1), where
Ψ : P 7→ [0,∞) is upper semi–continuous from the right on P and satisfies Ψ(t) < t for all t ∈ P \ {0}.
Then the function f has a unique fixed point x0 and fn(x)→ x0 (→∞) for each x ∈ X.

Proof. Let x ∈ X and
cn = d(fn(x), fn−1(x)) for n = 1, 2, . . . . (7.2)

Then, because of (7.1), the sequence (cn) is monotone decreasing. We put limn→∞ cn = c ≥ 0, and prove
c = 0. If c > 0, then we have

cn+1 ≤ Ψ(cn), (7.3)

hence
c ≤ lim sup

t→c+
Ψ(t) ≤ Ψ(c) < c, (7.4)

which is a contradiction.
We are going to prove that (fn(x)) is a Cauchy sequence for each x ∈ X. Then the limit point of this
sequence is the unique fixed point of the function f . We assume that (fn(x)) is not a Cauchy sequence.
Then there exist ε > 0 and sequences (m(k)) and (n(k)) of natural numbers with m(k) > n(k) ≥ k such
that

dk = d(fm(k)(x), fn(k)(x)) ≥ ε for all k = 1, 2, . . . . (7.5)

We may assume that
d(fm(k)−1(x), fn(k)(x)) < ε, (7.6)

and choose m(k) as the smallest integer greater than n(k) which satisfies (7.5). It follows from (7.2) that

dk ≤ d(fm(k)(x), fm(k)−1(x)) + d(fm(k)−1(x), fn(k)(x)) ≤ cm + ε ≤ ck + ε. (7.7)
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Hence dk → ε as k →∞. Since

dk = d(fm(k)(x), fn(k)(x)) ≤ d(fm(k)(x), fm(k)+1(x)) +

+d(fm(k)+1(x), fn(k)+1(x)) + d(fn(k)+1(x), fn(k)(x))

≤ 2ck + Ψ(d(fm(k)(x), fn(k)(x))) = 2ck + Ψ(dk), (7.8)

letting k →∞ in (7.8), we obtain ε ≤ Ψ(ε). This is a contradiction, because we have Ψ(ε) < ε for ε > 0. �
The following example will show that the condition of the continuity of the function Ψ in Theorem 7.2

cannot be dropped, in general.

Example 7.3. Let X = {xn = n
√

2 + 2n : n = 0,±1,±2, . . . } have the metric d(x, y) = |x− y|. Then X is
a closed subset of the real numbers, and so complete. We assume that for each p ∈ P (p 6= 0), there exists
a unique pair (xn, xm) such that p = d(xn, xm). We assume that

d(xj , xk) = d(xm, xn) for some integers j, k,m, n with j > k and m > n.

Then we obtain
− (m− n− j + k)

√
2 = 2j − 2k − 2m + 2n. (7.9)

Since the left hand side in (7.9) is irrational or equal to zero and the right hand side is rational, it follows
that both sides are equal to zero. Hence we have for m− n = j − k = s

2n+s − 2n = 2k+s − 2k, (7.10)

which is only possible for n = k. We define the functions f by f(xn) = xn−1 and Ψ on P by

Ψ(p) = |xn−1 − xm−1| if p = |xn − xm|. (7.11)

We put Ψ(p) = 0 for p ∈ P \ P .
Then we have Ψ(t) < t for all t ∈ P \ {0} and

d(f(x), f(y)) = Ψ(d(x, y)), (7.12)

but the function f has no fixed point.

Theorem 7.2 shows that it is not possible to extend the function Ψ from the set P to the set P such that
it is upper semi–continuous from the right with Ψ(t) < t for t ∈ P \ {0}. This can directly be seen for the
point

√
2 ∈ P \ P .

If the condition Ψ(t) < t is replaced by Ψ(t0) = t0 for some value t0, then Theorem 7.2 does not hold.
This is shown in the next example.

Example 7.4. Let X = (−∞,−1] ∪ [1,∞) and d(x, y) = |x− y| for all x, y ∈ X. Also let

f1(x) =


1

2
(x+ 1) for x ≥ 1

1

2
(x− 1) for x ≤ −1.

and f2(x) = −f1(x).

Now the functions f1 and f2 satisfy (7.1), if we define

Ψ(t) =


1

2
t for t < 2

1

2
t+ 1 for t ≥ 2.

We know that the function Ψ satisfies all the conditions in Theorem 7.2, but Ψ(2) = 2. The function f1 has
two fixed points −1 and 1 and the function f2 has no fixed points.
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Theorem 7.2 is a generalization of Rakotch’s theorem. This is shown in the next example.

Example 7.5. Let X = [0, 1]
⋃
{2, 3, 4 . . . } be the complete metric space with its metric d defined by

d(x, y) =

{
|x− y| if x, y ∈ [0, 1]

x+ y if at least one of x, y /∈ [0, 1].

We define the function f : X → X by

f(x) =

x−
1

2
x2 for x ∈ [0, 1]

x− 1 for x = 2, 3, . . . .

If x, y ∈ [0, 1] for x− y = t > 0, then we have

d(f(x), f(y)) = (x− y)

(
1− 1

2
(x+ y)

)
≤ t
(

1− 1

2
t

)
,

and if x ∈ {2, 3, 4, . . . } and x > y, then we have

d(f(x), f(y)) = f(x) + f(y) < x− 1 + y = d(x, y)− 1.

We define the function Ψ by

Ψ(t) =

t−
1

2
t2 for 0 ≤ t ≤ 1

t− 1 for 1 < t <∞.

The function Ψ is upper semi–continuous from the right on the set [0,∞), Ψ(t) < t for all t > 0, and the
condition in (7.1) is satisfied.
Since

lim
n→∞

d(f(n), 0)

d(n, 0)
= 1,

there is no decreasing function α with α(t) < 1 for all t > 0 which satisfies (6.11). Furthermore, since

lim
x→0

d(f(x), 0)

d(x, 0)
= 1,

there is no increasing function α with α(t) < 1 for all t > 0 which satisfies (6.11).

8. Theorem of Meir-Keeler

In 1969, Meir and Keeler [39] proved a very interesting theorem and showed that the conclusion of
Banach’s fixed point theorem can be extended to a more general class of contractions. In this subsection,
we present some results of the paper mentioned.

Definition 8.1. Let (X, d) be a metric space. The function f : X 7→ X is said to be a weakly uniformly
strict contraction, or a Meir–Keeler contraction (MK contraction) if, for every ε > 0, there exists δ > 0 such
that

ε ≤ d(x, y) < ε+ δ implies d(f(x), f(y)) < ε. (8.1)

Theorem 8.2 (Meir and Keeler [39]). Let (X, d) be a complete metric space and f : X → X be a function.
If (8.1) is satisfied, then f has a unique fixed point u. Moreover, we have for each x ∈ X

lim
n→∞

fn(x) = u. (8.2)
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Proof. First we note that (8.1) implies that f is a contractive map, that is,

x 6= y implies d(f(x), f(y)) < d(x, y). (8.3)

Hence f is a continuous function and has at most one fixed point.
We note that if (fn(x)) is a Cauchy sequence for each x ∈ X, then the function has a unique fixed point,
and (8.2) is satisfied. This follows from the following consideration. Since X is a complete space, every
Cauchy sequence (fn(x)) has a limit u(x). The continuity of f implies

f(u(x)) = f
(

lim
n→∞

fn(x)
)

= lim
n→∞

fn+1(x) = u(x).

Hence u(x) is the unique fixed point of f .
The proof of the theorem will be complete if we show that the sequence (fn(x)) = (xn) of iterations is a
Cauchy sequence for each x ∈ X. Let x ∈ X and cn = d(xn, xn+1) for n = 1, 2, . . . . It follows from (8.3)
that (cn) is a decreasing sequence. If limn→∞ cn = ε > 0, then the implication in (8.1) is not true for cm+1,
where cm is chosen such that cm < ε+ δ. This implies limn→∞ cn = 0.
We assume that there exists a sequence (xn) which is not a Cauchy sequence. Then there exists 2ε > 0 such
that, for each m0 ∈ N, there exist n,m ∈ N with n,m > m0 and d(xm, xn) > 2ε. It follows from (8.1) that
there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ implies d(f(x), f(y)) < ε. (8.4)

The implication in (8.4) remains true if we replace δ by δ′ = min{δ, ε}. Let m0 ∈ N be such that cm0 < δ′/3,
and let m,n > m0 such that m < n and d(xm, xn) > 2ε. We prove that there exists j ∈ {m,m + 1, . . . , n}
such that

ε+
2δ′

3
< d(xm, xj) < ε+ δ′. (8.5)

To prove (8.5), we note that d(xn−1, xn) < δ/3. Since d(xm, xn) > 2ε and d(xm, xn) ≤ d(xm, xn−1) +
d(xn−1, xn), it follows that

ε+
2δ′

3
< d(xm, xn−1). (8.6)

Let k be the smallest natural number in {m,m+ 1, . . . , n}; (clearly m < k ≤ n− 1) such that

ε+
2δ′

3
< d(xm, xk) (8.7)

holds. We prove d(xm, xk) < ε+ δ′. If we assume that this is not true, then we have

ε+ δ′ ≤ d(xm, xk) ≤ d(xm, xk−1) + d(xk−1, xk) < d(xm, xk−1) +
δ′

3
,

that is,

ε+
2δ′

3
< d(xm, xk−1). (8.8)

This is a contradiction to the the minimality condition of k in the inequality in (8.7). Therefore the inequality
in (8.5) must hold.
Now

d(xm, xk) ≤ d(xm, xm+1) + d(xm+1, xk+1) + d(xk+1, xk),

(8.4) and (8.5) imply

d(xm, xj) ≤ cm + ε+ ck <
δ′

3
+ ε+

δ′

3
.

This is a contradiction to (8.5). Hence (xn) is a Cauchy sequence. �

It is well known that the Meir-Keeler theorem generalizes Banach’s contraction principle [2] and Edel-
stein’s theorem [20].
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Theorem 8.3 (Banach [2]). Let (X, d) be a complete metric space and f : X → X be a contraction, that
is, there exists q ∈ [0, 1) such that

d(f(x), f(y)) ≤ q · d(x, y) for all x, y ∈ X. (8.9)

Then f has a unique fixed point.

Proof. Let ε > 0 and δ = (1/q−1)ε. Then it follows from d(x, y) < ε+ δ and x 6= y that d(f(x), f(y)) ≤
qd(x, y) < qε+ qδ = ε. Hence the function f satisfies (8.1) and the proof follows from Theorem 8.2. �

Theorem 8.4 (Edelstein [20]). Let (X, d) be a compact metric space and f : X → X be a map. We assume
that

d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y.

Then the function f has a unique fixed point.

Proof. We assume that the function f does not satisfy the condition in (8.1). Then there exist ε > 0
and sequences (xn) and (yn) in X such that

d(xn, yn) < ε+
1

n
and d(f(xn), f(yn)) ≥ ε. (8.10)

Since X is a compact set, there exist subsequences (xnk
) and (ymk

) of the sequences (xn) and (yn), which
converge to some x0 ∈ X and some y0 ∈ X, respectively. The continuity of the function f implies

d(x0, y0) ≤ ε ≤ d(f(x0), f(y0)) < d(x0, y0).

This is a contradiction, and consequently the function f must satisfy the condition in (8.1). Now the proof
follows from Theorem 8.2. �

Rakotch [43], and Boyd and Wong [7] assumed that, among other conditions, the following inequalities
are satisfied:

d(f(x), f(y)) ≤ ψ(d(x, y)) and ψ(t) < t for all t 6= 0. (8.11)

The next example shows that the Meir–Keeler theorem holds even if the condition in (8.11) is not satisfied.

