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Abstract

In 1928, at the International Mathematical Congress held in Bologna (Italy), Frigyes Riesz introduced
the notion of vector lattice on function spaces and, talked about linear operators that preserve the join
operation, nowadays known in the literature as Riesz homomorphisms (see [32]). In this survey we review
the behaviors of some non-linear join-preserving Riesz space-valued functions, and we show how existing
addition dependent results can be proved in these environments mutatis mutandis. (We kindly refer the
reader to the papers [1, 2, 3, 4, 6, 7, 8, 9, 10, 5] for more information.)

Keywords: Banach lattices, optimal measure, optimal average, dual Orlicz spaces, functional equation,
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1. Motivations, historical background and introduction

1.1. The motivations

By splitting Mathematics into two, the group of addition-related environments and the group of addition-
free environments, we then ask the question to know whether there are addition-dependent environments
and if any, what results they contain that can be proved in addition-free environments, the proofs being
carried out mutatis-mutandis.

The collection of the present results aims to provide some answers to the above series of questions in the
affirmative. In fact, we consider mappings whose target sets are lattices and show how existing addition-
dependent results can be proved similarly in lattice environments. In the early 90’s we substituted with the
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lattice join operation, the addition in the definition of measure as well as in the Lebesgue integral to obtain
lattice-dependent operators which behave similarly as their counterparts in Measure Theory (sometimes
under restraints), in the sense that existing major theorems in Measure Theory are also proved with the
addition replaced by the join (or supremum). It is worth also to turn our interest to what make these
two groups of environments different from each other, yet similar can their results be. The next targetted
environment is the famous Cauchy functional equation. Replacing the addition by lattice operations the
Hyers-Ulam stability problem can be posed. In this case also, the various solutions obtained for such problem
are the same as their counterparts in the literature. Furthermore, on group structure separation theorem
can also be proved when the target set is a lattice [10]. To illustrate the divergence of the above two groups,
there are characterizations of various properties of measurable functions [3], as well as the characterization
of an arbitrary infinite σ-algebra to be equinumerous with a power set [4].

2. Historical backgrounds and notations

2.1. About the convergence of function sequences

Augustin Louis Cauchy in 1821 published a faulty proof of the false statement that the pointwise limit
of a sequence of continuous functions is always continuous. Joseph Fourier and Niels Henrik Abel found
counter examples in the context of Fourier series. Dirichlet then analyzed Cauchy’s proof and found the
mistake: the notion of pointwise convergence had to be replaced by uniform convergence.
The concept of uniform convergence was probably first used by Christoph Gudermann. Later his pupil Karl
Weierstrass coined the term gleichmäßig konvergent (German: uniform convergence) which he used in his
1841 paper Zur Theorie der Potenzreihen, published in 1894. Independently a similar concept was used
by Philipp Ludwig von Seidel and George Gabriel Stokes but without having any major impact on further
development. G.H. Hardy compares the three definitions in his paper Sir George Stokes and the concept of
uniform convergence and remarks: Weierstrass’s discovery was the earliest, and he alone fully realized its
far-reaching importance as one of the fundamental ideas of analysis. For more materials about these facts
we refer to [33] or
http://en.wikipedia.org/wiki/Uniform convergence.

Ever since many other types of convergence have been brought to light. We can list some few of them:
discrete and equal convergence introduced by Á. Császár and M. Laczkovich in 1975 (cf. [14, 15, 16]),
topologically speaking the weak and strong convergence, the latest being at the origin of the so-called
Banach spaces, which are very broad and interesting classes of functions, indeed.

2.2. Riesz spaces

A vector space over the field of real line endowed with a partial ordering is called a Riesz space if the
following clauses are met:

1. the algebraic structure of the vector space and the ordering are compatible, i.e. the ordering is translation
invariant and positive homogenious (referred to as a vector lattice),

2. every finite subset of the space has a least upper bound called the supremum.

It can be seen that a vector lattice is a Riesz space if and only if every pair of elements in the space has
an infimum (cf. [11, Aliprantis and Burkinshaw, Lemma 1.2]). The next very important properties enjoyed
by Riesz spaces are:

a. Every Riesz space is a distributive lattice.

b. The positive cone of any Riesz space is generating, i.e. every element of the space can be expressed as
the differerence of two elements of the positive cone. (For more see [28].)

This last point means that working on the positive cone of a Riesz space is just as working on the whole
space.
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The notion of vector lattice was introduced by Frigyes Riesz on function spaces at the International
Mathematical Congress in Bologna (1928), which was publised two years later (cf. [32]). Around the
mid-thirties Riesz was relayed by Hans Freudenthal (cf. [20]) and L.V. Kantorovich (cf. [24, 25]) by
simultaneously laying the strict axiomatic foundation of the theory of Riesz spaces. This new concept has
grown very rapidly in the 1940s and early 50s, thanks to Japanese and Russian schools which were created
to cultivate this young theory. (Cf. [11, Aliprantis and Burkinshaw] for more historical background.) At
the earliest stages rather algebraic aspect of the theory was studied. The analytical aspect started with a
series of articles by W.A.J. Luxemburg and A.C. Zaanen which can be found in the book by Aliprantis and
Burkinshaw, reference [89]. Another aspect of the theory of Riesz spaces is topological (cf. [19, Fremlin]).
We would also like to stress the important place supremum preserving linear operators (so-called Riesz
homomorphisms) occupy in the literature.

2.3. Notations.

? N denotes the set of positive integers.

? R denotes the set of real numbers.

? R+ denotes the set of non-negative real numbers.

? χ (B) stands for the characteristic function of the set B.

? |B| designates the cardinality of the set B.

?
∨

and ∨ (respectively,
∧

and ∧) stand for the maximum (respectively the minimum) operator.

? P := P<∞ ∪ P∞ will denote the set of all optimal measures defined on measurable space (Ω, F), with
both Ω and F being infinite sets, where P<∞ (resp. P∞) denotes the set of all optimal measures whose
generating systems are finite (resp. countably infinite).

? For every A ∈ F , we write A for the complement of A.

? A ⊂ B means set A is a proper subset of set B.

? A ⊆ B means set A is a subset of set B.

? The power set of set A will be denoted by P (A) or 2A.

We would like to note that our approach of dealing with Riesz spaces seems new. The results we present
here are selected from [1, 2, 3, 4, 6, 8, 9, 7, 10, 5] and they all fall outside the scope of Riesz homomorphisms.

3. Optimal measures and the structure theorem

By replacing the addition in the definition of (probability) measure by the supremum we expect to obtain
a non-additive set function which behaves almost like a (probability) measure. To this end normalizing
properties and the continuity from below are necessary to have similar effects as in the case of measure.

3.1. Optimal measure

Definition 3.1 ([1], Definition 0.1). A set function p : F → [0, 1] will be called optimal measure if it satisfies
the following three axioms:

Axiom 1. p (Ω) = 1 and p (∅) = 0.

Axiom 2. p (B ∪ E) = p (B) ∨ p (E) for all measurable sets B and E.

Axiom 3. p is continuous from above, i.e. whenever (En) ⊂ F is a decreasing sequence, then p

( ∞⋂
n=1

En

)
=

lim
n→∞

p (En) =
∞∧
n=1

p (En).
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The triple (Ω, F , p) will be referred to as an optimal measure space. For all measurable sets B and C
with B ⊂ C, the identity

p (C\B) = p (C)− p (B) + min {p (C\B) , p (B)} (3.1)

holds, and especially for all B ∈ F ,

p
(
B
)

= 1− p (B) + min
{
p (B) , p

(
B
)}
.

In fact, it is obvious (via Axiom 2) that,

p (B) + p (C\B) = max {p (C\B) , p (B)}+ min {p (C\B) , p (B)}
= p (C) + min {p (C\B) , p (B)} .

Lemma 3.2 ([1], Lemma 0.1). Let (Bn) ⊂ F be any sequence tending increasingly to a measurable set B,
and p an optimal measure. Then lim

n→∞
p (Bn) = p (B).

Proof. The lemma will be proved if we show that for some n0 ∈ N, the identity p (B) = p (Bn) holds true
whenever n ≥ n0. Assume that for every n ∈ N, p (B) 6= p (Bn), which is equivalent to p (Bn) < p (B), for
all n ∈ N. This inequality, however, implies that p (B) = p (B\Bn) for each n ∈ N. But since sequence
(B\Bn) tends decreasingly to ∅, we must have that p (B) = 0, a contradiction which proves the lemma.

It is clear that every optimal measure p is monotonic and σ-subadditive.
The following example was given in [1], Example 3.1 and its check was left as an exercise.

Example 3.3. The function Φ : 2N → [0, 1] defined by Φ (A) = 1
minA is an optimal measure (where

min ∅ =∞ by convention).

Proof. The normalization properties are obvious. We show that Φ is a join homomorphism. In fact, let
A, B ∈ 2N be arbitrary. Then as min(A ∪B) = min {minA; minB} it ensues that

Φ(A ∪B) =
1

min {minA; minB}
=

1

minA
∨ 1

minB
= Φ(A) ∨ Φ(B).

To check the continuity from above, pick arbitrarily a sequence (An) ⊂ 2N which tends decreasingly to some
subset A of N. Then for all natural numbers n and from the trivial identity An = A ∪ (An \ A) we have
Φ(An) = Φ(A)∨Φ(An \A). But since sequence (An \A)n∈N tends deacreasingly to the empty set, it follows
that lim

n→∞
min(An \A) =∞ which yields

lim
n→∞

Φ(An \A) = lim
n→∞

1

min(An \A)
= 0.

