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Abstract

In this paper fixed points of α-admissible contraction mappings of Geraghty type defined on Branciari b-
metric spaces are studied. Existence and uniqueness theorems for these types of mappings of are proved.
Some consequences of these theorems are given and specific examples are presented.
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1. Introduction and preliminaries

Branciari metric spaces are among the recent generalizations of metric spaces and have been defined
by Branciari [3]. The main feature of these spaces is the replacement of the triangular inequality by a
rectangular inequality. The Branciari metric spaces are also referred to as rectangular or generalized metric
spaces. Another recent generalization of the metric spaces called b-metric spaces has been introduced by
Czerwik [4] and Bakhtin [2]. The difference between metric and b-metric shows itself in the triangle inequality
which contains a constant s ≥ 1. Combining these two concepts, George et.al. [5] defined Branciari b-metric
spaces. This new metric space is also referred to as rectangular b-metric spaces. Several articles related with
this new metric space have been published recently [5, 11, 7].

In this paper we discuss the problem of existence and uniqueness of fixed points for contraction mappings
of Geraghty type defined on Branciari b-metric spaces.

We first introduce the basic notions used throughout the paper.
Branciari metric spaces are defined as follows [3].
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Definition 1.1. [3] Let X be a nonempty set and let d : X × X → [0,+∞) be a function such that for
all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).
The map d is called a Branciari metric and the pair (X, d) is called a Branciari metric space.

Czerwik [4] and Bakhtin [2] defined the b-metric spaces as follows.

Definition 1.2. [2, 4] Let X be a nonempty set and let d : X ×X → [0,+∞) be a mapping satisfying the
following conditions for all x, y, z ∈ X:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ s[d(x, z) + d(z, y)] for some real number s ≥ 1.
Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space with a constant

s ≥ 1.

Combination of the Branciari and b-metric spaces results in the following definition of the Branciari
b-metric spaces.

Definition 1.3. [5] Let X be a nonempty set and let d : X × X → [0,+∞) be a function such that for
all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for some real number s ≥ 1.
The map d is called a Branciari b-metric and the pair (X, d) is called a Branciari b-metric space with a

constant s ≥ 1.

Convergent sequence, Cauchy sequence, completeness and continuity on Branciari b-metric space are
defined as follows.

Definition 1.4. [5] Let (X, d) be a Branciari b-metric space, {xn} be a sequence in X and x ∈ X. Then

1. A sequence {xn} ⊂ X is said to converge to a point x ∈ X if, for every ε > 0 there exists n0 ∈ N such
that d(xn, x) < ε for all n > n0. The convergence is also represented as

lim
n→∞

xn = x or xn → x as n→∞.

2. A sequence {xn} ⊂ X is said to be a Cauchy sequence if, for every ε > 0 there exists n0 ∈ N such that
d(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if limn→∞ d(xn, xn+p) = 0 for all p > 0.

3. (X, d) is said to be a complete Branciari b-metric space if every Cauchy sequence in X converges to
some x ∈ X.

4. A mapping T : X → X on is said to be continuous with respect to the Branciari b-metric d if,
for any sequence {xn} ⊂ X which converges to some x ∈ X, that is lim

n→∞
d(xn, x) = 0 we have

lim
n→∞

d(Txn, Tx) = 0.

One should be careful when working with the Branciari and Branciari b-metric spaces due to some of
their properties listed below.



Erhan, Adv. Theory Nonlinear Anal. Appl. 1 (2017) , 147-160. 149

Remark 1.5. Let (X, d) be a Branciari or Branciari b-metric space.

1. If we denote an open ball of radius r centered at x ∈ X as

Br(x, r) = {y ∈ X : |d(x, y) < r},

such an open ball in (X, d) is not always an open set.
2. If T is the collection of all subsets Y of X such that for each y ∈ Y there exist r > 0 with Br(y) ⊆ Y,

then T defines a topology for (X, d), which is not necessarily Hausdorff.
3. The limit of a convergent sequence {xn} ∈ X is not necessarily unique.
4. A convergent sequence in X is not necessarily a Cauchy sequence.
5. Branciari or Branciari b-metric is not necessarily continuous.

All these drawbacks are illustrated in the following example inspired by [5].

Example 1.6. [5] Let A =

{
1

n
, n ∈ N

}
, B = {0, 3} and X = A∪B. Define the function d(x, y) : X ×X →

[0,∞) such that d(x, y) = d(y, x) in the following way.

d(x, y) =


0 if x = y,
4 if x, y ∈ A,
1

n
if x ∈ A, y ∈ B,

2 if x, y ∈ B.

It is not difficult to see that the function d(x, y) is not a metric, not a b-metric, not a Branciary metric
but only a Branciari b-metric with s = 2. It is also clear that

lim
n→∞

d(
1

2n
, 0) = lim

n→∞

1

2n
= 0,

and
lim
n→∞

d(
1

2n
, 3) = lim

n→∞

1

2n
= 0,

that is, the sequence { 1

2n
} has two different limits, the numbers 0 and 3.

In addition, the sequence { 1

2n
} is convergent, but not a Cauchy sequence because

lim
p→∞

d(xn, xn+p) = lim
p→∞

d(
1

2n
,

1

2n+ 2p
) = lim

n→∞
4 = 4.

Finally, note that the open set B1(
1
3) contains 0, that is B1(

1
3) = {0, 3,

1
3}, but there is no positive r for

which Br(0) ⊂ B1(
1
3).

Therefore, when working on Branciari metric space, we need the following property stated in proved in
[10].