Example 8.5. Let X = [0, 1] ∪ {3, 4, 6, 7, . . . , 3n, 3n + 1, . . . } be endowed with the Euclidean metric and
the function f be defined by

f(x) =


x

2
for 0 ≤ x ≤ 1

0 for x = 3n

1− 1

n+ 2
for x = 3n+ 1.

Then the function f satisfies (8.1), and it follows from

d(f(x), f(y)) ≤ ψ(d(x, y)) for all x, y ∈ X (8.12)

that ψ(1) = 1.

9. Theorems by Kannan, Chatterje and
Zamfirescu

The first result is by Kannan [30] in 1968.

Theorem 9.1. If (X, d) is a complete metric space, 0 ≤ q < 1/2 and f : X → X be a map such that

d(f(x), f(y)) ≤ q[d(x, f(x)) + d(y, f(y))] for all x, y ∈ X, (9.1)

then f has a unique fixed point, that is, there exists one and only one u ∈ X such that f(u) = u.
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Proof. (Joseph and Kwack [29]) Let

c = inf{d(x, f(x)) : x ∈ X}.

Then we have c ≥ 0. If c > 0, then c(1−q)/q > c implies the existence of x ∈ X such d(x, f(x)) < c(1−q)/q.
Now we have

d(f(x), f2(x)) ≤ q

1− q
d(x, f(x)) < c,

which is a contradiction, and so c = 0. Hence there exists a sequence (xn) in X such that limn d(xn, f(xn)) =
0. It follows from

d(xm, xn) ≤ d(xm, f(xm)) + d(f(xm), f(xn)) + d(xn, f(xn))

≤ (1 + q)[d(xm, f(xm)) + d(xn, f(xn))],

that (xn) is a Cauchy sequence. So there exists p ∈ X such that limn→∞ xn = p. It follows that
limn→∞ f(xn) = p.
We prove f(p) = p. It follows from

d(p, f(p)) ≤ d(p, f(xn)) + d(f(xn), f(p))

≤ d(p, f(xn)) + q[d(xn, f(xn)) + d(p, f(p))],

as n→∞ that

d(p, f(p)) ≤ qd(p, f(p)),

and so p = f(p). Now (9.1) implies that the map f has a unique fixed point. �
Banach’s condition (2.1) and Kannan’s (9.1) condition are independent. The condition in (2.1) implies

the continuity of the map f , but this is not the case for the condition in (9.1). This follows from the following
example.

Example 9.2. Let X = [0, 1] and f(x) be defined by

f(x) =


x

4
for x ∈ [0, 1/2)

x

5
for x ∈ [1/2, 1].

The map f is discontinuous at the point x = 1/2 and so the condition in (2.1) is not satisfied, but the
condition in (9.1) is satisfied for q = 4/9.

Example 9.3. Let X = [0, 1] and f(x) = x/3 for x ∈ [0, 1]. Clearly, the condition in (2.1) is satisfied, but
the condition in (9.1) is not satisfied (we may take x = 1/3 and y = 0).

The next theorem was proved by Chatterje [12] in 1972.

Theorem 9.4. If (X, d) is a complete metric, 0 ≤ q < 1/2 and f : X → X is a map which satisfies the
condition

d(f(x), f(y)) ≤ q[d(x, f(y)) + d(y, f(x))] for all x, y ∈ X,

then the function f has a unique fixed point.

Proof (Fisher [23]). Let x ∈ X. Then we have

d(fn(x), fn+1(x)) ≤ q[d(fn−1(x), fn+1(x)) + d(fn(x), fn(x))]

= qd(fn−1(x), fn+1(x))

≤ q[d(fn−1(x), fn(x)) + d(fn(x), fn+1(x))],
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hence

d(fn(x), fn+1(x)) ≤ q

1− q
d(fn−1(x), fn(x))

≤
(

q

1− q

)2

d(fn−2(x), fn−1(x))

≤
(

q

1− q

)n
d(x, f(x)).

So we obtain

d(fn(x), fn+r(x)) ≤ d(fn(x), fn+1(x)) + · · ·+ d(fn+r−1x, fn+r(x))

≤
[(

q

1− q

)n
+ · · ·+

(
q

1− q

)n+r−1]
d(x, f(x))

≤
(

q

1− q

)n 1

1− q
d(x, f(x)).

Since q(1− q)−1 < 1, it follows that (fn(x)) is a Cauchy sequence in X. Since X is a complete metric space,
there exists z ∈ X such that z = limn f

n(x).
Now we have

d(z, f(z)) ≤ d(z, fn(x)) + d(fn(x), f(z))

≤ d(z, fn(x)) + q[d(fn−1(x), f(z)) + d(fn(x), z)].

Letting n→∞, we obtain
d(z, f(z)) ≤ qd(z, f(z)),

and since q < 1/2, we have
f(z) = z.

Hence z is a fixed point of the function f .
We assume that the function f has one more fixed point z′ ∈ X. Then we have

d(z, z′) = d(f(z), f(z′))

≤ q[d(z, f(z′)) + d(z′, f(z))]

= 2qd(z, z′).

Since q < 1/2, it follows that z = z′, that is, the fixed point of the function f is unique. �

In 1972, Zamfirescu [54] connected Banach’s, Kannan’s and Chatterje’s theorems.

Theorem 9.5 (Zamfirescu [54]). Let (X, d) be a complete metric space and f : X → X be a map for which
there exist real numbers 0 ≤ α < 1, 0 ≤ β < 1 and γ < 1/2 such that, for each x, y ∈ X, at least one of the
following conditions is satisfied:

(z1) d(f(x), f(y)) ≤ αd(x, y);

(z2) d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))];

(z3) d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))].

Then the function f has a unique fixed point.

Proof. Let x, y ∈ X. Then at least one of the conditions (z1), (z2) or (z3) is satisfied. If (z2) is satisfied,
then we have

d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))]
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≤ β{d(x, f(x)) + [d(y, x) + d(x, f(x)) + d(f(x), f(y))]}.

This implies
(1− β)d(f(x), f(y)) ≤ 2βd(x, f(x)) + βd(x, y),

that is,

d(f(x), f(y)) ≤ 2β

1− β
d(x, f(x)) +

β

1− β
d(x, y).

Similarly, if (z3) is satisfied, we get the following estimate

d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))] ≤
≤ γ[d(x, f(x)) + d(f(x), f(y)) + d(y, x) + d(x, f(x))] ≤
≤ γ[2d(x, f(x)) + d(f(x), f(y)) + d(x, y)].

Hence we have

d(f(x), f(y)) ≤ 2γ

1− γ
d(x, f(x)) +

γ

1− γ
d(x, y).

We put

λ = max

{
α,

β

1− β
,

γ

1− γ

}
.

Then we have 0 ≤ λ < 1, and if (z2) or (z3) is satisfied for each x, y ∈ X, then

d(f(x), f(y)) ≤ 2λ · d(x, f(x)) + λ · d(x, y). (9.2)

In a similar way, it can be shown that if (z2) or (z3) is satisfied, then

d(f(x), f(y)) ≤ 2λ · d(x, f(y)) + λ · d(x, y). (9.3)

Obviously, (9.2) and (9.3) follow from (z1).
It follows from (9.2) that the function f has at least one fixed point. Now we prove the existence of a fixed
point of f . Let x0 ∈ X and

xn = fn(x0) for n = 1, 2, . . .

be the Picard iteration of f .
If x = xn and y = xn−1 are two successive approximations, then it follows from (9.3) that

d(xn+1, xn) ≤ λ · d(xn, xn−1).

So (xn)∞n=0 is a Cauchy sequence, and consequently convergent. Let u ∈ X be its limit. Then we have

lim
n→∞

d(xn+1, xn) = 0.

By the triangle inequality and (9.2), it follows that

d(u, f(u)) ≤ d(u, xn+1) + d(f(xn), f(u))

≤ d(u, xn+1) + λ · d(u, xn) + 2λd(xn, f(xn)),

and letting n→∞, we obtain d(u, f(u)) = 0, hence f(u) = u. �

Remark 9.6. If a function f satisfies the condition in Theorem 9.4, we write f ∈ (Z), in particular, if f
satisfies one of the conditions in (zi) for i = 1, 2, 3 in this theorem, then we write f ∈ (zi) for i = 1, 2, 3.

We consider the conditions (Z ′): there exist nonnegative functions a, b and c satisfying the following
condition

sup
x,y∈X

(a(x, y) + 2b(x, y) + 2c(x, y)) ≤ λ < 1,
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such that, for each x, y ∈ X,

d(f(x), f(y)) ≤ a(x, y)d(x, y) + b(x, y)(d(x, f(x)) + d(y, f(y)))

+ c(x, y)(d(x, f(y)) + d(y, f(x)));

and (Z ′′): There exists a constant h with 0 ≤ h < 1 such that, for all x, y ∈ X,

d(f(x), f(y)) ≤ hmax

{
d(x, y),

d(x, f(x)) + d(y, f(y))

2
,

d(x, f(y)) + d(y, f(x))

2

}
. (9.4)

It can be proved ([49]) that the conditions in (Z), (Z ′) and (Z ′′) equivalent.
We show that (Z) implies (Z ′).

If the function f and x, y ∈ X satisfy (z1), then we define a(x, y) = α and b = c = 0. If for x, y ∈ X, for
which the function f satisfies (z2), we define b(x, y) = β and a = c = 0, and similarly, in the case of (z3),
we define c(x, y) = γ and a = b = 0.

We show that (Z ′) implies (Z ′′).
We put

M(x, y) = max

{
d(x, y),

d(x, f(x)) + d(y, f(y))

2
,

d(x, f(y)) + d(y, f(x))

2

}
. (9.5)

Let f ∈ (Z ′). Then we have

d(f(x), f(y)) ≤ [a(x, y) + 2b(x, y) + 2c(x, y)]M(x, y) ≤ λM(x, y),

and f ∈ (Z ′′).
We show that (Z ′′) implies (Z).

For each x, y ∈ X, for which M(x, y) = d(x, y), the function f satisfies (z1) with α = h. If M(x, y) =
[d(x, f(x)) + d(y, f(y))]/2, then the function f satisfies (z2) with β = h/2, and the function f satisfies (z3)
with γ = h/2, if M(x, y) = [d(x, f(y)) + d(y, f(x))]/2. �

10. Ćirić’s generalized contraction

In [13], Ćirić generalized the well-known contractive condition and introduced a concept of a generalized
contraction defined as follows.

Definition 10.1 (Ćirić [13]). Let (X, d) be a metric space. A mapping f : X → X is a λ–generalized
contraction if, for all x, y ∈ X, there exist some nonnegative numbers q(x, y), r(x, y), s(x, y) and t(x, y) such
that

sup
x,y∈X

{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} = λ < 1,

and for all x, y ∈ X,

d(f(x), f(y)) ≤ q(x, y)d(x, y) + r(x, y)d(x, f(x)) + s(x, y)d(y, f(y))

+ t(x, y)(d(x, f(y)) + d(y, f(x))). (10.1)

Obviously, this condition is equivalent to the fact that there exists a constant h ∈ (0, 1) such that, for
all x, y ∈ X,

d(f(x), f(y)) ≤ hmax

{
d(x, y), d(x, f(x)), d(y, f(y)),



Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 87

d(x, f(y)) + d(y, f(x))

2

}
. (10.2)

The next example shows that (10.1) indeed generalizes (2.1).

Example 10.2. Let X = [0, 2] ⊆ R and

f(x) =


x

9
for 0 ≤ x ≤ 1

x

10
for 1 < x ≤ 2.

The map f does not satisfy (2.1) since, for x = 999/1000 and y = 1001/1000,

d(f(x), f(y)) =
981

90000
> 5 · 180

90000
= 5d(x, y).