Consequently,

lim
n→∞

Φ(An) =

∞∧
n=1

Φ(An) = Φ(A) ∨

( ∞∧
n=1

Φ(An \A)

)
= Φ(A).

Example 3.4 ([1], Example 0.1). Let (Ω, F) be a measurable space, (ωn) ⊂ Ω be a fixed sequence, and
(αn) ⊂ [0, 1] a given sequence tending decreasingly to zero. The function p : F → [0, 1] , defined by

p (B) = max {αn : ωn ∈ B} (3.2)

is an optimal measure.
Moreover, if Ω = [0, 1] and F is a σ-algebra of [0, 1] containing the Borel sets, then every optimal measure
defined on F can be obtained as in (3.2).
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Proof of the moreover part. We first prove that if B ∈ F and p (B) = c > 0, then there is an x ∈ B which
satisfies p ({x}) = c. To do this let us show that there exists a nested sequence of intervals I0 ⊃ I1 ⊃ I2 ⊃ . . .
such that |In| = 2−n and p (B ∩ In) = c, for every n ∈ N∪{0}. In fact, let I0 = [0, 1]. If In has been defined
then let In = E ∪H, where E and H are non-overlapping intervals with |E| = |H| = 2−n−1. Obviously, we
may choose In+1 = E or H. By the continuity from above we have p (

⋂∞
n=1 (B ∩ In)) = c > 0. In particular,

B ∩ (
⋂∞
n=1In) 6= ∅. This implies that B ∩ (

⋂∞
n=1In) = {x} and p ({x}) = c. Fix c > 0. Then the set

{x : p ({x}) ≥ c} is finite. Assume in the contrary that there is an infinite sequence (xk) ⊂ [0, 1] such that
p ({xk}) ≥ c, k ∈ N. Thus denoting Bk = {xk, xk+1, . . .}, it is clear that

⋂∞
k=1Bk = ∅; but this contradicts

the fact that p (Bk) ≥ c. Consequently, the set En =
{
x : p ({x}) ≥ n−1

}
is finite for all n ∈ N. Hence there

is a sequence (xn) ⊂ [0, 1] such that p ({xn}) ↓ 0 (as n → ∞) and every point x ∈ [0, 1] with p ({x}) ≥ 0
is contained in (xn). Therefore, for all B ∈ F , p (B) = max {αn : xn ∈ B} which is just the above optimal
measure.

3.2. The structure of optimal measures

By a p-atom we mean a measurable set H, p (H) > 0 such that whenever B ∈ F and B ⊂ H, then
p (B) = p (H) or p (B) = 0.

Definition 3.5 ([2], Definition 1.1). A p-atom H is decomposable if there exists a subatom B ⊂ H such
that p (B) = p (H) = p (H\B). If no such subatom exists, we shall say that H is indecomposable.

Lemma 3.6 ([2], Lemma 1.1). Any atom H can be expressed as the union of finitely many disjoint inde-
composable subatoms of the same optimal measure as H.

Proof. We say that a measurable set E is good if it an be expressed as the union of finitely many disjoint
indecomposable subatoms. Let H be an atom and suppose that H is not good. Then H is decomposable.
Set H = B1 ∪ C1, where B1 and C1 are disjoint measurable sets with p (B1) = p (C1) = p (H). Since H
is not good, at least one of the two measurable sets B1 and C1 is not good; suppose, e.g. that B1 is not
good. Then B1 is decomposable. Write B1 = B2 ∪ C2, where B2 and C2 are disjoint measurable sets with
p (B2) = p (C2) = p (H). Continuing this process for every n ∈ N we obtain two measurable sets Bn and Cn

such that the Cn’s are pairwise disjoint with p (Cn) = p (H). This, however, is impossible since En =
∞⋃
k=n

Ck

tends decreasingly to the empty set and hence, by Axiom 3, p (En) → p (∅) as n → ∞, which contradicts
that p (En) ≥ p (Cn) = p (H) > 0, n ∈ N.

An immediate consequent of Lemma 3.6 is as follows.

Remark 3.7 ([2], Remark 1.1). Let H be any indecomposable p-atom and E any measurable set, with
p (E) > 0. Then, either p (H) = p (H\E) and p (H ∩ E) = 0, or p (H) = p (H ∩ E) and p (H\E) = 0.

The Structure Theorem ([2], Theorem 1.2) Let (Ω,F , p) be an optimal measure space. Then there exists
a collection H (p) = {Hn : n ∈ J} of disjoint indecomposable p-atoms, where J is some countable (i.e. finite
or countably infinite) index set, such that for every measurable set B ∈ F with p (B) > 0 we have

p (B) = max {p (B ∩Hn) : n ∈ J} . (3.3)

Moreover, if J is countably infinite, then the only limit point of the set {p (Hn) : n ∈ J} is 0.

The proof was derived from the following lemmas, which we shall recollect without their proofs.

Lemma 3.8 ([2], Lemma 1.3). Let E ∈ F be with p (E) > 0, and Bk ∈ F , Bk ⊂ E (k ∈ J), where J is any
countable index set. Then

p

(⋃
k∈J

Bk

)
< p (E) if and only if p (Bk) < p (E) for all k ∈ J . (3.4)
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Lemma 3.9 ([2], Lemma 1.4). For every sequence (Bn) ⊂ F and every optimal measure p we have

p

( ∞⋃
n=1

Bn

)
= max {p (Bn) : n ∈ N} .

Lemma 3.10 ([2], Lemma 1.5). Every measurable set E ∈ F with p (E) > 0 contains an atom H ⊂ E such
that p (E) = p (H).

Lemma 3.11 ([2], Lemma 1.6). Let H = {Hn : n ∈ J} be as above. Then for every measurable set B ∈ F
with p (B) > 0, the identity(6.4)

p

(
B\
⋃
n∈J

(B ∩Hn)

)
= 0 (3.5)

holds.

We are now in the position to prove the Structure Theorem.

Proof of the Structure Theorem. Let G be a set of pairwise disjoint atoms. It is clear that the collection of
all such G, denoted by Γ, is partially ordered by the set inclusion and every subset of Γ has an upper bound.
Then, the Zorn lemma entails that Γ contains a maximal element, which we shall denote by G∗. As we have
done above, one can easily verify that the set{

K ∈ G∗ : p (K) > n−1
}

is finite. Hence G∗ = {Kj : j ∈ ∇}, where ∇ is a countable index set. It is obvious that p (Kj) → 0 as
j → ∞, whenever ∇ is a countably infinite set. Consequently, it ensues, via Lemma 3.6, that each atom
Kj ∈ G∗ can be expressed as the union of finitely many disjoint indecomposable subatoms of the same
optimal measure as Kj . Finally, let us list these indecomposable atoms occurring in the decompositions of
the elements of G∗ as follows: H = {Hn : n ∈ J}, where J is a countable index set. Now, via Lemma 3.9,
the identity (3.5) and Axiom 2, one can easily observe that (3.3) holds for every set B ∈ F , with p (B) > 0.
It is also obvious that 0 is the only limit point of the set {p (Hn) : n ∈ J} whenever J is a countably infinite
set. This ends the proof of the theorem.

To end the section, we need to point out that an elementary proof was given to the Structure Theorem
in [17].

4. Lebesgue’s type integral in lattice environments

In comparison with the mathematical expectation or Lebesgue integral, we define a non-linear functional
(first for non-negative measurable simple functions and secondly for non-negative measurable functions)
which provide us with many well-known results in measure theory. Their proofs are carried out similarly.

4.1. Optimal average

In the whole section we shall be dealing with an arbitrary but fixed optimal measure space (Ω, F , p).
Let

s =
n∑
i=1

biχ (Bi)

be an arbitrary non-negative measurable simple function, where
{Bi : i = 1, . . . , n} ⊂ F is a partition of Ω. Then the so-called optimal average of s is defined by
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Definition 4.1 ([1], Definition 1.1). The quantity

\

Ω

s dp :=

n∨
i=1

bip (Bi)

will be called optimal average of s, and for E ∈ F
\

B

sχ (E) dp :=
n∨
i=1

bip (E ∩Bi)

as the optimal average of s on E, where χ (E) is the indicator function of the measurable set E. These
quantities will be sometimes denoted respectively by I (s) and IE (s).

As it is well-known, a measurable simple function can have many decompositions. The question thus
arises (just as in the case of Lebesgue integral) whether or not the optimal average of a simple function
depends on its decompositions. The following result gives a satisfactory answer to this question, making the
definition of optimal average as deep as the Lebesgue integral is.

Theorem 4.2 ([1], Theorem 1.0). Let

n∑
i=1

biχ (Bi) and
m∑
k=1

ckχ (Ck)

be two decompositions of a measurable simple function s ≥ 0, where {Bi : i = 1, . . . , n} and {Ck : k = 1, . . . , m} ⊂
F are partitions of Ω. Then

max {bip (Bi) : i = 1, . . . , n} = max {ckp (Ck) : k = 1, . . . , m} .

Proof. Since Bi =
m⋃
k=1

(Bi ∩ Ck) and Ck =
n⋃
i=1

(Bi ∩ Ck), Axiom 2 of optimal measure implies that

p (Bi) = max {p (Bi ∩ Ck) : k = 1, . . . , m} and p (Ck) = max {p (Bi ∩ Ck) : i = 1, . . . , n}

Thus

max {ckp (Ck) : k = 1, . . . , m} = max {max {ckp (Bi ∩ Ck) : i = 1, . . . , n} : k = 1, . . . ,m}

and
max {bip (Bi) : i = 1, . . . , n} = max {max {bip (Bi ∩ Ck) : k = 1, . . . , m} : i = 1, . . . , n} .