But (10.1) holds for q(x, y) = 1/10, r(x, y) = s(x, y) = 1/4 and t(x, y) = 1/6 for all x, y ∈ X.

Example 10.3. Let X = [0, 10] ⊂ R and f(x) = 3/4 for each x ∈ X. For x = 0 and y = 8, the function
f satisfies (9.1) with q < 3. But the condition in (10.1) is satisfied on all of X with q(x, y) = 3/4 and
r(x, y) = s(x, y) = t(x, y) = 1/20.

Definition 10.4. Let (X, d) be a metric space, f : X → X be a map, and x ∈ X. An f–orbit of the element
x is the set O(x; f) defined by

O(x; f) = {fn(x) : n ∈ N0}.

If f is given, then the usual notation is O(x). Furthermore, for all n ∈ N, we define the set

O(x, n) = {x, f(x), f2(x), . . . , fn(x)}.

The space X is said to be an f–orbitally complete metric space if any Cauchy sequence in O(x; f) for x ∈ X
converges in X.

Obviously, every complete metric space is f–orbitally complete, but the converse implication does not
hold, in general. It is clear from the proof of Banach’s theorem that it is enough to assume that (X, d)
is f–orbitally complete instead of complete. The same remark applies for λ–generalized contractions, as is
stated in the following theorem.

Theorem 10.5 (Ćirić [13]). If f : X 7→ X is a λ–generalized contraction on an f–orbitally complete metric
space X, then, for any x ∈ X, the iterative sequence (fn(x)) converges to the unique fixed point u of f , and

d(fn(x), u) ≤ λn

1− λ
· d(x, f(x)).

Proof. For an arbitrary x ∈ X, we define the sequence (xn) by x0 = x and xn = f(xn−1) for n ∈ N.
Then we obtain from (10.1)

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ q(xn−1, xn)d(xn−1, xn)

+ r(xn−1, xn)d(xn−1, f(xn−1)) + s(xn−1, xn)d(xn, f(xn))

+ t(xn−1, xn)(d(xn−1, f(xn)) + d(xn, f(xn−1)))

= q(xn−1, xn)d(xn−1, xn) + r(xn−1, xn)d(xn−1, xn)

+ s(xn−1, xn)d(xn, xn+1) + t(xn−1, xn)d(xn−1, xn+1),

and moreover

d(xn, xn+1) ≤ (q(xn−1, xn) + r(xn−1, xn))d(xn−1, xn)
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+ s(xn−1, xn)d(xn, xn+1)

+ t(xn−1, xn)(d(xn−1, xn) + d(xn, xn+1)),

so

d(xn, xn+1) ≤ q(xn−1, xn) + r(xn−1, xn) + t(xn−1, xn)

1− s(xn−1, xn)− t(xn−1, xn)
d(xn−1, xn). (10.3)

Because of
q(x, y) + r(x, y) + t(x, y) + λs(x, y) + λt(x, y) ≤ λ,

we get
q(x, y) + r(x, y) + t(x, y)

1− s(x, y)− t(x, y)
≤ λ for all x, y ∈ X

and, combined with (10.3), it follows that

d(xn, xn+1) ≤ λd(xn−1, xn). (10.4)

We remark that (10.4) allows us to consider f as a contraction under special assumptions, and

d(xn, xn+1) ≤ λd(xn−1, xn) ≤ · · · ≤ λnd(x, f(x)).

Obviously, we have for all m ≥ n

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

λkd(x, f(x)),

hence

d(xn, xn+p) ≤
λn

1− λ
d(x, f(x)). (10.5)

implies that (xn) is a Cauchy sequence in O(x). Let z ∈ X denote its limit. It remains to show f(z) = z by
estimating d(f(z), f(xn)).

d(f(z), f(xn)) ≤ q(z, xn)d(z, xn) + r(z, xn)(d(z, xn+1) + d(xn+1, f(z)))

+ s(z, xn)d(xn, xn+1) + t(z, xn)(d(z, xn+1) + d(f(z), xn))

≤ λd(z, xn) + (r(z, xn) + t(z, xn))d(z, xn+1)

+ r(z, xn)d(f(xn), f(z)) + s(z, xn)d(xn, xn+1)

+ t(z, xn)(d(f(z), f(xn)) + d(f(xn), xn))

≤ d(z, xn) + λd(z, xn+1)

+ (r(z, xn) + t(z, xn))d(f(z), f(xn)) + λd(xn, xn+1)

≤ λ(d(z, xn) + d(z, xn+1) + d(xn, xn+1)) + λd(f(z), f(xn)).

Thus we have

d(f(z), f(xn)) ≤ λ

1− λ
[d(z, xn) + d(z, xn+1) + d(xn, xn+1)] .

that is, z is a fixed point of the function f . The uniqueness easily follows from (10.1) and the estimation
inequality is implied by (10.5). �

The contractive condition (10.1) for generalized contractions implies many others, thus Theorem 10.5
has numerous consequences among which we will state two analogous to Corollaries 2.8 and 2.10 of Banach’s
theorem.
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Theorem 10.6. If f : X → X is a map of an f–orbitally complete metric space (X, d) such that, for some
k ∈ N, fk is a λ–generalized contraction for all x ∈ X, then the iterative sequence (fn(x)) converges to a
unique fixed point z of f , and

d(fn(x), z) ≤ (λ′)nρ(x, f(x)), where λ′ = λ1/k

and ρ(x, f(x)) = max{λ−1d(f r(x), f r+k(x)) : r = 0, 1, . . . , k − 1}.

Proof. The existence of a unique fixed point directly follows from Theorem 10.5. It remains to estimate
d(fn(x), z) for each n ∈ N. Since n = mk + r for m = [n/k] and 0 ≤ r < k, we have

d(fn(x), z) = d(fmk(f r(x)), z) ≤ λm

1− λ
d(f r(x), fk(f r(x)))

= (λ1/k)mk+r−rd(f r(x), fk+r(x))

≤ (λ1/k)mk+r−kd(f r(x), f r+k(x))

= (λ1/k)nλ−1d(f r(x), f r+k(x)),

hence
d(fn(x), z) ≤ (λ1/k)n max{λ−1d(f r(x), f r+k(x)) : r = 0, 1, . . . k − 1}. �

As in the case of Banach’s theorem, we may consider some local properties of Theorem 10.5.

Theorem 10.7. Let f : B → X be a map of an f–orbitally complete metric space (X, d), where B =
Br(x0) = {x ∈ X : d(x0, x) ≤ r} for some x0 ∈ X and r > 0. If f is a λ–generalized contraction on B and

d(x0, f(x0)) ≤ (1− λ) · r, (10.6)

then the sequence (fn(x0)) converges to a unique fixed point z of f in B and

d(fn(x0), z) ≤ λn · r for λ = sup
x,y∈B

[q(x, y) + r(x, y) + 2t(x, y)].

Proof It is clear that xn ∈ B for all n ∈ N, due to (10.6) and mathematical induction. Analogously as in
the proof of Theorem 10.5, it follows that (fn(x0)) is a Cauchy sequence in B and its limit is a fixed point
of f . Inequality (10.1) guarantees uniqueness. �

11. The Reich and Hardy–Rogers theorems

In 1971, Reich [44] proved the following theorem which generalizes Banach’s and Kannan’s theorems.
(We note that for a = b = 0, we obtain Banach’s theorem, Theorem 2.2, and for a = b and c = 0, we obtain
Kannan’s theorem, Theorem 9.1).

Theorem 11.1 (Reich [44]). Let (X, d) be a complete metric space and f : X → X be a map for which
there exists nonnegative numbers a, b and c with a+ b+ c < 1 such that for all x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y)) + cd(x, y). (11.1)

Then the map f has a unique fixed point.

Proof. Let x ∈ X. We consider the sequence (fn(x)). If we put x = fn(x) and y = fn−1(x) in (11.1),
then we have for all n ≥ 1

d(f(fn(x)), f(fn−1(x))) ≤
ad(fn(x), f(fn(x))) + bd(fn−1(x), f(fn−1(x))) + cd(fn(x), fn−1(x)).
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Hence, we obtain
d(fn+1(x)), fn(x))) ≤ pd(fn(x), fn−1(x)),

where 0 ≤ p = (b+ c)/(1− a) < 1. It follows that

d(fn+1(x)), fn(x))) ≤ pnd(x, f(x)),

and for every m > n,

d(fm(x)), fn(x))) ≤ pn

1− p
· d(x, f(x)).

Thus (fn(x)) is a Cauchy sequence, and there exists z ∈ X with z = limn→∞ f
n(x).

We are going to show f(z) = z. It suffices to show limn→∞ f
n+1(x) = f(z). When we choose x = fn(x)

and y = z in (11.1), then we have for all n ≥ 1

d(fn+1(x)), f(z)) ≤ ad(fn(x), fn+1(x)) + bd(z, f(z)) + cd(fn(x), z)

≤ ad(fn(x), fn+1(x)) + bd(fn+1(x), f(z)) + bd(fn+1(x), z) + cd(fn(x), z)

≤ apnd(x, f(x)) + bd(fn+1(x), f(z)) + bd(fn+1(x), z) + cd(fn(x), z).

Thus we obtain for n→∞

d(fn+1(x)), f(z)) ≤ apnd(x, f(x)) + bd(fn+1(x), z) + cd(fn(x), z)

1− b
→ 0.

We are going to show that the mapf has a unique fixed point.
If we assume that x, y ∈ X with x 6= y are fixed points of the map f , then we have

d(x, y) = d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y)) + cd(x, y) = cd(x, y),

which implies x = y. �

Example 11.2. Let X = [0, 1] have the natural metric and the map f : X → X be defined by f(x) = x/3 for
0 ≤ x < 1 and f(1) = 1/6. Then the map f does not satisfy Banach’s condition, since it is not continuous;
neither does it satisfy Kannan’s condition, since

d(f(0), f(1/3)) =
1

2
[d(0, f(0)) + d(1/3, f(1/3))] .

But the map f satisfies the condition in(11.1), for instance, for a = 1/6, b = 1/9 and c = 1/3.

Corollary 11.3 (Reich [44]). Let (X, d) be a complete metric space and fn : X → X for n = 1, 2, . . . be
a sequence of maps satisfying the condition in (11.1) with the same constants a, b and c and with the fixed
points un ∈ X. We define the map f : X → X by f(x) = limn→∞ fn(x) for x ∈ X. Then the map f has a
unique fixed point u ∈ X and u = limun→∞ = u.

Proof. Since the metric d is a continuous function, it follows that the function f satisfies the condition
in (11.1), and therefore has a unique fixed point u ∈ X. We note that

d(un, u) = d(fn(un), f(u)) ≤ d(fn(un), fn(u)) + d(fn(u), f(u))

≤ ad(un, fn(un)) + bd(u, fn(u)) + cd(un, u) + d(fn(u), f(u)).

Hence we have

d(un, u) ≤ (b+ 1)d(fn(u), f(u))

1− c
→ 0 (n→∞). �

Hardy and Rogers [25] improved some of Reich’s results [44] including the following theorem.
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Theorem 11.4 (Hardy and Rogers [25]).
Let (X, d) be metric space and f : X → X be a map such that for all x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y))

+ cd(x, f(y)) + ed(y, f(x)) + hd(x, y), (11.2)

where a, b, c, e, h ≥ 0 and α = a+ b+ c+ e+ h.

(i) If (X, d) is a complete metric space and α < 1, then the map f has a unique fixed point.

(ii) If (X, d) is compact, f is continuous and the condition in (11.2) is replaced by

d(f(x), f(y)) < ad(x, f(x)) + bd(y, f(y))

+ cd(x, f(y)) + ed(y, f(x)) + hd(x, y), (11.3)

for all x 6= y, and α = 1, then f has a unique fixed point.