Clearly, if Bi ∩ Ck 6= ∅, then bi = ck, or if Bi ∩ Ck = ∅, then p (Bi ∩ Ck) = 0. Thus, by the associativity
and the commutativity, we obtain

max {bip (Bi) : i = 1, . . . , n} = max {ckp (Ck) : k = 1, . . . , m} .

This completes the proof.

Proposition 4.3 ([1], Proposition 2.0). Let f ≥ 0 be any bounded measurable function. Then

sup
s≤f

\

Ω

s dp = inf
s≥f

\

Ω

sdp,

where s and s denote non-negative measurable simple functions.
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Proof. Let f be a measurable function such that 0 ≤ f ≤ b on Ω, where b is some constant. Let Ek =(
kbn−1 ≤ f ≤ (k + 1) bn−1

)
, k = 1, . . . , n. Clearly, {Ek : k = 1, . . . , n} ⊂ F is a partition of Ω. Define the

following measurable simple functions:

sn = bn−1
n∑
k=0

kχ (Ek) , sn = bn−1
n∑
k=0

(k + 1)χ (Ek) .

Obviously, sn ≤ f ≤ sn. Then we can easily observe that

sup
s≤f

\

Ω

s dp ≥
\

Ω

sndp = n−1bmax {kp (Ek) : k = 0, . . . , n}

and

inf
s≥f

\

Ω

sdp ≤
\

Ω

sndp = n−1bmax {(k + 1) p (Ek) : k = 0, . . . , n} .

Hence

0 ≤ inf
s≥f

\

Ω

sdp− sup
s≤f

\

Ω

s dp ≤ bn−1.

The result follows by letting n→∞ in this last inequality.

Definition 4.4 ([1], Definition 2.1). The optimal average of a measurable function f is defined by

\

Ω

|f | dp = sup

\

Ω

s dp, (4.1)

where the supremum is taken over all measurable simple functions s ≥ 0 for which s ≤ |f |. The optimal

average of f on any given measurable set E is defined by

\
E
|f | dp =

\
Ω
χ (E) |f | dp.

For convenience reasons at times we shall write A |f | for the optimal average of the measurable function
f .

Proposition 4.5 ([1], Proposition 2.1). Let f ≥ 0 and g ≥ 0 be any measurable simple functions, b ∈ R+

and B ∈ F be arbitrary. Then

1. A (b1) = b.

2. A (χ (B)) = p (B).

3. A (bf) = bAf .

4. A (fχ (B)) = 0 if p (B) = 0.

5. Af ≤ Ag if f ≤ g.

6. A (f + g) ≤ Af +Ag.

7. A (fχ (B)) = Af if p
(
B
)

= 0.

8. A (f ∨ g) = Af ∨ Ag.

The almost everywhere notion in measure theory also makes sense in optimal measure theory.

Definition 4.6 ([1], Definition 2.2). Let p be an optimal measure. A property is said to hold almost
everywhere if the set of elements where it fails to hold is a set of optimal measure zero.

As an immediate consequent of the atomic structural behavior of optimal measures we can formulate
the following.
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Remark 4.7 ([2], Remark 2.1). If a function f : Ω→ R is measurable, then it is constant almost everywhere
on every indecomposable atom.

Proposition 4.8 ([2], Proposition 2.6). Let p ∈ P and f be any measurable function. Then

\

Ω

|f | dp = sup


\

Hn

|f | dp : n ∈ J

 ,

where H (p) = {Hn : n ∈ J} is a p-generating countable system.

Moreover if A |f | < ∞, then

\
Ω
|f | dp = sup {cn · p (Hn) : n ∈ J}, where cn = f (ω) for almost all ω ∈ Hn,

n ∈ J .

Proposition 4.9 (Optimal Markov Inequality ([1], Proposition 2.2)). Let f ≥ 0 be any measurable
function. Then for every number x > 0 we have

xp (f ≥ x) ≤ Af.

Proposition 4.10 ([1], Proposition 3.4). Let f ≥ 0 be any bounded measurable function. Then for every

ε > 0 there is some δ > 0 such that

\
B
fdp < ε whenever B ∈ F , p (B) < δ.

Proof. By assumption 0 ≤ f ≤ b for some number b > 0. Then Proposition 4.5 entails, for the choice

0 < δ < εb−1, that

\
B
fdp ≤ bp (B) < δb < ε.

In the example below we shall show that Proposition 4.10 does not hold for unbounded measurable
functions.

Example 4.11 ([1], Example 3.2). Consider the measurable space
(
N, 2N

)
. Define the set function p :

2N → [0, 1] by p (B) =
1

minB
. It is known from Example 3.3 that p is an optimal measure. Consider the

following measurable function f (ω) = ω, ω ∈ N. Clearly, Af ≥ 1. Let s =
n∑
j=1

bjχ (Bj) be a measurable

simple function with 0 ≤ s ≤ f . Denote ωj = minBj for j = 1, . . . , n. Then p (Bj) =
1

ωj
and bj ≤ ωj

for all j = 1, . . . , n. Thus

\
Ω
s dp ≤ 1, and hence

\
Ω
f ≤ 1. Consequently,

\
Ω
f = 1. On the one hand,

there is no δ > 0 such that p (E) < δ implies that

\
E
fdp < 1. Indeed,

\
{ω}

fdp = 1 for every ω ∈ N, and

p ({ω})→ 0 as ω →∞.

4.2. The corresponding Radon-Nikodym Theorem in lattice environments

Definition 4.12 ([2], Definition 2.1). By a quasi-optimal measure we a set function q : F → R+ satisfying
Axioms 1-3, with the hypothesis q (Ω) = 1 in Axiom 1 being replaced by the hypothesis 0 < q (Ω) <∞.

Proposition 4.13 ([2], Proposition 2.1). If f ≥ 0 is a bounded measurable function, then the set function
qf : F → R+,

qf (E) =

\

E

fdp,

is a quasi-optimal measure.

Definition 4.14 ([2], Definition 2.2). We shall say that a quasi-optimal measure q is absolutely continuous
relative to p (abbreviated q � p) if q (B) = 0 whenever p (B) = 0, B ∈ F .
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Proposition 4.15 ([2], Proposition 2.2). Let q be a quasi-optimal measure. Then q � p if and only if for
every ε > 0 there is some δ > 0 such that q (B) < ε whenever p (B) < δ, B ∈ F .

The proof of Proposition 4.15 is similarly done as in the case of measure theory.

Lemma 4.16 ([2], Lemma 2.3). Let q be a quasi-optimal measure and H (p) be a p-generating system. If
q � p, then

H (q) = {H ∈ H (p) : q (H) > 0}

is a q-generating system.

Remark 4.17 ([3], Remark 2.1). Let p, q ∈ P,H (p) = {Hn : n ∈ J} be a p-generating countable system
and f any measurable function. Suppose that q � p and q (H) ≤ p (H) for every H ∈ H (p) . Then\

Ω
|f | dq ≤

\
Ω
|f | dp, provided that

\
Ω
|f | dp <∞.

This remark is immediate from Lemma 4.16 and Proposition 4.8.

Theorem 4.18 (Optimal Radon-Nikodym ([2], Theorem 2.4)). Let q be a quasi-optimal measure such
that q � p. Then there exists a unique measurable function f ≥ 0 such that for every measurable set B ∈ F ,

q (B) =

\

B

fdp.

This measurable function, explicitly given in (4.2), will be called Optimal Radon-Nikodym derivative

and denoted by
dq

dp
.

Proof. Let H (p) = {Hn : n ∈ J} be a p-generating countable system. Define the following non-negative
measurable function

f = max

{
q (Hn)

p (Hn)
· χ (Hn) : n ∈ J

}
. (4.2)

Fix an index n ∈ J and let B ∈ F , p (B) > 0. Then Remark 3.7 and the absolute continuity property imply
that

q (Hn)

p (Hn)
p (B ∩Hn) =

{
0 if p (B ∩Hn) = 0
q (B ∩Hn) , otherwise.

Hence, by a simple calculation, one can observe that

\

B

fdp = max {q (B ∩Hn) : n ∈ J} .

Consequently, Lemma 4.16 yields

\

B

fdp =

{
max {q (B ∩Hn) : q (Hn) > 0, n ∈ J} if q (B) > 0
0, otherwise,

and thus (4.2) holds.
Let us show that the decomposition (4.2) is unique. In fact, there exist two measurable functions f ≥ 0

and g ≥ 0 satisfying (4.2) . Then for each set B ∈ F , we have:

\

B

fdp =

\

B

gdp.
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Put E1 = (f < g) and E2 = (g < f). Obviously, E1 and E2 ∈ F . If the inequality p (E1) > 0 should hold,
it would follow that \

E1

gdp =

\

E1

fdp <

\

E1

gdp,

which is impossible. This contradiction yields p (E1) = 0. We can similarly show that p (E2) = 0. These
last two equalities imply that p (f 6= g) = 0, i.e. the decomposition (4.2) is unique. The theorem is thus
proved.

5. Counterparts in lattice environments of well-known convergence theorems

5.1. Some convergence with respect to individual optimal measures
In this subsection we shall explore in lattice environments the counterparts of the monotone convergence

theorem, the Fatou’s lemma and the dominated convergence theorem well-known in Measure Theory. The
results are related to an arbitrarily fixed optimal measure space (Ω, F , p), unless otherwise stated.