The following lemma is essential in the proof of this theorem, but for the reader’s convenience, we state
it separately.

Lemma 11.5. We assume that (11.2) is satisfied and α < 1. Then there exists β < 1 such that

d(f(x), f2(x)) ≤ βd(x, f(x)). (11.4)

If α = 1 and (11.3) is satisfied, then

x 6= f(x) implies d(f(x), f2(x)) ≤ βd(x, f(x)). (11.5)

Proof. In the first case, for α < 1, we put y = f(x), and observe

d(f(x), f2(x)) ≤ a+ h

1− b
· d(x, f(x)) +

c

1− b
· d(x, f2(x)). (11.6)

which, along with d(f(x), f2(x)) ≥ d(f2(x), x)− d(f(x), x) and (11.6), leads to

d(f2(x), x)− d(f(x), x) ≤ a+ h

1− b
· d(x, f(x)) +

c

1− b
· d(x, f2(x)), (11.7)

that is,

d(f2(x), x) ≤ 1 + a+ h− b
1− b− c

· d(x, f(x)). (11.8)

By (11.9), inserting (11.8) in (11.6), we obtain

d(f(x), f2(x)) ≤ a+ c+ h

1− b− c
· d(x, f(x)). (11.9)

and replacing a and c by b and e (which is permitted because of the symmetry of the metric d), we get

d(f(x), f2(x)) ≤ b+ e+ h

1− a− e
· d(x, f(x)). (11.10)

If we put

β = min

{
a+ c+ h

1− b− c
,
b+ e+ h

1− a− e

}
, (11.11)

then (11.4) is satisfied.
The remainder of the lemma is shown analogously. �
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Proof of Theorem 11.4. To prove Part (i), we first observe that, by (11.4), for all m > n,

d(fm(x), fn(x)) ≤ d(fm(x), fm−1(x)) + · · ·+ d(fn+1(x), fn(x))

≤ βn(l + β + · · ·+ βm−n)d(x, f(x))

≤ βn

1− β
· d(x, f(x)).

Hence (fn(x)) is a Cauchy sequence and z ∈ X is its limit. It remains to show f(z) = z. This follows
directly from limn→∞ f

n+1(x) = f(z).
he following inequality holds by (11.2)

d(z, f(z)) ≤ d(fn+1(x), f(z)) + d(fn+1(x), z) (11.12)

≤ ad(fn(x), fn+1(x)) + bd(z, f(z)) (11.13)

+ cd(fn(x), f(z)) + (e+ 1)d(fn+1(x), z) + hd(fn(x), z). (11.14)

Letting n→∞ in (11.12), we obtain

d(z, f(z)) ≤ (b+ c)d(z, f(z)),

and b+ c < 1 implies z = f(z). The uniqueness clearly follows from (11.2).
We note that, under the assumptions in (ii), there is some y ∈ X such that

inf{d(x, f(x)) : x ∈ X} = d(y, f(y)).

Because of (11.5), it follows that y = f(y). The uniqueness is shown as previously discussed. �

12. Ćirić’s quasi-contraction

In 1971, Ćirić [14] used a concept of generalized contraction to replace the linear combination of distances
in (10.1) by their maximum, and defined a new class of contractive mappings called quasi–contractions.

Definition 12.1 (Ćirić [14]). A map f : X → X of a metric space (X, d) is a quasi-contraction if there
exists some λ with 0 < λ < 1 such that

d(f(x), f(y)) ≤ λ ·max{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))} (12.1)

for all x, y ∈ X.

Obviously if a mapping f satisfies condition(2.1), then (12.1) also holds. An example presented by Ćirić
shows that the converse implication is not true, in general.

Example 12.2 (Ćirić [14]). Let

M1 =
{m
n

: m = 0, 3k, n = 3k + 1, k ∈ N0

}
M2 =

{m
n

: m = 3k, n = 3k + 2, k ∈ N0

}
and M = M1 ∪M2 be the metric space with the usual metric d(x, y) = |x − y| for all x, y ∈ M . The map
f : X → X defined by

f(x) =


3x

5
(x ∈M1)

x

8
(x ∈M2)

is a quasi-contraction for λ = 3/5, but not a contraction (x = 1, y = 1/2).
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Example 12.3. Let X = [0, 3] ∪ [4, 5] have the natural metric and the map f : X → X be defined by

f(x) =

{
0 if x ∈ [0, 3]

3 if x ∈ [4, 5].

Then, for each x ∈ [4, 5], we have d(x, f(x)) ≤ 2 and d(f(x), f2(x)) = 3. So we have d(f(x), f2(x)) >
d(x, f(x)). We show that the function f satisfies the condition in (12.1).
Let x ∈ [0, 3] and y ∈ [4, 5]. Then we have d(f(x), f(y)) = 3 and d(y, f(x)) ≥ 4. Hence it follows that
d(f(x), f(y)) = (3/4)4 ≤ (3/4) max{d(x, f(y)), d(y, f(x))}.
Thus the function f satisfies (12.1) for λ = 3/4 and all x, y ∈ X.

Example 12.4. Let f(x) = 0 for all 0 ≤ x < 1 and f(1) = 1/2. Then the function f satisfies (12.1) but
not (10.1) [49]. We note that

d

(
f

(
1

2

)
, f(1)

)
=

1

2
=
d
(

1
2 , f(1)

)
+ d

(
1, f(1

2)
)

2
,

d

(
1

2
, 1

)
= d

(
1

2
, f

(
1

2

))
= d(1, f(1)) =

1

2
,

d(f(x), f(y)) = 0 for all x 6= y and x, y 6= 1,

d(f(x), f(1)) =
1

2
≤ 3

4
· d(1, f(x)) =

3

4
for x 6= 1.

Theorem 12.5 (Ćirić [14]). If f : X → X is a quasi–contraction on an f–orbitally complete metric space
(X, d), then f has a unique fixed point z in X, and the iterative sequence (fn(x)) converges to z for any
x ∈ X. Moreover,we have

d(fn(x), z) ≤ λn

1− λ
d(x, f(x)).

Proof. We put α(x, n)=diam(O(x, n)), and α(x)=diam(O(x)) where diam denotes a diameter of a set.
Then we have

α(f(x), n− 1) = diam({f(x), f2(x), . . . , fn(x)}) ≤ λα(x, n). (12.2)

Obviously, if α(f(x), n− 1) = d(f j(x), fk(x)) for 1 ≤ j < k ≤ n, then (12.1) yields

α(f(x), n− 1) = d(f(f j−1(x)), f(fk−1(x)))

≤ λmax{d(f j−1(x), fk−1(x)), d(f j−1(x), f j(x)), d(fk−1(x), fk(x)),

d(f j−1(x), fk(x)), d(fk−1(x), f j(x))}
≤ λdiam({f j−1(x), f j(x), . . . , fk(x)})
≤ λdiam({x, f(x), . . . , fn(x)})
= λα(x, n),

and (12.2) holds.
Furthermore, we obtain from (12.2),

α(x, n) = d(x, fk(x)) for some k ≤ n. (12.3)

It follows from (12.2), (12.3) and the triangle inequality that

α(x, n) = d(x, fk(x)) ≤ d(x, f(x)) + d(f(x), fk(x))

≤ d(x, f(x)) + α(f(x), n− 1)

≤ d(x, f(x)) + λα(x, n),
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and

α(x, n) ≤ 1

1− λ
· d(x, f(x)). (12.4)

Since limn→∞ α(x, n) = α(x), (12.4) implies

α(x) ≤ 1

1− λ
· d(x, f(x)), (12.5)

so the f–orbit of x has a finite diameter.
We write βn(x) for the diameter of α(fn(x)).
The sequence (βn(x)) is non–increasing and bounded, so there exists limn→∞ βn(x) = β(x) and β(x) ≤ βn(x)
for all n ∈ N.
Letting n→∞ in (12.2), we obtain

α(f(x)) ≤ λα(x), (12.6)

hence
βn+1(x) = α(f(fn(x))) ≤ λα(fn(x)) = λβn(x) (n ∈ N)

and
β(x) ≤ λβ(x),

so β(x) = 0 and (fn(x)) is a Cauchy sequence in X.
Let z = limn→∞ f

n(x). Because of (12.1), we have

d(f(u), f(fn(x))) ≤
λmax

{
d(u, fn(x)), d(u, f(u)), d(fn(x), fn+1(x)), d(u, fn+1(x)), d(fn(x), f(u))

}
,

hence
d(f(u), u) ≤ λ d(u, f(u)),

that is, f(u) = u. The uniqueness also follows from (12.1).
We obtain from (12.6), α(fn(x)) ≤ λnα(x) and combined with (12.5)

α(fn(x)) ≤ λn

1− λ
d(x, f(x)).

If n,m ∈ N and m ≥ n, then

d(fn(x), fm(x)) ≤ α(fn(x)) ≤ λn

1− λ
d(x, f(x)),

and when m→∞, then

d(fn(x), z) ≤ λn

1− λ
d(x, f(x)). �

13. Caristi’s Theorem

There are many extensions of Banach’s contraction principle, one of the most studied ones is that by
Caristi [11], 1976. Caristi’s theorem [11] may be motivated by the following consideration. If (X, d) is a
metric space and T : X → X is a contraction with a Lipschitz constant k ∈ [0, 1), then we have

d(x, T (x)) =
1

1− k
· d(x, T (x))− k

1− k
· d(x, T (x))

≤ 1

1− k
· d(x, T (x))− 1

1− k
· d(T (x), T (T (x)))

= φ(x)− φ(T (x)),



Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 95

for all x ∈ X, where φ(x) = (1− k)−1d(x, T (x)).
It is well known that Caristi’s theorem (or the Caristi–Kirk, or the Caristi– Kirk–Browder theorem) is

equivalent to Ekeland’s variation principle [19] which is very important because of its numerous applications.
The ordinal proof of the Caristi–Kirk theorem is rather complicated and, in the literature, there are several
different proofs of that theorem.

We mention that the map ϕ : X → E (E ⊂ R) is lower semicontinuous at x ∈ X if, for every sequence (xn),
it follows from limn→∞ xn = x that ϕ(x) ≤ lim infn→∞ ϕ(xn). The map ϕ : X → E is lower semicontinuous
on X if it is lower semicontinuous at every x ∈ X.

Theorem 13.1 (Caristi [11]). Let (X, d) be a complete metric space, T : X → X and φ : X → [0,∞) be
lower semicontinuous such that

d(x, T (x)) ≤ φ(x)− φ(T (x)) for all x ∈ X. (13.1)

Then T has a fixed point.

Proof (Ćirić [15]). For each x ∈ X, we put

P (x) =
{
y ∈ X : d(x, y) ≤ φ(x)− φ(y)

}
,

α(x) = inf {φ(y) : y ∈ P (x)} .

Since x ∈ P (x), P (x) is a nonempty set and 0 ≤ α(x) ≤ φ(x).
Let x ∈ X. We define the sequence (xn) in X such that x1 = x, and if x1, x2, . . . , xn are already defined then
we define xn+1 ∈ P (xn) such that φ(xn+1) ≤ α(xn) + 1/n. Hence the sequence (xn) satisfies the following
conditions:

d(xn, xn+1) ≤ φ(xn)− φ(xn+1);

α(xn) ≤ φ(xn+1) ≤ α(xn) + 1/n. (13.2)

Since (φ(xn)) is a decreasing sequence of real numbers, there exists α ≥ 0 such that

α = lim
n→∞

φ(xn) = lim
n→∞

α(xn). (13.3)

Let k ∈ N. It follows from (13.2) that there exists Nk such that φ(xn) < α + 1/k for every n ≥ Nk. Hence
the monotonicity of the sequence (φ(xn)) for m ≥ n ≥ Nk implies α ≤ φ(xm) ≤ φ(xn < α+ 1/k, that is,

φ(xn)− φ(xm) < 1/k for each m ≥ n ≥ Nk. (13.4)

We have from the triangle inequality and the inequality in (13.2)

d(xn, xm) ≤
m−1∑
s=n

d(xs, xs+1) ≤ φ(xn)− φ(xm). (13.5)

Now (13.4) implies

d(xn, xm) < 1/k for each m ≥ n ≥ Nk.

Since (xn) is a Cauchy sequence and X is a complete metric space the sequence converges to some u ∈ X.
Since φ is lower semicontinuous, we obtain from (13.5) that

φ(u)≤ lim inf
m→∞

φ(xm)≤ lim inf
m→∞

[φ(xn)− d(xn, xm)]=φ(xn)− d(xn, u),

and so
d(xn, u) ≤ φ(xn)− φ(u).



Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 96

Hence we have u ∈ P (xn) for all n ∈ N and α(xn) ≤ φ(u). Now (13.3) implies α ≤ φ(u). On the other hand,
since φ is lower semicontinuous, (13.3) implies φ(u) ≤ lim infn→∞ φ(xn) = α. Hence we have φ(u) = α.
Since u ∈ P (xn) for each n ∈ N, (13.1) implies Tu ∈ P (u), that is,

d(xn, Tu) ≤ d(xn, u) + d(u, Tu)

≤ φ(xn)− φ(u) + φ(u)− φ(Tu)

= φ(xn)− φ(Tu).

Hence we have Tu ∈ P (xn) for each n ∈ N. It follows that

φ(Tu) ≥ α(xn) for each n ∈ N.

Now (13.3 implies
φ(Tu) ≥ α.

Since (13.1) implies φ(Tu) ≤ φ(u) and φ(u) = α, we have

φ(u) = α ≤ φ(Tu) ≤ φ(u),

and so φ(Tu) = φ(u). Now (13.1) implies

d(u, Tu) ≤ φ(u)− φ(Tu) = 0,

that is, Tu = u. �

Theorem 13.2 (Ekeland [19], 1972). Let φ : X → R be an upper semicontinuous function on the complete
metric space (X, d). If φ is bounded above then there exists u ∈ X such that

φ(u) < φ(x) + d(u, x) for x ∈ X with x 6= u. (13.6)

Proof (Ćirić [15]). We are going to show that u from the proof of Theorem 13.1 is the desired point.
Using the same notations for x 6= u we have to prove x /∈ P (u). We suppose that this is not the case, that
is, for some v 6= u, we have v ∈ P (u). Then 0 < d(u, v) ≤ φ(u)− φ(v) implies φ(v) < φ(u) = α.
Since

d(xn, v) ≤ d(xn, u) + d(u, v)

≤ φ(xn)− φ(u) + φ(u)− φ(v)

= φ(xn)− φ(v),

it follows that v ∈ P (xn). Hence we have

α(xn) ≤ φ(v) for all n ∈ N.

We obtain for n→∞
α ≤ φ(v),

which is a contradiction to φ(v) < α = φ(u). Hence we have x /∈ P (u) for x ∈ X with x 6= u, and so

x 6= u implies d(u, x) > φ(u)− φ(x). �

Proof (Brézis and Browder [8]). By Theorem 13.2 there exists u ∈ X which satisfies the condition in
(13.6). It follows that Tu = u, for Tu 6= u would imply φ(Tu)−φ(u) > −d(u, Tu), which contradicts (13.1).
We note that Theorem 13.2 can be proved by Theorem 13.1. Indeed, if we assume that the conclusion of
Theorem 13.2 is not true, then, for each x ∈ X, there exists y ∈ X with y 6= x such that φ(y) − φ(x) ≤
−d(x, y). Hence we may define a map T : X → X which satisfies (13.1), but does not have a fixed point. �

We are going to present a proof of Caristi’s theorem given by Kirk and Saliga [31]. First we prove a
result by Brézis and Browder [8], the well–known Brézis –Browder [8] principle of ordering.

Let (X,≤) be a partially ordered set. We denote S(x) = {y ∈ X : x ≤ y} for x ∈ X. A sequence (xn)
in X is said to be increasing if xn ≤ xn+1 for each n ∈ N.
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Theorem 13.3 (Brézis and Browder [8]). Let the function φ : X → R satisfy the following conditions:

(1) x ≤ y implies φ(x) ≤ φ(y);

(2) for every increasing sequence (xn) in X with φ(xn) ≤ C <∞ for each n ∈ N, there exists y ∈ X such
that xn ≤ y for each n ∈ N;

(3) for each x ∈ X there exists u ∈ X such that x ≤ u and φ(x) < φ(u).

Then φ(S(x)) is a bounded set for each x ∈ X.

Proof. For a ∈ X, let
p(a) = sup

b∈S(a)
φ(b).

We are going to show p(x) = +∞ for each x ∈ X. We assume that p(x) < ∞ for some x ∈ X. We define
a sequence (xn) by induction such that x1 = x, xn+1 ∈ S(xn) and p(xn) ≤ φ(xn+1) + (1/n) for each n ∈ N.
Since φ(xn+1) ≤ p(x) <∞, the condition in (2) implies that there exists y ∈ X such that xn ≤ y for each n.
It follows from the condition in (3) that there exists u ∈ X such that y ≤ u and φ(y) < φ(u). Since xn ≤ u,
we have φ(u) ≤ p(xn) for all n. Furthermore, we have xn+1 ≤ y, so φ(xn+1) ≤ φ(y), and so

φ(u) ≤ p(xn) ≤ φ(xn+1) + (1/n) ≤ φ(y) + (1/n) for all n ∈ N,

hence φ(u) ≤ φ(y), which is a contradiction. �

Theorem 13.4. Let (X,�) be a partially ordered set, x ∈ X and S(x) = {y ∈ X : x � y}. We assume that
the map ψ : X → R satisfies the following conditions:

(a) x � y with x 6= y implies ψ(x) < ψ(y);

(b) for each increasing sequence (xn) in X, for which ψ(xn) ≤ C <∞ for each n ∈ N, there exists y ∈ X
such that xn � y for each n ∈ N;

(c) for each x ∈ X, the set ψ(S(x)) is bounded above.

Then, for each x ∈ X there exists x′ ∈ S(x) such that x′ is maximal in X, that is, {x′} = S(x′).

Proof. We apply Theorem 13.3 to the set X = S(x); since the conditions in (1) and (2) of Theorem
13.3 are satisfied, and the conclusion of the theorem does not hold, it follows that the condition in (3) is not
satisfied for some x′ ∈ S(x). Hence we have S(x′) = {x′}. �

We remark that the map ϕ : X → R is lower semicontinuous from above if xn ∈ X for n = 1, 2, . . . ,
limn→∞ xn = x and (ϕ(xn)) ↓ r imply ϕ(x) ≤ r.

Theorem 13.5 (Kirk and Saliga [31]).
We assume that (X, d) is a complete metric space and T : X → X is an arbitrary map such that we have
for each x ∈ X

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x)), (13.7)

where the map ϕ : X → R is bounded above and lower semicontinuous. Then the map T has a fixed point
in X.

Proof. We introduce Brondsted’s partial order � on X as follows: For each x, y ∈ X, we have

x � y if and only if d(x, y) ≤ ϕ(x)− ϕ(y),

and let ψ = −ϕ. Then the condition in (a) of Theorem 13.4 is satisfied, and the condition in (c) follows
from the fact that the map ϕ is bounded below. To show the condition in (b), we assume that (xn) is an
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increasing sequence in (X,�) such that ψ(xn) ≤ C <∞ for each n. Then (ϕ(xn)) is a decreasing sequence
in R, and there exists r ∈ R such that limn→∞ ϕ(xn) = r. Since (ϕ(xn)) is a decreasing sequence, we have
for each m > n

lim
n,m→∞

d(xn, xm) ≤ lim
n,m→∞

[ϕ(xn)− ϕ(xm)] = 0.

Hence (xn) is a Cauchy sequence in X. It follows that there exists x ∈ X such that limn→∞ xn = x. From
ϕ(xn) ↓ r and ϕ(x) ≤ r, it follows that

d(xn, x) ≤ lim
m
d(xn, xm) ≤ lim

m
[ϕ(xn)− ϕ(xm)]

= ϕ(xn)− r ≤ ϕ(xn)− ϕ(x).

Hence x is an upper bound for the sequence (xn) in (X,�) and so we have proved the condition in (b). Now
it follows by Theorem 13.4 that (X,�) has a maximal element x′. Since (13.7) implies x′ � T (x′), we have
T (x′) = x′. �

Siegel [52] proved in 1977 in an original way, a generalized version of Caristi’s theorem. Here we present
some of his results [52].

Let (X, d) be a complete metric space, φ : X → R+, the set of nonnegative real numbers, and g : X → X
be a not necessarily continuous map such that d(x, g(x)) ≤ φ(x)− φ(g(x)) for all x ∈ X.

If a sequence of functions fi for i ≤ 1 <∞ is given, then we define the product

∞∏
k=1

fkx = lim
k→∞

fkfk−1 · · · f1x,

if the limit exists, and call it the countable decomposition of the given sequence of functions.

Definition 13.6. Let Φ = {f : f : X → X and d(x, f(x)) ≤ φ(x) − φ(f(x))}. We put Φg = {f : f ∈
Φ and φ(f) ≤ φ(g)}.

Lemma 13.7. Let φ be an upper semi continuous function, and (xi) be a sequence in X such that d(xi, xi+1) ≤
φ(xi)−φ(xi+1) for each i. Then there exists x ∈ X such that x = limi→∞ xi and d(xi, x) ≤ φ(xi)−φ(x) for
each i.

Proof. Since the sequence (φ(xi))i is not increasing and bounded below by zero, and since d(xi, xj) ≤
φ(xi)− φ(xj) for i ≤ j, (xi) is a Cauchy sequence in X. Let x = limxi. Since φ is an upper semicontinuous
function, it follows

d(xi, x) = lim
j→∞

d(xi, xj) ≤ φ(xi)− lim
j→∞

φ(xj) ≤ φ(xi)− φ(x). �

Lemma 13.8. The sets Φ and Φg are closed by the composition of functions and if φ is an upper semicon-
tinuous function then the sets Φ and Φg are closed by the countable composition of sequences of functions.

Proof. We prove that the sets Φ and Φg are closed by the composition of functions. If f1, f2 ∈ Φ, then
we have

d(x, f2f1(x)) ≤ d(x, f1(x)) + d(f1(x), f2f1(x))

≤ (φ(x)φ(f1(x))) + (φ(f1(x))− φ(f2f1(x)))

= φ(x)− φ(f2f1(x)).

Hence we have f2f1 ∈ Φ. If f1 ∈ Φg, then φ(f1(x)) − φ(f2(f1(x))) ≥ 0 implies φ(f2f1) ≤ φ(g), and so
f2f1 ∈ Φg.
The remainder of the proof follows from the fact that, for each x ∈ X, the sequence (xi) = (fifi−1 · · · f1)(x)
satisfies the conditions of Lemma 13.7. �



Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 99

Definition 13.9. We introduce the following notations:

(1) For A ⊂ X the diameter of A is defined as

δ(A) = sup
xi,xj∈A

(d(xi, xj)).

(2) r(A) = infx∈A(φ(x));

(3) Let Φ′ ⊆ Φ. For each x ∈ X, we put Sx = {fx : f ∈ Φ′}.

Lemma 13.10. We have δ(Sx) ≤ 2(φ(x)− r(Sx)).

Proof. We have

d(f1(x), f2(x)) ≤ d(x, f1(x)) + d(x, f2(x))

≤ φ(x)− φ(f1(x)) + φ(x)− φ(f2(x))

≤ 2(φ(x)− r(Sx)).�

The main result of Siegel’s paper [52] is the following theorem.