Theorem 5.1 (Optimal monotone convergence, ([1], Theorem 3.1).

1. If (fn) is an increasing sequence of non-negative measurable functions, then

lim
n→∞

\

Ω

fndp =

\

Ω

(
lim
n→∞

fn

)
dp.

2. If (gn) is a decreasing sequence of non-negative measurable functions with g1 ≤ b for some b ∈ (0, ∞),
then

lim
n→∞

\

Ω

gndp =

\

Ω

(
lim
n→∞

gn

)
dp.

The following example shows why the optimal monotone convergence theorem fails to hold for all de-
creasing sequences of measurable functions.

Example 5.2 ([1], Example 3.1). Let
(
N, 2N, p

)
be the optimal measure space we considered in Example

4.11. Define the following measurable function

gn (ω) =

{
0 if ω < n
ω if ω ≥ n.

Obviously, sequence (gn)n∈N tends decreasingly to zero as n → ∞. It will be enough to show that\
N
gn dp = 1 for all n ∈ N. In fact, it is clear by definition that (gn < n) = {1, . . . , n− 1} and (gn ≥ n) =

{n, n+ 1, . . .}, and so N = (gn < n) ∪ (gn ≥ n) for every fixed natural number n ∈ N. We also know by
definition that gn assumes the value 0 on {1, . . . , n− 1} and the value n on {n, n+ 1, . . .}, for every fixed
natural number n ∈ N. Hence, by the considered optimal measure we trivially have\

N

gn dp =

\

{n, n+1, ...}

gn dp = np ({n, n+ 1, . . .}) =
n

min ({n, n+ 1, . . .})
= 1.

Lemma 5.3 (Optimal Fatou ([1], Lemma 3.2)). If (fn)n∈N and (hn)n∈N are sequences of non-negative
measurable functions, then for every optimal measure p, we have that:

1.

\
Ω

(
lim inf
n→∞

fn

)
dp ≤ lim inf

n→∞

\
Ω
fndp;

2. lim sup
n→∞

\
Ω
hndp ≤

\
Ω

(
lim sup
n→∞

hn

)
dp , whenever (hn)n∈N is a uniformly bounded sequence.

Theorem 5.4 (Optimal Dominated Convergenc ([1], Theorem 3.3)). Let (fn)n∈N be a uniformly

bounded sequence of non-negative measurable functions. Then A
(

lim
n→∞

fn

)
= Af , where lim

n→∞
fn = f almost

everywhere.
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6. Banach lattice induced by optimal measures

Throughout this section we shall deal with an arbitrary but fixed optimal measure space (Ω, F , p), i.e.
(Ω, F) is a measurable space and p an optimal measure.

6.1. The counterpart of the Lp-spaces (p ∈ [1, ∞]) in lattice environments

Definition 6.1. Let f : Ω→ R ∪ {−∞, ∞} be any measurable function. We shall say that f belongs to:

1. A∞ if p ( |f | ≤ b) = 1 for some constant b ∈ (0, ∞).

2. Aα if

\
Ω
|f |α dp <∞, α ∈ [1, ∞).

For any α ∈ [1, ∞], the space Aα endowed with the norm ‖·‖α, defined by

‖f‖Aα :=


inf {b ∈ (0, ∞) : p ( |f | ≤ b) = 1} , if f ∈ A∞, α =∞

α

√\
Ω
|f |α dp, if f ∈ Aα, α ∈ [1, ∞)

As in the case of Lp-spaces (p ∈ [1, ∞]) in Measure Theory, it can be similarly seen that ‖·‖α is a semi-norm
for every α ∈ [1, ∞].

Lemma 6.2 ([1], Lemma 4.1).

1. A |fg| ≤ ‖f‖Aα ‖g‖A∞ whenever f ∈ A1 and g ∈ A∞.

2. Let α and β ∈ (1, ∞) be such that α−1 + β−1. Then A |fg| ≤ ‖f‖Aα ‖g‖Aβ (called the optimal Hölder
inequality), whenever f ∈ Aα and g ∈ Aβ.

3. ‖f + g‖Aα ≤ ‖f‖Aα + ‖g‖Aα (called the optimal Minkowski inequality) whenever f ∈ Aα and g ∈ Aα,
with α ∈ [1, ∞].

Theorem 6.3 ([1], Theorem 4.2). For each number α ∈ [1, ∞], Aα is a Banach space (i.e. every Cauchy
sequence in Aα converges to a measurable function in Aα-norm).

6.2. Orlicz-space and its dual in lattice environments

Let Φ be a convex Young function, i.e.

Φ (x) =

x∫
0

ϕ (t) dt, x ∈ R+,

where ϕ : (0, ∞)→ (0, ∞) is a right-continuous and increasing function such that ϕ (0) ≥ 0 and ϕ (∞) =∞.
The conjugate Young functions are defined as follows:
For t ∈ (0, ∞) put ψ (t) := sup {x > 0 : ϕ (x) < t} and let ψ (0) = 0. It can be easily checked that

ψ satisfies all the conditions imposed on ϕ and we trivially have ψ (ϕ (x)) ≤ x ≤ ψ (ϕ (x) + 0), whenever
x ∈ (0, ∞).

The convex Young function

Ψ (x) :=

∫ x

0
ψ (t) dt, x ∈ [0, ∞) ,

is said to be conjugate to Φ and the pair (Φ, Ψ) is referred to as mutually conjugate convex Young functions.
Every pair (Φ, Ψ) of mutually conjugate convex Young functions satisfies the fundamental Young in-

equality
xy ≤ Φ (x) + Ψ (y) (6.1)
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for all x, y ∈ [0, ∞), and the Young equality

xy = Φ (x) + Ψ (y) (6.2)

if and only if y ∈ [ϕ (x) , ϕ (x+ 0)] or x ∈ [ψ (y) , ψ (y + 0)]. (For more about convex Young functions, see
[26].)

We extend some basic results about the Orlicz LΦ space in Measure Theory to the framework of Optimal
Measure Theory, by generalizing the space Aα to the space AΦ, where Φ is a convex Young function. In the
image of the dual space of the Orlicz LΦ space some set of non-linear functionals F : AΦ → [0, ∞] , (called
the laud space of AΦ), is studied.

Definition 6.4 ([7], Definition 2.1). We say that a measurable function f belongs to AΦ if there is a
constant c ∈ (0, ∞) such that \

Ω

Φ

(
|f |
c

)
dp ≤ 1. (6.3)

In the image of the Luxemburg norm define on AΦ the operator ‖·‖AΦ by

‖f‖AΦ = inf

c ∈ (0, ∞) :

\

Ω

Φ

(
|f |
c

)
dp ≤ 1

 , (6.4)

and ‖f‖AΦ =∞ if there is no c ∈ (0, ∞) such that (6.3) holds.

Note that if Φ (t) =
t1+α

1 + α
, t ∈ [0, ∞) and α ∈ (0, ∞), then AΦ = A1+α.

Theorem 6.5 ([7], Theorem 2.2). Let Φ : [0, ∞) → [0, ∞) be any function and f a non-negative finite
measurable function. Then the inequality

Φ

 \

Ω

fdp

 ≤ \

Ω

Φ (f) dp

holds, and is referred to as the Optimal Jensen inequality, provided that Φ is a convex Young function.
Furthermore, the inequality is reversed if Φ is a concave Young function.

We prepare the ground for the proof of Theorem 6.5.
Let J ⊂ N be an index set. Then the weighted supremum of a sequence (bn)n∈J ⊂ [0, ∞) is defined by

sup
n∈J

bnαn, where (αn)n∈J ⊂ [0, 1] is a prescribed sequence with 0 as its unique limit point if the index set is

infinite (in symbol |J | =∞).

Remark 6.6 ([7], Remark 3.1). For all d ∈ R, c ∈ (0, ∞) and (bn)n∈J ⊂ [0, ∞), where J is an index set, then

sup
n∈J

(d+ cbn) = d+ c sup
n∈J

bn.

Remark 6.6 is obvious.

Lemma 6.7 ([7], Lemma 3.2). Let J ⊂ N be an index set and Φ : [0, ∞)→ [0, ∞) be any function. Consider
two sequences (bn)n∈J ⊂ [0, ∞) and (αn)n∈J ⊂ [0, 1] possessing 0 as its unique limit point if |J | =∞. Then

Φ

(
sup
n∈J

bnαn

)
≤ sup

n∈J
Φ (bn)αn

provided that Φ is a convex Young function. Furthermore, the inequality is reversed if Φ is a concave Young
function.
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The Proof of Theorem 6.5. We note that the proof follows from the conjunction of both Proposition 2.1 in
[3] and the above Lemma 6.7.

Definition 6.8 ([7], Definition 2.3). Let AΦ
+ :=

{
f ∈ AΦ : f ≥ 0

}
. We say that a functional F : AΦ

+ →
[0, ∞] belongs to ÃΦ if the following conditions hold true simultaneously:

1. For all f, h ∈ AΦ
+, and α, β ∈ [0, ∞) we have

F (αf ∨ βh) = αF (f) ∨ βF (h) .

2. F is continuous from below, i.e. if (fn)n∈N ⊂ AΦ
+ is an increasing sequence, then

lim
n→∞

F (fn) = F
(

lim
n→∞

fn

)
.

3. There is some constant C > 0 for which

F (f) ≤ C ‖f‖AΦ , whenever f ∈ AΦ
+.

We extend Definition 6.8 to the entire AΦ space as follows.