Theorem 13.11 (Siegel [52], 1977). . Let Φ′ ⊆ Φ be sets of functions closed by the composition of functions.
Also let x0 ∈ X.

(a) If the set Φ′ is closed for the composition of a countable sequence of functions, then there exists f ∈ Φ′

such that x = f(x0) and g(x) = x for all g ∈ Φ′.

(b) If the elements of Φ′ are continuous functions, then there exists a sequence of functions fi ∈ Φ′ and
x = limi→∞ fifi−1 · · · f1(x0) such that g(x) = x for each g ∈ Φ′.

Proof. Let (εi) be a sequence of positive real numbers converging to zero and ε > 0. Then there exists
f1 ∈ Φ′ such that φ(f1(x0)) − r(Sx0) < ε/2. We put x1 = f1(x0). Since the set Φ′ is closed under the
composition of functions it follows that Sx1 ⊆ Sx0 and

δ(Sx1) ≤ 2(φ(x1)− r(Sx1)) ≤ 2(φ(f1(x0))− r(Sx0)) < ε1.

Continuing in this way, we obtain a sequence of function fi such that xi = fi(xi−1), Sxi+1 ⊆ Sxi and
δ(Sxi) < εi.
We know from the condition in (a) that there exists f =

∏∞
i=1 fi ∈ Φ′. Let x = f(x0). Since x =∏∞

j=i+1 fj(xi), it follows that x ∈ Sxi for all i. On the other hand, limi→∞ δ(Sxi) = 0 implies x = ∩∞i=0Sxi .
Now we prove that g(x) = x for each g ∈ Φ′. This is a consequence of the fact that g(x) ∈ Sxi for each i,
and because of g(x) = g(

∏∞
j=i+1 fj(xi)).

We know from the condition in (b) that there exists

x = lim
i→∞

fifi−1 · · · f1(x0) = lim
i→∞

xi.

Since (xj)j>i ⊆ Si for each i, it follows that x ∈ Si, where Si is the closure of Si. Since δ(Si) = δ(Si) it
follows that x = ∩∞i=0Si.
We are going to show g(x) = x for each g ∈ Φ′. We note that g(xi) ∈ Sxi for each i. Since g is a continuous
function, for each ε > 0, there exists an i0 such that

{x ∈ X : d(g(x), x) < ε}
⋂
Sxi 6= ∅ for all i > i0.

Hence if i > i0, it follows that d(g(x), x) < ε+εi. Now εi → 0 implies d(g(x), x) ≤ ε, and since ε is arbitrary,
we have g(x) = x. �

Remark 13.12. In the previous theorem, in the condition in (b), we may take Φ′ = {gn}, the set of continuous
functions and their finite iterations. Then we have as in Banach’s contraction theorem

x = lim
n→∞

gn(x0).
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14. A Theorem by Bollenbacher and Hicks

The following result is related to Caristi’s theorem 13.1.

Theorem 14.1 (Eisenfeld and Lakshmikantham [22]).
Let (X, d) be a metric space and f : X → X be a map. Then there exists a map φ : X 7→ [0,∞) for which

d(x, f(x)) ≤ φ(x)− φ(f(x)) for x ∈ X, (14.1)

if and only if the series
∞∑
n=0

d(fn(x), fn+1(x)) (14.2)

converges for each x ∈ X.

Proof. We assume that the condition in (14.1) is satisfied. We show that the series in (14.2) converges.
This follows from the fact that, for each n ∈ N,

n∑
k=0

d(fk(x), fk+1(x)) = d(x, f(x)) + · · ·+ d(fn−1(x), fn(x))

≤ (φ(x)− φ(fx)) + · · ·+ (φ(fn−1(x))− φ(fn(x)))

= φ(x)− φ(fn(x)) ≤ φ(x).

If the series (14.2) converges for each x ∈ X, the we define a map φ : X → [0,∞) by

φ(x) =

∞∑
k=0

d(fk(x), fk+1(x)) for all x ∈ X.

Clearly this map φ satisfies the condition in (14.1). �

Let x ∈ X and O(x,∞) = {x, f(x), f2(x), . . . } be the orbit of x. The map G : X → [0,∞) is said to be
f–orbitally upper semicontinuous at x if, for each sequence (xn) in O(x,∞), it follows from limn→∞ xn = u
that G(u) ≤ lim infn→∞G(xn).

We note that if the condition in (14.1) is satisfied for each y ∈ (x,∞), then the series (14.2) converges
for x, since the sequence of partial sums is nondecreasing and bounded by φ(x).

In 1988, Bollenbacher and Hicks [5] proved the following very interesting theorem, the corollaries of
which include many generalizations of Banach’s fixed point theorem.

Theorem 14.2 (Bollenbacher and Hicks [5]). Let (X, d) be a metric space, and f : X → X and φ : X →
[0,∞). We assume that there exists x such that

d(y, f(y)) ≤ φ(y)− φ((f(y))) for each y ∈ O(x,∞), (14.3)

and that each Cauchy sequence in O(x,∞) converges to some point in X. Then we have:

(1) limn→∞ f
n(x) = x exists;

(2) d(fn(x), x) ≤ φ(fn(x));

(3) f(x) = x if and only if G(x) = d(x, f(x)) is f–orbitally upper semicontinuous at x;

(4) d(fn(x), x) ≤ φ(x) and d(x, x) ≤ φ(x).
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Proof. It follows from Theorem 14.1 that the series

∞∑
k=0

d(fk(x), fk+1(x))

converges.
We prove that (fn(x)) is a Cauchy sequence. This follows since, for each m > n,

d(fn(x), fm(x)) ≤ d(fn(x), fn+1(x)) + · · ·+ d(fm−1(x), fm(x))

=

m−1∑
k=n

d(fk(x), fk+1(x)),

and from the fact that the series
∑∞

k=n d(fk(x), fk+1(x)) converges. Hence there exist x ∈ X such that the
condition in (1) is satisfied. Now from

0 ≤ d(fn(x), fm(x)) ≤
m−1∑
k=n

d(fk(x), fk+1(x))

≤
m−1∑
k=n

[φ(fk(x))− φ(fk+1(x))] = φ(fn(x))− φ(fm(x)) ≤ φ(fn(x)),

the condition in (2) follows as m→∞.
To prove the condition in (3), we assume that xn = fn(x) → x as (n → ∞). If G is f–orbitally upper
semicontinuous at x, then we have

0 ≤ d(x, f(x)) = G(x) ≤ lim inf
n→∞

G(xn) = lim inf
n→∞

d(fn(x), fn+1(x)) = 0,

and so f(x) = x.
Now we assume f(x) = x and that (xn) is a sequence in O(x,∞) such that limn→∞ xn = x. Then we have

G(x) = d(x, f(x)) = 0 ≤ lim inf
n→∞

d(xn, f(xn)) = lim inf
n→∞

G(xn),

and so G is an f–orbitally upper semicontinuous function at x.
The condition in (4) follows from

d(x, fn(x)) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−1(x), fn(x))

≤ [φ(x)− φ(f(x))] + [φ(f(x))− φ(f2(x))] + . . .

+ [φ(fn−1(x))− φ(fn(x))]

= φ(x)− φ(fn(x)) ≤ φ(x),

and since as n→∞, we get d(x, x) ≤ φ(x). �

Corollary 14.3. ([26]) Let (X, d) be a complete metric space and 0 < k < 1. We assume that, for
f : X → X, there exists x such that

d(f(y), f2(y)) ≤ kd(y, f(y)) for each y ∈ O(x,∞). (14.4)

Then we have

(1) limn→∞ f
n(x) = x exists;

(2) d(fn(x), x) ≤ kn(1− k)−1d(x, f(x));
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(3) f(x) = x if and only if G(x) = d(x, f(x)) is an f–orbitally upper semicontinuous function at x;

(4) d(fn(x), x) ≤ (1− k)−1d(x, f(x)) and d(x, x) ≤ (1− k)−1d(x, f(x)).

Proof. Let φ(y) = (1− k)−1d(y, f(y)) for all y ∈ O(x,∞). If we take y = fn(x) in (14.4), then we get

d(fn+1(x), fn+2(x)) ≤ kd(fn(x), fn+1(x)),

and so
d(fn(x), fn+1(x))− kd(fn(x), fn+1(x)) ≤ d(fn(x), fn+1(x))− d(fn+1(x), fn+2(x)).

Hence we have

d(fn(x), fn+1(x)) ≤ 1

(1− k)
· [d(fn(x), fn+1(x))− d(fn+1(x), fn+2(x))],

that is,
d(y, f(y)) ≤ φ(y)− φ(f(y)).

Now the conditions in (1), (3) and (4) follow immediately from Theorem 14.2.
We remark that (14.4) implies d(fn(x), fn+1(x)) ≤ knd(x, fx), and Theorem 14.2 implies

d(fn(x), x) ≤ φ(fn(x)) =
1

1− k
· d(fn(x), fn+1(x)) ≤ kn

1− k
· d(x, f(x)),

hence (2). �

Remark 14.4. We remark that it is not necessary for φ to be an upper semicontinuous function, but it is
enough that the condition in (14.1) is satisfied only on O(x,∞) for some x. Furthermore, it can be easier
to check that G is an upper semicontinuous function than to check this for the function φ. Even if φ is an
upper semicontinuous function and (14.1) is satisfied for each x ∈ X, it is not necessary in Caristi’s theorem
that fx = x, but only f(x0) = x0 for some x0 in X.

Example 14.5. Let X = [0, 1] and φ(x) = x for all x ∈ X. We define the map f by

f(x) =


0 for x ∈

[
0,

1

2

]
x

2
+

1

4
for x ∈

(
1

2
, 1

]
.

For each x ∈ [0, 1/2], we have d(x, f(x)) = d(x, 0) = x and φ(x) − φ(f(x)) = φ(x) − 0 = x − 0 = x. If
x ∈ (1/2, 1], then d(x, f(x)) = x/2− 1/4 = φ(x)− φ(f(x)). Hence we have d(x, f(x)) = φ(x)− φ(f(x)) for
all x ∈ X. We note that 0 is the only fixed point of the function f . If x > 1/2, then lim fn(x) = 1/2 6=
f(1/2) = 0.

Example 14.6. Let X = {(x, y) : 0 ≤ x, y ≤ 1}, d be the usual metric on X and f(x, y) = (x, 0) for all
(x, y) ∈ X. Then f(f(p)) = f(p) for all p ∈ X and 0 = d(f(p), f2(p)) ≤ (1/2)d(p, f(p)). As in Corollary
14.3, let φ(p) = 2d(p, f(p)) and d(p, f(p)) ≤ φ(p)− φ(f(p)). This example shows that, even if both maps f
and φ are continuous, then f may have more fixed points than one.

Example 14.7. We define the map f : [−1, 1]→ [−1, 1] by

f(x) =

{
−1 for x < 0
x

4
for x ≥ 0.

We note that d(f(x), f2(x)) ≤ (1/4)d(x, f(x)) for all x ∈ [−1, 1]. As in Corollary 14.3, let φ(x) =
(4/3)d(x, f(x)) for all x ∈ [−1, 1]. If x < 0, then we have limn→∞ f

n(x) = −1 = f(−1), and if x > 0,
then we have limn→∞ f

n(x) = 0 = f(0). Hence 0 and −1 are the only fixed points of the map f . In this
example, f and φ are discontinuous functions, φ(x) = (4/3)d(x, f(x)) is an upper semicontinuous function
and d(x, f(x)) ≤ φ(x)− φ(f(x)).
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15. Mann iteration

The continuous function f : [0, 1]→ [0, 1] with f(x) = −x for x ∈ [0, 1] has a unique fixed point 0. The
Picard iteration sequence (fn(x0)) diverges for all initial values x0 6= 0.