Definition 6.9 ([7], Definition 2.4). A functional F ◦ |· | : AΦ → [0, ∞] is said to belong to ÃΦ if the
following conditions hold true simultaneously:

1. For all f, h ∈ AΦ, and α, β ∈ [0, ∞) we have

F (α |f | ∨ β |h|) = αF (|f |) ∨ βF (|h|) .

2. F is non-negatively continuous from below, i.e. if (fn)n∈N ⊂ AΦ is a non-negative increasing sequence,
then

lim
n→∞

F (fn) = F
(

lim
n→∞

fn

)
.

3. There is some constant C > 0 for which

F (|f |) ≤ C ‖f‖AΦ , whenever f ∈ AΦ.

The set ÃΦ will thus be referred to as the ”laud” space of AΦ, in contrast with the ”dual” space of LΦ

in Measure Theory.
The counterpart of Proposition IX-2-2 in the appendix of [30] can be stated as follows.

Theorem 6.10 ([7], Theorem 2.5). The following assertions hold.

1. The mapping ‖·‖AΦ : AΦ → [0, ∞) defined by (6.4) is a norm.

2. AΦ ⊂ A1, i.e. there exist some constant δ > 0 such that

δ ‖f‖A1 ≤ ‖f‖AΦ ,

whenever f ∈ AΦ.

3. AΦ is a Banach space, i.e. every Cauchy sequence in AΦ converges to a measurable function in AΦ-norm.

4. If f ∈ AΦ and h ∈ AΨ, then
‖fh‖A1 ≤ 2 ‖f‖AΦ · ‖h‖AΨ ,

which shall be referred to as the Optimal Hölder Inequality.
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5. Given any h ∈ AΨ, the mapping Fh ◦ |· | : AΦ → [0, ∞) defined by

Fh (|f |) =

\

Ω

|fh| dp,

belongs to the laud space of AΦ. Moreover, letting M stand for the set of all measurable functions defined
on (Ω, F), the quantity

‖h‖∗AΦ := sup
f∈AΦ\{0}

Fh (|f |)
‖f‖AΦ

= sup

Fh (|f |) : f ∈M,

\

Ω

Φ (|f |) dp ≤ 1

 (6.5)

defines a norm on the space AΨ which is equivalent to the norm ‖·‖AΨ, more precisely

λ ‖h‖AΨ ≤ ‖h‖∗AΦ ≤ 2 ‖h‖AΨ ,

for some constant λ ∈ (0, 2] and all h ∈ AΨ.

6. If F ◦ |· | : AΦ → [0, ∞) is a mapping belonging to ÃΦ, then there is an h ∈ AΨ with ‖h‖AΨ ≤ C (the
constant C being as in Definition 6.9) such that for all f ∈ AΦ,

F (|f |) =

\

Ω

|fh| dp.

Before tackling the proof of Theorem 6.10 (which goes down the line of the proof given in [30] for
Proposition IX-2-2), some essential results need to be mentioned with the proofs.

Remark 6.11 ([7], Remark 1.1). Let be given any optimal measure p withH (p) = {Hn : n ∈ J} its generating
system and a measurable set A ∈ F . Then p (A) = 0 if and only if p (A ∩H) = 0 for every H ∈ H (p).

Lemma 6.12 ([7], Lemma 3.5). Let y be a bounded measurable function and consider the quasi-optimal
measure qy : F → [0, ∞),

qy (A) =

\

A

|y| dp.

Then dqy = |y| dp p-a.e. Moreover,

|y| = max

{
qy (H)

p (H)
· χH : H ∈ H (p) , qy (H) > 0

}
on
⋃
H (p).

Remark 6.13 ([7], Remark 3.6). Given any convex Young function Φ, for every f ∈ AΦ we have

‖f‖AΦ ≤ max

1 ;

\

Ω

Φ (|f |) dp

 .

Remark 6.14 ([7], Remark 3.7). For every measurable function f we have that ‖f‖AΦ ≤ 1 if and only if
\

Ω

Φ (|f |) dp ≤ 1.

Remark 6.15 ([7], Remark 3.8). For any convex Young function Ψ and any measurable simple function of
the form h = bχA where A ∈ F with p (A) > 0 we have

‖h‖AΨ =
|b|

Ψ−1
(

1
p(A)

) .
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Remarks 6.14 and 6.15 can be easily checked, so we shall omit their proofs.

The Proof of Theorem 6.10.

Part 1. Let f, h be any measurable functions. It is trivial that ‖f‖AΦ ≥ 0. We want to prove that if ‖f‖AΦ =
0, then p (|f | 6= 0) = 0. In fact, suppose that ‖f‖AΦ = 0 but p (0 < |f | ≤ ∞) = p (|f | 6= 0) > 0. Then
by Remark 6.11 a non-empty subset J0 of the index set J exists such that p (Hn ∩ (0 < |f | ≤ ∞)) > 0,
whenever n ∈ J0 and p (Hn ∩ (0 < |f | ≤ ∞)) = 0 otherwise, where J is the index set of the generating
system H (p) = {Hn : n ∈ J}. Note that ‖f‖AΦ = inf S, where

S =

δ > 0 :

\

Ω

Φ

(
|f |
δ

)
dp ≤ 1

 .

From the assumption and the definition of the infimum there is a sequence (δk)k∈N ⊂ S such that

0 < δk <
1

k
for all k ∈ N. By applying the Optimal Jensen Inequality we can observe that

1 ≥
\

Ω

Φ

(
|f |
δk

)
dp ≥ Φ

 \

Ω

|f |
δk
dp

 .

Hence

δkΦ
−1 (1) ≥

\

Ω

|f | dp,

which implies, via Proposition 2.1 in [3], that

sup
n∈J0

\

Hn∩(0<|f |≤∞)

|f | dp =

\

Ω

|f | dp = 0. (6.6)

Clearly, p (|f | =∞) = 0, otherwise the left hand side of (6.6) would assume the value ∞, a contradic-
tion. Then necessarily, p (Hn ∩ (0 < |f | <∞)) = 0 for every n ∈ J0, which is impossible because of the
assumption. By this absurdity we have thus proved that if ‖f‖AΦ = 0, then f = 0, p-a.e. Note that
its converse is obvious. We show the triangle inequality in the next step. In fact, via the monotonicity
and the convexity, we observe that

Φ

(
|f + h|

‖f‖AΦ + ‖h‖AΦ

)
≤ Φ

(
|f |+ |h|

‖f‖AΦ + ‖h‖AΦ

)
≤

≤
‖f‖AΦ

‖f‖AΦ + ‖h‖AΦ

Φ

(
|f |
‖f‖AΦ

)
+

‖h‖AΦ

‖f‖AΦ + ‖h‖AΦ

Φ

(
|h|
‖h‖AΦ

)
.

Hence
\

Ω

Φ

(
|f + h|

‖f‖AΦ + ‖h‖AΦ

)
≤

‖f‖AΦ

‖f‖AΦ + ‖h‖AΦ

\

Ω

Φ

(
|f |
‖f‖AΦ

)
dp+

+
‖h‖AΦ

‖f‖AΦ + ‖h‖AΦ

\

Ω

Φ

(
|h|
‖h‖AΦ

)
dp ≤ 1,

since \

Ω

Φ

(
|f |
‖f‖AΦ

)
dp ≤ 1 and

\

Ω

Φ

(
|h|
‖h‖AΦ

)
dp ≤ 1.

Consequently,
‖f + h‖AΦ ≤ ‖f‖AΦ + ‖h‖AΦ .

We leave to the reader the verification of the homogeneity axiom.
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Part 2. We prove that δ1 ‖f‖A1 ≤ ‖f‖AΦ for some constant δ1 > 0 and all f ∈ AΦ. In fact, let u0 ∈ (0, ∞)
such that ϕ (u0) > 0 and u0 + (ϕ (u0))−1 ≥ 1. Making use of the inequality here below (proved in [30]
on page 198)

Φ (x) ≥ (x− u0)+ ϕ (u0) , x ∈ [0, ∞) ,

we have

1 ≥
\

Ω

Φ

(
|f |
‖f‖AΦ

)
dp ≥ ϕ (u0)

\

Ω

(
|f |
‖f‖AΦ

− u0

)+

dp

and hence by Remark 6.6,

u0 +
1

ϕ (u0)
≥

\

Ω

[
u0 +

(
|f |
‖f‖AΦ

− u0

)+
]
dp ≥

\

Ω

|f |
‖f‖AΦ

dp.

Whence, ‖f‖A1 ≤
(
u0 + 1

ϕ(u0)

)
‖f‖AΦ .

Part 3. Let (fn)n∈N ⊂ AΦ be any Cauchy sequence. Then we can extract from it a subsequence (fnk)k∈N such
that

∞∑
k=1

∥∥fnk+1
− fnk

∥∥
AΦ <∞

and hence by Part 2,
∞∑
k=1

∥∥fnk+1
− fnk

∥∥
A1 <∞.

Since A1 is a Banach space, the limit lim
k→∞

fnk = f exists almost everywhere. Clearly, for every k ∈ N,

fnk = fn1 +

k−1∑
j=1

(
fnj+1 − fnj

)
,

Write

Snk = |fn1 |+
k−1∑
j=1

∣∣fnj+1 − fnj
∣∣ , k ∈ N.

Obviously,

‖Snk‖AΦ ≤ ‖fn1‖AΦ +

k−1∑
j=1

∥∥fnj+1 − fnj
∥∥
AΦ , k ∈ N.

Since (Snk)k∈N is an increasing sequence it ensues that

‖f‖AΦ ≤ lim inf
k→∞

‖Snk‖AΦ ≤ ‖fn1‖AΦ +
∞∑
j=1

∥∥fnj+1 − fnj
∥∥
AΦ <∞.

Hence f ∈ AΦ. Note that

‖f − fnk‖AΦ ≤
∞∑

j=k+1

∥∥fnj+1 − fnj
∥∥
AΦ

which yields
lim
k→∞

‖f − fnk‖AΦ = 0.

By the triangle inequality we have

‖f − fn‖AΦ ≤ ‖f − fnk‖AΦ + ‖fn − fnk‖AΦ → 0,

as k →∞ and n→∞.
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Part 4. Let f ∈ AΦ and h ∈ AΨ be arbitrary such that ‖f‖AΦ > 0 and ‖h‖AΨ > 0. Then by applying the

fundamental inequality (6.1) to u =
|f |
‖f‖AΦ

and v =
|h|
‖h‖AΨ

yields

\

Ω

|fh| dp ≤ ‖f‖AΦ · ‖h‖AΨ

 \

Ω

Φ

(
|f |
‖f‖AΦ

)
dp +

\

Ω

Φ

(
|h|
‖h‖AΨ

)
dp

 ≤
≤ 2 ‖f‖AΦ · ‖h‖AΨ .

Part 5. To show that ‖·‖∗AΦ is a norm we shall only verify the biconditional ‖h‖∗AΦ = 0 if and only if h = 0,
p-a.e. because the two other norm axioms can be easily checked. To this end we need to prove first
that ‖h‖∗AΦ = 0 implies h = 0, p-a.e. In fact, suppose (by the contrapositive) that there is some
H ∈ H (p) for which the inequality p (H ∩ (|h| > 0)) > 0 holds. Write A := H ∩ (|h| > 0). Consider
the measurable function fδ = δχA with δ > 0 such that

\

Ω

Ψ (fδ) dp = Ψ (δ) p (A) ≤ 1.

This can be done, because Ψ is a convex Young function. Then

‖h‖∗AΦ ≥
\

Ω

|h| fδdp > 0.

Hence, ‖h‖∗AΦ = 0 implies h = 0, p-a.e. Note that the converse conditional is straightforward.
By applying the Optimal Hölder Inequality, we observe from (6.5) that

‖h‖∗AΦ = sup
{f∈M: ‖f‖AΦ≤1}

\

Ω

|fh| dp ≤ 2 ‖h‖AΨ .

Next, we shall show the inequality λ ‖h‖AΨ ≤ ‖h‖∗AΦ for some constant λ ∈ (0, 2] and all h ∈ AΨ.
In fact, assume the contrary, i.e. for every constant λ ∈ (0, 2] we can find an h ∈ AΨ for which

λ ‖h‖AΨ > ‖h‖∗AΦ . Now, choose f0 =
‖h‖AΨ

ρp (H)
χH , where H ∈ H (p) , ρ > 0 and p (H ∩ (|h| = ρ)) =

p (H). Then f0 ∈ AΦ, via Remark 6.15. Consequently,

λ ‖h‖AΨ > ‖h‖∗AΦ = sup
{f∈M: ‖f‖AΦ≤1}

\

Ω

|fh| dp ≥
\

Ω

|f0| |h| dp = ‖h‖AΨ

so that λ > 1 for all λ ∈ (0, 2]. Letting λ→ 0 would entail 0 > 1 which is absurd, indeed. Therefore,
the inequality λ ‖h‖AΨ ≤ ‖h‖∗AΦ fulfils for some constant λ ∈ (0, 2] and all h ∈ AΨ.

Part 6. Let F ◦ |· | ∈ ÃΦ. Define the function q : F → [0, ∞) by q (A) = F (χA). Via the assumption for every
A ∈ F ,

q (A) ≤ C ‖χA‖AΦ .

Consider the continuous function

η (t) =


1

Φ−1( 1
t )

whenever t > 0

0 if t = 0.
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A simple calculus shows that\

Ω

Φ

(
χA

η (p (A))

)
dp = Φ

(
1

η (p (A))

)
p (A) = 1.

Hence q (A) ≤ Cη (p (A)), whenever A ∈ F . Consequently, q � p, i.e. q is absolutely continuous with
respect to p. Then by Theorem 2.4 of [2],

h = max

{
q (H)

p (H)
· χH : H ∈ H (p) , q (H) > 0

}
is the unique measurable function such that dq = h · dp almost everywhere. Consequently, for every

measurable simple function s =
n∑
i=1

biχBi =
n∨
i=1

biχBi we have

n∨
i=1

|bi|F (χBi) =

n∨
i=1

F (|bi|χBi) = F

(
n∨
i=1

|bi|χBi

)
=

\

Ω

h

n∨
i=1

|bi|χBidp =

=

\

Ω

h |s| dp = F (|s|) .

Next, we show that ‖h‖AΨ ≤ 2C. To this end, let (sn) be a sequence of non-negative measurable
simple functions tending increasingly to h. Then by the Young equality (6.2) one can observe that

Ψ
( sn

2C

)
+ Φ

(
ψ
( sn

2C

))
=

sn
2C

ψ
( sn

2C

)
.

On the one hand,\

Ω

[
Ψ
( sn

2C

)
+ Φ

(
ψ
( sn

2C

))]
dp ≥

\

Ω

max
{

Ψ
( sn

2C

)
; Φ
(
ψ
( sn

2C

))}
dp =

= max


\

Ω

Ψ
( sn

2C

)
dp ;

\

Ω

Φ
(
ψ
( sn

2C

))
dp

 .

On the other hand we observe via Remark 6.13 that\

Ω

sn
2C

ψ
( sn

2C

)
dp ≤ 1

2C

\

Ω

hψ
( sn

2C

)
dp =

1

2C
F
(
ψ
( sn

2C

))
≤

≤ 1

2

∥∥∥ψ ( sn
2C

)∥∥∥
AΦ
≤ 1

2
max

1 ;

\

Ω

Φ
(
ψ
( sn

2C

))
dp

 .

Consequently,
\

Ω

Ψ
( sn

2C

)
dp +

\

Ω

Φ
(
ψ
( sn

2C

))
dp ≤

≤ 2 max


\

Ω

Ψ
( sn

2C

)
dp ;

\

Ω

Φ
(
ψ
( sn

2C

))
dp

 ≤
≤ max

1 ;

\

Ω

Φ
(
ψ
( sn

2C

))
dp


≤ 1 +

\

Ω

Φ
(
ψ
( sn

2C

))
dp.
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This implies that \

Ω

Ψ
( sn

2C

)
dp ≤ 1, n ∈ N, (6.7)

since

\
Ω

Φ
(
ψ
(
sn
2C

))
dp < ∞. Finally, letting n → ∞ in (6.7), the Optimal Monotone Convergence

Theorem (cf. [1], Theorem 3.1/i) implies that

\
Ω

Ψ
(
h

2C

)
dp ≤ 1. Therefore, h ∈ AΨ.

7. Cauchy-type functional equation in lattice environments

The most famous functional equation by Cauchy and known as linear functional equation reads:

f (x+ y) = f (x) + f (y) , (7.1)

where f is a real function.
We should point out that equation (7.1) has been investigated for many spaces and in various perspectives
such as its stability which has been intensively considered in the literature. The stability problem was
first posed by M. Ulam (see [36]) in the terms: ”Give conditions in order for a linear mapping near an
approximately linear mapping to exist.” More precisely the problem can be formulated as follows:
Given two Banach algebras E and E

′
, a transformation f : E → E

′
is called δ-linear if

‖f (x+ y)− f (x)− f (y)‖ < δ, (7.2)

for all x, y ∈ E.
The stability problem of equation (7.1) can be stated as follows. Does there exist for each ε ∈ (0, 1)

some δ > 0 such that to each δ-linear transformation f : E → E′ there corresponds a linear transformation
l : E → E′ satisfying the inequality ‖f (x)− l (x)‖ < ε for all x ∈ E? This question was answered in the
affirmative by Hyers [23] and then generalized by Aoki [12]. Ever since various problems of stability on
various spaces have come to light. We shall list just few of them: [22, 31, 27, 29, 35].

7.1. Functional equation with both lattice operations

In the sequel (X , ∧X , ∨X ) will denote a vector lattice and (Y, ∧Y , ∨Y) a Banach lattice with X+ and
Y+ their respective positive cones.

We recall that a functional H : X → Y is cone-related if H (X+) = {H (|x|) : x ∈ X} ⊂ Y+ (see more
about this notion in [6]).

In the image of the Cauchy functional equation we consider the following operator equation

T (|x|∆∗X |y|) ∆∗YT (|x|∆∗∗X |y|) = T (|x|) ∆∗∗Y T (|y|) (7.3)

to hold true for all x, y ∈ X , where ∆∗X , ∆∗∗X ∈ {∧X , ∨X } and ∆∗Y , ∆∗∗Y ∈ {∧Y , ∨Y} are fixed lattice
operations.

Note that if in the special case the above four lattice operations are at the same time the supremum
(join) or the infimum (meet), then the functional equation (7.3) is just a join-homomorphism or a meet-
homomorphism. Moreover, if operations ∆∗X and ∆∗∗X are the same, then the left hand side of (7.3) is the
maps of the meets or the joins, which are just in the image of (7.1).
Problem: Given lattice operations ∆∗X , ∆∗∗X ∈ {∧X , ∨X } and ∆∗Y , ∆∗∗Y ∈ {∧Y , ∨Y}, a vector lattice G1, a
vector lattice G2 endowed with a metric d(·, ·) and a positive number ε, does there exist some δ > 0 such
that, if a mapping F : G1 → G2 satisfies

d
(
F (|x|∆∗X |y|) ∆∗YF (|x|∆∗∗X |y|) , F (|x|) ∆∗∗Y F (|y|)

)
≤ δ
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for all x, y ∈ G1, then an operation-preserving functional T : G1 → G2 exists with the property that

d (T (x), F (x)) ≤ ε

for all x ∈ G1?
One can view this problem as a lattice version of the Ulam’s stability problem formulated in [36]. We shall
present here only one type of clauses leading to a unique solution.