The Mann iterations are more general than the Picard iterations, that is, the Picard iterations are special
cases of the Mann iterations which Mann introduced in his paper [37] in 1953.

Let E be a convex compact subset of a Banach space X, and T : E → E be a continuous map. By
Schauder’s fixed point theorem [51], there exists at least one fixed point of the function T , that is, there
exists p ∈ E such that T (p) = p.

In 1953, Mann ([37]) studied the problem of constructing a sequence (xn) in E which converges to a
fixed point of T . Usually an arbitrary initial value x1 ∈ E is chosen, and then the sequence of successive
iterations (xn) of x1 defined by

xn+1 = T (xn) for n = 1, 2, . . . (15.1)

is considered. If this sequences converges, then its limit is a fixed point of the function T .

Definition 15.1 (Dotson [18]). Let E be a vector space, C be a convex subset of E, f : C → C be a map
and x1 ∈ C. We assume that the infinite matrix A = [anj ] satisfies the conditions

(A1) anj ≥ 0 for all j ≤ n and anj = 0 for j > n;

(A2)
∑n

j=1 anj = 1 for each n ≥ 1;

(A3) limn→∞ anj = 0 for each j ≥ 1.

We define the sequence (xn) by xn+1 = f(vn), where

vn =
n∑
j=1

anjxj .

The sequence (xn) is called the Mann iterative sequence, or simply, Mann iteration, and usually denoted by
M(x1, A, f).

Hence the matrix A in Definition 15.1 has the following form

A =


1 0 0 . . . 0 0
a21 a22 0 . . . 0 0
. . . . . .
an1 an2 . . . ann 0 0
. . . . . .

 .

Theorem 15.2 ([37]). If one of the sequences (xn) or (vn) is convergent, then they both converge. In this
case, they converge to the same limit point which is a fixed point of the function T .

Proof. Let limn→∞ xn = p. Since A is a regular matrix, it follows that limn→∞ vn = p. The continuity of
the function T implies limn→∞ T (vn) = T (p), and from T (vn) = xn+1, it follows that T (p) = p. If we assume
limn→∞ vn = q, then limn→∞ xn+1 = T (q), and the regularity of the matrix A implies limn→∞ vn = T (q).
Hence we have T (q) = q. �

If the sequences (xn) and (vn) are not convergent, then, since E is a compact set, each of the two
sequences has at least two distinct accumulation points.

Let X and V be the sets of accumulation points of the sequences (xn) and (vn), respectively.
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Theorem 15.3 ([37]). If the matrix A satisfies the conditions in (A1), (A2) and (A3) and

lim
n→∞

n∑
k=1

|an+1,k − an,k| = 0, (15.2)

then X and V are closed and connected sets.

Proof. The set V is closed and compact, and by (15.2), limn→∞(vn+1 − vn) = 0. Hence the set V is
connected. Since the function T is continuous and X = T (V ), it follows that X is a closed and connected
set. �

Theorem 15.4 ([37]). The set V is a subset of co(X), where co(X) denotes the convex hull of the set X.

Proof. By Mazur’s theorem [38], co(X) is a closed set. All but finitely many terms of the sequence (xn)
are elements of each open set that contains the set co(X). Hence for all sufficiently large n, vn are arbitrarily
close to the the set X. Hence the limit point of each convergent subsequence of the sequence (vn) is an
element of the set co(X). �

Example 15.5. Let A be the Cesàro matrix of order 1, that is,

A =



1 0 0 0 . . .

1

2

1

2
0 0 . . .

1

3

1

3

1

3
0 . . .

. . . . . . . .
1

n

1

n

1

n
. . .

1

n
0 0 . . .

. . . . . . . .


.

The matrix A satisfies all the assumptions for a matrix in this subsection. In this case, the Mann method
M(x1, A, T ) is usually referred to as the mean value method, where the initial value is x1 ∈ E and

xn+1 = T (vn) and vn =
1

n

n∑
k=1

xk for all n = 1, 2, . . . .

We note

vn+1 − vn =

n
n+1∑
k=1

xk − (n+ 1)
n∑
k=1

xk

(n+ 1)n
=
T (vn)− vn
n+ 1

. (15.3)

In many special problems, the iterative method M(x1, A, T ) converges even when the method Tnx1

diverges.

Example 15.6. Let E = {x ∈ R2 : ‖x‖ ≤ 1}, where ‖ · ‖ is the Euclidean norm. Furthermore, let A be
the Cesàro matrix of order 1 and the function T : E → E be the rotation about the center by the angle
π/4. Then the Picard iteration Tn(x1) does not converge for any x1 ∈ E \ {0}. Using Mann’s method the
M(x1, A, T ), the sequences (xn) and (vn) always converge (on a spiral) to the center, independently of the
choice of the initial value x1.

Definition 15.7 ([18]). The Mann iterative method M(x1, A, f) is called normal Mann iterative method if
the matrix A = [anj ], besides the conditions (A1), (A2) and (A3), also satisfies the next two conditions

(A4) an+1,j = (1− an+1,n+1)anj for (j = 1, 2, . . . , n;n = 1, 2, . . . );
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(A5) either ann = 1 for all n, or ann < 1 for all n > 1.

In his paper [18], Dotson proved the following theorem.

Theorem 15.8 (Dotson [18]). The following statements are true:

(a) The Mann method M(x1, A, f) is normal if and only if the matrix A = [anj ] satisfies the conditions in
(A1), (A2), (A4), (A5) and (A′3), where

∞∑
n=1

ann is a divergent series. (A′3)

(b) The matrices A = [anj ] (except for the identity matrix) in all normal Mann methods M(x1, A, f) are
constructed as follows:
Let 0 ≤ cn < 1 for all n = 1, 2, . . . and the series

∑∞
n=1 cn be divergent. Then the matrix A = (anj) is

defined by by 
a11 = 1, a1j = 0 for j > 1;
an+1,n+1 = cn for n = 1, 2, . . .
an+1,j = ajj

∏n
i=j(1− ci) for j = 1, 2, . . . , n

an+1,j = 0 for j > n+ 1 and n = 1, 2, . . .

(c) The sequence (vn) in the normal Mann method M(x1, A, f) satisfies

vn+1 = (1− cn)vn + cnf(vn) for n = 1, 2, . . . , (15.4)

where
cn = an+1,n+1 for all n. (15.5)

Proof. The statement in (a) follows from the following well–known result on infinite products, namely,
that if 0 ≤ cn < 1 for all n, then limn→∞

∏n
k=1(1− ck) = 0 if and only if the series

∑∞
k=1 ck diverges.

To prove the statement in (b), we note that if the matrix A satisfies the conditions in (A1)–(A5), then it
satisfies the condition in (b). It can be proved that if the matrix A satisfies the conditions in (b), where
cn = an+1,n+1 for all n ∈ N, then it satisfies the conditions in (A1)–(A5).
The proof of (c) follows if we use the condition in (A4) and the definitions of the sequences (vn) and (xn)
in Mann’s method M(x1, A, T ). �

Example 15.9. For each λ with 0 ≤ λ < 1, let the infinite matrix Aλ = (anj) be defined by
an1 = λn−1

anj = λn−j(1− λ) for j = 2, 3, . . . , n,
anj = 0 for j > n and n = 1, 2, 3, . . . ,

,

where, for λ = 0, we put ann = 1 for all n. Hence A0 is the infinite identity matrix. It can be shown that
for each λ with 0 ≤ λ < 1, M(x1, Aλ, T ) is a normal Mann method with cn = an+1,n+1 = 1 − λ for all
n = 1, 2, 3 . . . . Hence the sequence (vn) in the normal Mann method M(x1, Aλ, T ) is defined by

vn+1 = λvn + (1− λ)T (vn) for alln.

Let Sλ = λI + (1− λ)T (where I is the identity map). Hence we have

vn+1 = Sλ(vn) = Snλ (v1) = Snλ (x1) for all n.

We note that S0 = T and, in this case, the sequence (vn) is obtained by Picard’s iteration (Tn(x1)). The
sequence (Sn1/2(x1)) of Picard’s iterations of the map S1/2 = (1/2)(I + T ) was studied by Krasnoselskii [32]

and Edelstein [21], and the sequence (Snλ (x1)) of Picard’s iterations of the map Sλ for 0 < λ < 1 was studied
by Schäfer [50], Browder and Petryshyn [9], and Opial [40].

In the literature, mainly the normal Mann iterative method is studied.
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16. Continuous functions on [a, b] ⊂ R

Now we consider the case when the Banach space is the real line R, and the convex compact set E is a
closed interval and A is the Cesàro matrix of order 1.

Theorem 16.1 (Mann [37]). Let T : [a, b] → [a, b] be a continuous map which has a unique fixed point
p ∈ [a, b] and A be the Cesàro matrix of order 1. Then Mann’s sequence M(x1, A, T ) converges to p for each
x1 ∈ [a, b].

Proof. It follows from (15.3) that vn+1 − vn → 0 as n → ∞. Since T is a continuous function and p is
the unique fixed point of T , it follows that T (x)− x > 0 for x < p and T (x)− x < 0 for x > p. Hence, for
each δ > 0, there exists ε > 0 such that |x− p| ≥ δ implies |T (x)− x| ≥ ε. It follows from (15.3) that

vn+1 = v1 +
n∑
k=1

T (vk)− vk
k + 1

.

Now from our previous considerations, we have limn→∞ vn = p, and by Theorem 15.2, we obtain limn→∞ xn =
p. �

In higher dimensional spaces, results similar to that of Theorem 16.1 have not been obtained.

Remark 16.2. Reinermann [45] defined a summability matrix A as follows

ank =


ck
∏n
j=k+1(1− cj) for k < n

cn for k = n

0 for k > n,

(16.1)

where the real sequence (cn) satisfies the following conditions

(i) c0 = 1,

(ii) 0 < cn < 1 for n ≥ 1,

(iii)
∑∞

k=0 ck diverges.

It can be proved that A is a regular matrix, and satisfies the following conditions

0 ≤ ank ≤ 1 for n, k = 0, 1, 2, . . . (16.2)
n∑
k=0

ank = 1 for n = 0, 1, 2, . . . (16.3)

Reinermann also considered the condition cn = 1, since he included the identity matrix in his considerations.
Since the identity matrix is of no special interest, in all interesting applications, it is assumed that cn < 1.
Then he considered the iterative scheme x0 = x0 ∈ E and xn+1 =

∑n
k=0 ankf(xk), which can be written as

xn+1 = (1− cn)xn + cnf(xn). (16.4)

It is well known by Brower’s fixed point theorem that a continuous map from [a, b] to [a, b] has at least
one fixed point. Reinermann proved the following result.

Theorem 16.3 (Reinermann [45], 1969). Let a, b ∈ R, a < b, E = [a, b] and f : E → E be a continuous
map with at most one fixed point. If the matrix A is defined by (16.1) and the sequence (cn) satisfies the
conditions (i)–(iii) and lim cn = 0, then the iterative scheme (16.4), for x0 ∈ [a, b], converges to the fixed
point of f .
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Proof. Without loss of generality, we may assume a = 0 and b = 1. By Brouwer’s fixed point theorem
and our assumption, there exists a unique fixed point x ∈ [0, 1] of the function f . Now we have

for all y ∈ [0, 1] with y < x it follows that f(y)− y > 0; (16.5)

for all y ∈ [0, 1] with (y > x) it follows that f(y)− y < 0. (16.6)

If x = 0, then we obviously have (16.5). If x > 0 and if there exists y1 ∈ [0, 1] with y1 < x such that
f(y1)− y1 ≤ 0, then f(0)− 0 = f(0) ≥ 0 implies that there exists z ∈ [0, y1] such that f(z) = z. Now z 6= x,
which is a contradiction to the uniqueness of the fixed point.
The case (16.6) is proved analogously.
There are two alternatives I. and II. for the sequence (xn):
I. There exists n1 ∈ N such xn1 = x.
Then xn = x for all n ≥ n1 and the theorem is proved.
II. For each n ∈ N, we have xn 6= x.
In this case, we have the following three possibilities:

1. There exists n0 ∈ N such that xn < x for all n > n0. Then we have

xn+1 − xn = cn(f(xn)− xn),

and (16.5) implies that (xn) is a monotone increasing sequence; so the sequence converges, since xn ≤ 1
for all n. By Theorem 15.2, and since the function f has only one fixed point x ∈ [0, 1], it follows that
limn xn = x.