Theorem 7.1 ([8], Theorem 2.1). Consider a cone-related functional F : X → Y for which there are
numbers ϑ > 0 and α ∈ (−∞, 1) such that∥∥∥∥F (|x|∆∗X |y|) ∆∗Y F (|x|∆∗∗X |y|)

τ
− F

(
|x|
τ

)
∆∗∗Y F

(
|y|
τ

)∥∥∥∥ ≤ ϑ

4
(‖x‖α + ‖y‖α) (7.4)

for all x, y ∈ X and τ ∈ (0, ∞), where ∆∗X , ∆∗∗X ∈ {∧X , ∨X } and ∆∗Y , ∆∗∗Y ∈ {∧Y , ∨Y} are fixed lattice
operations. Then the sequence (2−nF (2n |x|))n∈N is a Cauchy sequence for every x ∈ X . Moreover, let the
functional T : X → Y be defined by

T (|x|) = lim
n→∞

2−nF (2n |x|) . (7.5)

Then

(a.) T is semi-homogeneous, i.e. T (γ |x|) = γT (|x|), for all x ∈ X and all γ ∈ [0, ∞);

(b.) T is the unique cone-related functional satisfying both identity (7.3) and inequality

‖T (|x|)− F (|x|)‖ ≤ 2αϑ

2− 2α
‖x‖α (7.6)

for every x ∈ X .

Before we start the proof the following obvious remarks are worth being mentioned, as they will be used
multiple times.

Remark 7.2 ([8], Remark 2.1). If the conditions of Theorem 7.1 holds true, then F (0) = 0.

Remark 7.3 ([8], Remark 2.2). Let Z be a set closed under the scalar multiplication, i.e. bz ∈ Z whenever
b ∈ R and z ∈ Z. Given a number c ∈ R let the function γ : Z → Z be defined by γ (z) = cz. Then
γj : Z → Z the j-th iteration of γ is given by γj (z) = cjz for every counting number j ≥ 2.

Proof of Theorem 7.1. First, if we choose τ = 2, y = x and replace x by 2x in inequality (7.4) then we
obviously have ∥∥∥∥F (2 |x|)

2
− F (|x|)

∥∥∥∥ ≤ ϑ2α−1 ‖x‖α . (7.7)

Next, let us define the following functions:

1.) G : X → X , G (|x|) = 2 |x|.
2.) δ : X → [0, ∞) , δ (|x|) = ϑ2α−1 ‖x‖α.

3.) ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2−1t.

4.) H : Y → Y, H (|y|) = 2−1 |y|.
5.) d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment all the three conditons of the first Forti’s theorem (cf. [18, Theorem 1]) as
follows.

(I.) From inequality (7.7) we obviously have

d (H (F (G (|x|))) , F (|x|)) =

∥∥∥∥F (2 |x|)
2

− F (|x|)
∥∥∥∥ ≤ ϑ2α−1 ‖x‖α = δ (|x|) .
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(II.) d (H (|y1|) , H (|y2|)) = 2−1 ‖y1 − y2‖ = φ (d (y1 , y2)) for all y1, y2 ∈ Y.

(III.) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the positive half line, and on
other hand by applying Remark 7.3 on both the iterations Gj and ϕj of G and ϕ respectively, one
can observe that

∞∑
j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2α−1 ‖x‖α

∞∑
j=0

2(α−1)j = ϑ ‖x‖α 2α

2− 2α
<∞.

Then in virtue of Forti’s first theorem in [18] sequence (Hn (F (Gn |x|))) is a Cauchy sequence for every
x ∈ X and thus so is sequence (2−nF (2n |x|)) and furthermore, the mapping (7.5) is the unique functional
which satisfies inequatility (7.6).

Next, we prove the validity of inequality (7.3). In fact, in (7.4) substitute x with 2nx and y with 2ny,
and also let τ = 1. Then∥∥F (2n (|x|∆∗X |y|)) ∆∗∗Y F (2n (|x|∆∗∗X |y|))− F (2n |x|) ∆∗∗Y F (2n |y|)

∥∥ ≤ ϑ

4
2nα (‖x‖α + ‖y‖α) .

Dividing both sides of this last inequality by 2n yields∥∥∥∥F (2n (|x|∆∗X |y|)) ∆∗∗Y F (2n (|x|∆∗∗X |y|))
2n

−
F (2n |x|) ∆∗∗Y F (2n |y|)

2n

∥∥∥∥ ≤
≤ ϑ

4
(‖x‖α + ‖y‖α) 2(α−1)n.

(7.8)

Taking the limit in (7.8) we have via (7.5) that∥∥T (|x|∆∗X |y|) ∆∗YT (|x|∆∗∗X |y|)− T (|x|) ∆∗∗Y T (|y|)
∥∥ = 0

which is equivalent to
T (|x|∆∗X |y|) ∆∗YT (|x|∆∗∗X |y|) = T (|x|) ∆∗∗Y T (|y|) .

Because of Remark 7.2 identity γF (|x|) = F (γ |x|) is trivial on the one hand for γ = 0 and all x ∈ X , on
the other hand for x = 0 and all γ ∈ [0, ∞). Without loss of generality let us thus fix arbitrarily a number
γ 6= 0 and an x ∈ X \ {0}. In (7.4) choose y = x, τ = γ−1 and change x to 2nx. Then

‖γF (2n |x|)− F (γ2n |x|)‖ ≤ ϑ

2
‖x‖α 2nα.

Divide both sides of this last inequality by 2n to get∥∥γ2−nF (2n |x|)− 2−nF (γ2n |x|)
∥∥ ≤ ϑ

2
‖x‖α 2(α−1)n. (7.9)

By taking the limit in (7.9) we have via (7.5) that

‖γT (|x|)− T (γ |x|)‖ = 0

or equivalently,
T (γ |x|) = γT (|x|)

for all x ∈ X . We have thus shown the semi-homogeneity of operator T . We can conclude on the validity of
the argument.

Next, we shall provide an example showing that if in (7.4) the parameter τ is omitted and the power p
of the norms equals the unity, then stability cannot always be guaranteed. We remind that in the addition
environments Gajda in [21] and Găvruţa in [? ] gave some interesting examples to show how stability fails
when the power of the norms is equal to 1.
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Example 7.4 ([8], Example 1). Consider the Lipschitz-continuous function

F : [0, ∞)→ [0, ∞) , F (x) =
√
x2 + 1.

Fix arbitrarily two numbers x, y ∈ [0, ∞). Since F is an increasing function the very first equality in the
chain of relations here below is valid, implying the subsequent relations in the chain:

|F (x ∨ y)− (F (x) ∧ F (y))| = |F (x ∨ y)− F (x ∧ y)|

=

∣∣∣∣√(x ∨ y)2 + 1−
√

(x ∧ y)2 + 1

∣∣∣∣
=

(x ∨ y)2 − (x ∧ y)2√
(x ∨ y)2 + 1 +

√
(x ∧ y)2 + 1

=

|x− y| · (x ∨ y) + (x ∧ y)√
(x ∨ y)2 + 1 +

√
(x ∧ y)2 + 1

≤ |x− y| ≤ x+ y

for all x, y ∈ [0, ∞). Now, let T : [0, ∞)→ [0, ∞) be a function such that T (x) = xT (1) for all x ∈ [0, ∞).
Then a simple argument shows

sup
x∈(0,∞)

|F (x)− T (x)|
x

= sup
x∈(0,∞)

∣∣∣√1 + x−2 − T (1)
∣∣∣ =∞.

7.2. Schwaiger’s type functional equation

Schwaiger’s theorem reads [34]:

Theorem 7.5 (Schwaiger’s Stability Theorem). Given a real vector space E1 and a real Banach space E2,
let f : E1 → E2 be a mapping for which inequality

‖f (x+ αy)− f (x)− αf (y)‖ ≤ b (α) (7.10)

is satisfied for all α ∈ R. Then there exists a unique linear function g : E1 → E2 such that f − g is bounded.

In the sequel (X , ∧X , ∨X ) will denote a vector lattice and (Y, ∧Y , ∨Y) a Banach lattice with X+ and
Y+ their respective positive cones.
Given two positive real numbers p and q consider the functional equation

T ((τ q |x|) ∨ |y|) = (τpT (|x|)) ∨ T (|y|) (7.11)

for all x, y ∈ X and τ ∈ [0, ∞), where T maps X into Y.
The following simple examples show that the functional equation (7.11) has at least one solution. This

can easily checked from the monotonicity of the functions.

Example 7.6 ([9], Example 1). The function T1 : [0, ∞) → [0, ∞) defined by T1 (x) = x is a solution of
(7.11), for all τ, q, x, y ∈ [0, ∞) with the choice p = q.

Example 7.7 ([9], Example 2). The function T2 : [0, ∞)→ [0, ∞) defined by T2 (x) =
√
x is a solution of

(7.11), for all τ, q, x, y ∈ [0, ∞) with the choice p = q
2 < q.

Example 7.8 ([9], Example 3). The function T3 : [0, ∞) → [0, ∞) defined by T3 (x) = x2 is a solution of
(7.11), for all τ, q, x, y ∈ [0, ∞) with the choice p = 2q > q.

Example 7.9 ([9], Example 4). Let X = B (M, R) be the space of all bounded real-valued functions defined
on M . Then the functional T : X → X , such that T (|f |) = |f |α, solves (7.11) for arbitrary positive numbers
q and α with p = qα.
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Our essential goal in this part is to prove the stability of the functional equation (7.11) to be viewed as
a counterpart of the Schwaiger type stability theorem (cf. [34]).

We recall that a functional H : X → Y is cone-related if H (X+) = {H (|x|) : x ∈ X} ⊂ Y+ (see more
about this notion in [6]).

Remark 7.10 ([9], Remark 1.1). Given two positive real numbers p and q, if a cone-related operator T : X →
Y satisfies the functional equation (7.11), then

1.) T (|x| ∨ |y|) = T (|x|) ∨ T (|y|) for all x, y ∈ X and τ = 1;

2.)
T (τ q |x|) = τpT (|x|) (7.12)

for all x ∈ X and all τ ∈ [0, ∞) \ {1}.

Proof. Note that by letting τ = 1 in (7.11) shows that T is trivially a join-homomorphism. To show the
second part we first prove that T (0) = 0. In fact, take x = y = 0 in (7.11). Then T (0) = (τpT (0)) ∨ T (0).
But since τ runs over the non-negative real line, by choosing τ = 2 yields T (0) = (2T (0)) ∨ T (0), which is
possible only if T (0) = 0. Consequently, (7.12) follows if we select y = 0 in (7.11).

Theorem 7.11 ([9], Theorem 2.1). Given a pair of positive real numbers (p, q), consider a cone-related
functional F : X → Y for which there are numbers ϑ > 0 and α with qα ∈ (0, p) such that

‖F ((τ q |x|) ∨ |y|)− (τpF (|x)|) ∨ F (|y|)‖ ≤ 2−pϑ (‖x‖α + ‖y‖α) (7.13)

for all x, y ∈ X and all τ ∈ [0, ∞). Then the sequence (2−npF (2nq |x|))n∈N is a Cauchy sequence for every
x ∈ X . Let the functional T : X → Y be defined by

T (|x|) = lim
n→∞

2−npF (2nq |x|) . (7.14)

Then

a.) T is a solution of the functional equation (7.11);

b.) T is the unique cone-related functional which satisfies inequality

‖T (|x|)− F (|x|)‖ ≤ 2qαϑ

2p − 2qα
‖x‖α (7.15)

for every x ∈ X .

Moreover, assume that X is a Banach lattice and F is continuous from below on the positive cone X+. Then
in order that the limit operator T be continuous from below on X+, it is necessary and sufficient that

lim
n→∞

lim
k→∞

F (2nqxk)

2np
≤ lim

k→∞
lim
n→∞

F (2nqxk)

2np
, (7.16)

for any increasing sequence (xk) ⊂ X+., provided that the limits exist.

Before we start the proof the following obvious remarks are worth being mentioned, as they will be used
multiple times. The first will be checked and the second one can be found in [8] without proof.

Remark 7.12 ([9], Remark 2.1). If the condition of Theorem 7.11 hold true, then F (0) = 0.

Proof. In (7.13) choose x = y = 0 and observe that ‖F (0)− (τpF (0)) ∨ F (0)‖ = 0 so that F (0) =
(τpF (0)) ∨ F (0). But since τ runs over the non-negative real line, by choosing τ = 2 yields F (0) =
(2F (0)) ∨ F (0), which is possible only if F (0) = 0.

Remark 7.13 ([9], Remark 2.2). Let Z be a set closed under the scalar multiplication, i.e. bz ∈ Z whenever
b ∈ (0, ∞) and z ∈ Z. Given a number c ∈ (0, ∞) let the function γ : Z → Z be defined by γ (z) = cz.
Then γj : Z → Z the j-th iteration of γ is given by γj (z) = cjz for every counting number j ≥ 2.
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Proof of Theorem 7.11. First, we choose τ = 2−1, y = 0 and replacing x by 2qx in (7.13) we obviously have∥∥∥∥F (2q |x|)
2p

− F (|x|)
∥∥∥∥ ≤ ϑ2qα−p ‖x‖α . (7.17)

Next, let us define the following functions:

1.) G : X → X , G (|x|) = 2q |x|.
2.) δ : X → [0, ∞) , δ (|x|) = ϑ2qα−p ‖x‖α.

3.) ϕ : [0, ∞)→ [0, ∞) , ϕ (t) = 2−pt.

4.) H : Y → Y, H (|y|) = 2−p |y|.
5.) d (· , ·) : Y × Y → [0, ∞) , d (y1 , y2) = ‖y1 − y2‖.

We shall verify the fulfilment of all the three conditions of the first Forti’s theorem (cf. [18, Theorem 1]) as
follows.

(I.) From inequality (7.17) we obviously have

d (H (F (G (|x|))) , F (|x|)) =

∥∥∥∥F (2q |x|)
2p

− F (|x|)
∥∥∥∥ ≤ ϑ2qα−p ‖x‖α = δ (|x|) .

(II.) d (H (|y1|) , H (|y2|)) = 2−p ‖y1 − y2‖ = ϕ (d (y1 , y2)) for all y1, y2 ∈ Y.

(III.) Clearly, on the one hand ϕ is a non-decreasing subadditive function on the positive half line, and on
other hand by applying Remark 7.13 on both the iterations Gj and ϕj of G and ϕ respectively, one
can observe that

∞∑
j=0

ϕj
(
δ
(
Gj (|x|)

))
= ϑ2(qα−p) ‖x‖α

∞∑
j=0

2(qα−p)j = ϑ ‖x‖α 2qα

2p − 2qα
<∞.

Then in virtue of Forti’s first theorem in [18], sequence (Hn (F (Gn |x|)))n∈N is a Cauchy sequence for every
x ∈ X and thus so is sequence (2−npF (2nq |x|))n∈N and furthermore, the mapping (7.14) is the unique
functional which satisfies inequatility (7.15). Next, we prove that the mapping T , defined in (7.14), satisfies
the functional equation (7.11). In fact, in (7.13) substitute x with 2nqx also y with 2nqy, and fix arbitarily
τ ∈ [0, ∞). Then

‖F (2nq ((τ q |x|) ∨ |y|))− (τpF (2nq |x|)) ∨ F (2nq |y|)‖ ≤ ϑ2−p2qαn (‖x‖α + ‖y‖α) .

Dividing both sides of this last inequality by 2np yields∥∥∥∥F (2nq ((τ q |x|) ∨ |y|))
2np

− (τpF (2nq |x|)) ∨ F (2nq |y|)
2np

∥∥∥∥ ≤ ϑ2−p2(qα−p)n (‖x‖α + ‖y‖α) . (7.18)

Taking the limit in (7.18) we have via (7.14) that for all τ ∈ [0, ∞) and all x, y ∈ X

‖T ((τ q |x|) ∨ |y|)− (τpT (|x|)) ∨ T (|y|)‖ = 0

which is equivalent to (7.11).
The moreover part can be proved the same way the moreover parts of the theorems in [6] were, after we

will have shown that the limits on both sides of (7.16) exist. In fact, on the one hand, the existence of the
limit on the left hand side follows from the combination of the monotonicity of F and (7.14). On the other
hand, because of (7.14) the inner limit on the right hand side equals T (xk) for every k ∈ N. But since the
limit operator T is a join-homomorphism, it is also isotonic or increasing. Consequently, (T (xk))k∈N is a
convergent sequence. We have thus proved that the limits on both sides of (7.16) exist.

Therefore, we can conclude on the validity of the argument.
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The example hereafter is to show that stability fails in some cases. if the range of the parameters p and
q is retricted and the power α of the norms equals the ratio of p and q To end the section we shall provide
some example showing that if in (7.13) parameter τ does not range over the whole non-negative half-line
and the power α of the norms equals the ratio of p and q, then stability cannot always be guaranteed. A
similar example can be found in [8].

Example 7.14 ([9], Example 5). Fix arbitrarily three numbers p, q, c ∈ (0, ∞) and consider the function

F : R→ R, F (|x|) = c.

Then whenever τ ∈ (0, 1] we have:

|F ((τ q |x|) ∨ |y|)− (τpF (|x|)) ∨ F (|y|)| = |c− (τpc) ∨ c| = 0 ≤ |x|α + |y|α , where α =
p

q
.

Since |x| =
(
|x|

1
q

)q
, for any function T : R→ R which solves (7.11) the following consecutive relations are

true:

sup
|x|∈(0,∞)

|F (|x|)− T (|x|)|
|x|α

= sup
|x|∈(0,∞)

∣∣∣c− T ((|x| 1q)q)∣∣∣
|x|α

= sup
|x|∈(0,∞)

|c− |x|α T (1)|
|x|α

=

= sup
|x|∈(0,∞)

∣∣∣∣ c

|x|α
− T (1)

∣∣∣∣ =∞.

8. Concluding Remarks

We would like to pinpoint that Riesz spaces can offer a very fertile soil for proving addition dependent
results in addition-free environments. We believe that this is yet to come to an end. So broad can be the
spectrum of questions to ask and to answer that we judge not to cite any of them here.
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[14] Császár, Á. and Laczkovich, M.: Discrete and equal convergence, Studia Sci. Math. Hungar., 10(1975), 463-472.
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