2. There exists m0 ∈ N such that xn > x for all n ≥ m0. In this case, it follows by (16.6) that
limn→∞ xn = x, as in Case 1..

3. We assume that the possibilities 1. and 2. are not true. Let ε > 0 be given. We choose n0 ∈ N such
that

|xn+1 − xn| < ε for all n ≥ n0.

This is possible, since
|xn+1 − xn| ≤ 2cn and lim

n→∞
cn = 0.

We are going to prove that there exists n1 ∈ N with n1 ≥ n0 such that |xn1 − x| < ε, that is,

there exists n1 ≥ n0 such that − ε < xn1 − x < ε. (16.7)

If (16.7) is not true, then

xn ≤ x− ε or xn ≥ x+ ε for each n ≥ n0. (16.8)

Now, if xn0 ≤ x− ε, then xn ≤ x− ε for all n ≥ n0 (because of |xn+1− xn| < ε), that is, the condition
in 1. is satisfied. Analogously, if xn0 ≥ x + ε, then xn ≥ x + ε for all n ≥ n0 (again because of
|xn+1 − xn| < ε), that is, the condition in 2. is satisfied. Hence, in all cases, the conditions in 1. or
2. are satisfied. So we have shown (16.7).
We are going to prove that we have |xn − x| < ε for all n ≥ n1. This is true for n = n1. If n ≥ n1 and
if |xn − x| < ε, then we have the following possibilities A. and B.:

A. x− ε < xn < x. Then we have (a) or (b) for xn+1:

(a) xn+1 < x. In this case, xn+1 − xn = cn(f(xn)− xn) and (16.5) imply xn+1 − xn > 0, Hence
we have

|xn+1 − x| = x− xn+1 < x− xn = |xn − x| < ε.



Eberhard Malkowsky and Vladimir Rakočević, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 64–112. 108

(b) xn+1 > x. Now we have

|xn+1 − x| = xn+1 − x < xn+1 − xn = |xn+1 − xn| < ε.

B. x < xn < x+ ε. Now (16.6) implies the conclusion as in A., that is, |xn+1 − x| < ε.
Hence |xn+1− x| < ε. It follows by mathematical induction that |xn− x| < ε for all n ≥ n1, thus
limn xn = x. �

We note that if we put cn := 1/(n+ 1) for all n, then Theorem 16.3 implies Theorem 16.1.
In 1971, Franks and Marzec [24] showed that the condition of the uniqueness of the fixed point p in

Theorem 16.1 is not necessary.
We note that any continuous function f : [0, 1] → [0, 1] has at least one fixed point by Brouwer’s fixed

point theorem.

Theorem 16.4 (Franks and Marzec ([24])). Let f : [0, 1] → [0, 1] be a continuous function. Then the
iterative sequence

xn+1 = f(x̃n) for n = 1, 2, . . . (16.9)

x̃n =
n∑
k=1

xk
n

for n = 1, 2, . . . , (16.10)

x̃1 = x1 ∈ [0, 1], (16.11)

converges to a fixed point of the function f in the interval [0, 1].

Proof. It follows from (16.9) and (16.10) that

x̃n+1 =
f(x̃n)− x̃n
n+ 1

+ x̃n for n = 1, 2, . . . . (16.12)

Since x̃n and f(x̃n) ∈ [0, 1] for all n, we have

|x̃n+1 − x̃n| ≤
1

n+ 1
for n = 1, 2, . . . . (16.13)

It suffices to prove that this sequence is convergent and its limit ξ ∈ [0, 1] is a fixed point of the function f .

1. We prove that the sequence (x̃n) is convergent. The sequence (x̃n) is in [0, 1], and so has at least one
accumulation point. We assume that the sequence (x̃n) has two distinct accumulation points ξ1 and
ξ2 with ξ1 < ξ2.

a. We are going to show that we have, from the assumption above, f(x) = x for all x ∈ (ξ1, ξ2). Let
x∗ ∈ (ξ1, ξ2). If f(x∗) > x∗, then, since f is a continuous function, there exists δ ∈ (0, (x∗−ξ1)/2)
such that |x−x∗| < δ implies f(x) > x. Hence |x̃n−x∗| < δ implies f(x̃n) > x̃n. Thus we obtain
from (16.12) that

|x̃n − x∗| < δ implies x̃n+1 > x̃n. (16.14)

By (16.13), there exists N such that

|x̃n+1 − x̃n| < δ for n = N,N + 1, . . . . (16.15)

Since ξ2 > x∗ is an accumulation point of the sequence (x̃n), we can choose N such that x̃N > x̃∗.
It follows from (16.14) and (16.15) that

x̃n > x∗ − δ > ξ1 for n = N,N + 1, . . . .

Thus ξ1 is not an accumulation point of the sequence (x̃n), which contradicts our assumption.
If f(x∗) < x∗, then, similarly as above, we obtain that ξ2 is not an accumulation point of the
sequence (x̃n), which again is a contradiction. Hence f(x∗) = x∗ for each x∗ ∈ (ξ1, ξ2).
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b. Let us prove that ξ1 and ξ2 are not accumulation points of the sequence (x̃n). We note that

x̃n /∈ (ξ1, ξ2) for n = 1, 2, . . . . (16.16)

If f(x̃n) = x̃n, then (16.12) implies x̃m = x̃n for all m > n. So neither ξ1 nor ξ2 can be an
accumulation point of the sequence (x̃n). Furthermore, (16.13) and (16.16) imply that there
exists a natural number M such that x̃M ≥ ξ2 for all n > M . Hence ξ is not an accumulation
point of the sequence (x̃n). It follows from x̃M ≤ ξ1 that x̃n < ξ1 < ξ2 for all n > M . Hence ξ2

is not an accumulation point of the sequence (x̃n). Consequently the sequence (x̃n) cannot have
two distinct accumulation points, and so this sequence is convergent. We put limn x̃n = ξ ∈ [0, 1].

2. We show f(ξ) = ξ. We assume f(ξ) > ξ. Let

ε =
f(ξ)− ξ

2
> 0.

Since the sequence (x̃n) converges to ξ and the function f is continuous, there exists a natural number
N such that f(x̃n)− x̃n > ε for each n > N . It follows from (16.12) that

x̃n+1 − x̃n =
f(x̃n)− x̃n
n+ 1

>
ε

n+ 1
.

Hence we have

lim
m→∞

(x̃N+m − x̃N ) = lim
m→∞

m−1∑
n=N

(x̃n+1 − x̃n)

≥ lim
m→∞

m−1∑
n=N

ε

n+ 1
=∞.

So x̃n → ∞ as n → ∞, which contradicts the fact that x̃m ∈ [0, 1] for all m. If f(ξ) < ξ, then it can
be shown that x̃n → −∞ as n→∞, which again is a contradiction. So we have f(ξ) = ξ. �

Rhoades ([48], [47] and [16]), among other things, generalized many results presented in this section. He
noted the importance of the condition in (15.2).

Let X be a normed space, E be a nonempty, closed, bounded and convex, subset of X and f : E → E
be a map which has at least one fixed point in E, and let A be an infinite matrix. We consider the iterative
scheme

x0 = x0 ∈ E (16.17)

xn+1 = f(xn) for n = 0, 1, 2, . . . (16.18)

xn =

n∑
k=0

ankxk for n = 1, 2, 3, . . . . (16.19)

The question is which are the necessary and sufficient conditions for the matrix A such that the above
iterative scheme converges to a fixed point of the function f?

Many results were obtained by the use of the iterative scheme of the form above (16.17)–(16.19) for
various classes of infinite matrices.

An infinite matrix A is said to be regular if x ∈ c and xn → l as n→∞ implies An(x) =
∑∞

k=0 ankxk → l
as n→∞. The matrix A is triangular if all entries below the main diagonal are equal to zero. We consider
regular triangular matrices A which satisfy

0 ≤ ank ≤ 1 for all n, k = 0, 1, 2, . . . (16.20)
n∑
k=0

ank = 1 for all n = 0, 1, 2, . . . . (16.21)
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The conditions in (16.20) and (16.21) are necessary for xn, xn ∈ E. The scheme (16.17)–(16.19) is a Mann
method [37].

Barone proved in [4] (see (15.2)) that a necessary condition that a regular matrix A maps all bounded
sequence into sequences with the property that the set of their accumulation points is connected is the
following

lim
n

∞∑
k=0

|ank − an−1,k| = 0. (16.22)

In [46], Rhoades made the following assumption.
Assumption Let f : [a, b] → [a, b] be a continuous function, A be a regular matrix which satisfies the
conditions in (16.20)–(16.22). Then the iterative scheme defined by (16.17)–(16.19) converges to a fixed
point of the function f .

In the next example, he showed that the assumption above does not hold if the condition (16.22) removed.

Example 16.5. Let A be be the identity matrix, [a, b] = [0, 1], f(x) = 1− x and x0 = 0.

Rhoades showed that the statement above is true for the large class of weighted means matrices. (For
the definition and properties of these matrices see [25, p. 57].)

The weighted means method is a triangular method of the matrix A = (ank) defined by ank = pk/Pn,
where p0 > 0, pn ≥ 0 for n > 0, Pn =

∑n
k=0 pk and Pn → ∞ as n → ∞. Then the matrix A satisfies the

condition in (16.22) if and only if pn/Pn → 0 as n→∞.

Theorem 16.6 (Rhoades [48]).Let A be the matrix of a regular weighted means method which satisfies the
condition in (16.22). Let E = [a, b] and f : E 7→ E be a continuous map. Then the iterative scheme (16.17)–
(16.19) converges to a fixed point of the function f .

Proof. Without loss of generality, we may suppose that [a, b] = [0, 1]. Every regular weighted means
method satisfies the conditions in (16.20) and (16.21). By (16.19), we have

xn+1 =
pn+1

Pn+1
(f(xn)− xn) + xn for all n. (16.23)

Since xn, f(xn) ∈ [0, 1], it follows from (16.23) that

|xn+1 − xn| ≤
pn+1

Pn+1
→ 0 (n→∞).

Now, by the proof of Theorem 16.4, the sequence (xn) is convergent.
We have to show that the sequence converges to a fixed point of the function f . Let z = limn→∞ xn. Then
we have limn→∞ f(xn) = f(z). It follows from xn+1 = f(xn) for each n ∈ N that limn→∞ xn = f(z). Since
A is a regular matrix, we obtain z = limn→∞ xn = limn→∞An(x) = f(z). �

Theorem 16.4 can be proved by taking pn = 1 in Theorem 16.6.
Theorem 16.6 implies Theorem 16.3. Furthermore the mentioned iterative schemes were defined inde-

pendently by Outlaw and Groetsch [41], and Dotson [18]. We note that Theorem 15.8 (that is, [18, Theorem
2]) characterizes the method in (16.1) and (i)–(iii).

If we choose cn = (n+ 1)−1, the previous statement is Theorem 16.1.
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[27] V. Istrǎţesku. On a measure of noncompactness. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 16:195–197, 1972. 1
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