Proposition 1.7. [10] Let {xn} be a Cauchy sequence in a Branciari metric space (X, d) such that limn→∞ d(xn, x) =
0, where x ∈ X. Then limn→∞ d(xn, y) = d(x, y), for all y ∈ X. In particular, the sequence {xn} does not
converge to y if y 6= x.

Remark 1.8. The Proposition 1.7 is valid if we replace Branciari metric space by a Branciari b-metric space.
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Geraghty type contraction mappings have been introduced by Geraghty [6] who defined a class F of
functions β : [0,∞)→ [0, 1) satisfying

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0,

and with the help of these functions defined contraction mappings in the following manner.
Let (X, d) be a metric space and let T : X → X be a mapping satisfying

d(Tx, Ty) ≤ β(d(x, y))d(x, y), (1.1)

for all x, y ∈ X and some function β ∈ F . He proved the existence and uniqueness of fixed points of such
contractions on metric spaces.

In the context of b-metric spaces, Geraghty type contractions have been modified as follows [7]. Let Fs

be the class of functions β : [0,∞)→ [0,
1

s
) for which

lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0, (1.2)

holds for some s ≥ 1. On a b-metric space (X, d) with a constant s ≥ 1 Geraghty type contraction is a self
mapping T : X → X satisfying

d(Tx, Ty) ≤ β(d(x, y))d(x, y), (1.3)

for all x, y ∈ X and some function β ∈ Fs.
As examples of functions from the class Fs we can give the following functions.

Example 1.9.

The function β : [0,∞)→ [0,
1

s
) defined as β(t) = exp(−t)

s for some s ≥ 1is in the class Fs .

The function β : [0,∞)→ [0,
1

s
) defined as β(t) = 1

s(1+t2)
is in the class Fs.

Finally, we recall the concept of α-admissible mappings defined by Samet et al [12].

Definition 1.10. A mapping T : X → X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, (1.4)

where α : X ×X → [0,∞) is a given function.

2. Geraghty contractions on Branciari b-metric spaces

In many recent publications on fixed point on b-metric, quasi b-metric, Branciari b-metric, b-metric
like spaces etc., the authors modify the contractive condition and the auxiliary functions involved in these
conditions by taking into account the constant s ≥ 1 of the space. In this sense, the Banach contractive
condition on b-metric and related spaces becomes

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X

where 0 < k < 1
s .

In this paper, we deal with contractions of Geraghty type on Branciari b-metric spaces.
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Definition 2.1. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1 and let α : X ×X → [0,∞)
and β ∈ Fs be two given functions. A generalized Geraghty type α-admissible contractive mapping
T : X → X is of type (I) if it is α-admissible and satisfies

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.1)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

We will first prove an existence theorem for fixed point of the class of contractive mappings given in
Definition 2.1.

Theorem 2.2. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and α : X ×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be a continuous α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.2)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1. Then T has a fixed point.

Proof. Choosing x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1 we define the sequence {xn} as

xn+1 = Txn for n ∈ N.

Suppose that xn 6= xn+1 for all n ≥ 0. Otherwise, for some k ∈ N we would have xk = xk+1 = Txk, that is,
xk would be a fixed point of T and the proof would be completed.

Since T is α-admissible, from α(x0, Tx0) ≥ 1 we have

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

and inductively,
α(xn, xn+1) ≥ 1, for all n ∈ N. (2.3)

Also, from the condition α(x0, T 2x0) ≥ 1 we have

α(x0, x2) = α(x0, T
2x0) ≥ 1⇒ α(Tx0, Tx2) = α(x1, x3) ≥ 1,

and hence,
α(xn, xn+2) ≥ 1, for all n ∈ N. (2.4)

We define the sequences {dn} and {en} as

dn = d(xn−1, xn), en = d(xn−1, xn+1). (2.5)

We will prove that both the sequence {dn} and {en} converge to 0, that is,

lim
n→∞

d(xn−1, xn) = lim
n→∞

d(xn−1, xn+1) = 0 (2.6)

Regarding (2.3) and the fact that 0 ≤ β(t) <
1

s
, the contractive condition (2.23) with x = xn and

y = xn+1 becomes

d(xn, xn+1) = d(Txn−1, Txn)
≤ α(xn−1, xn)d(Txn−1, Txn)
≤ β(M(xn−1, xn))M(xn−1, xn) <

1

s
M(xn−1, xn),

(2.7)
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for all n ≥ 1, where

M(xn−1, xn) = max {d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)}
= max {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max {d(xn−1, xn), d(xn, xn+1)} .

Suppose that M(xn−1, xn) = d(xn, xn+1) for some n ≥ 1. Then we have

d(xn, xn+1) ≤ β(d(xn, xn+1))d(xn, xn+1) <
1

s
d(xn, xn+1),

which is not possible. Therefore, for all n ≥ 1 M(xn−1, xn) = d(xn−1, xn). In this case, the inequality (2.7)
implies

d(xn, xn+1) ≤ β(d(xn−1, xn))d(xn−1, xn) <
1
sd(xn−1, xn)

≤ d(xn−1, xn), for all n ≥ 1.
(2.8)

In other words, the sequence {dn} = {d(xn−1, xn)} is positive and decreasing and hence, converges to
some d ≥ 0. If we take limit as n→∞ in (2.8) we obtain

d = lim
n→∞

dn+1 ≤ lim
n→∞

β(dn)dn = d lim
n→∞

β(dn) ≤
1

s
d. (2.9)

This implies limn→∞ β(dn) =
1

s
and hence, by (1.2),

lim
n→∞

dn = lim
n→∞

d(xn−1, xn) = 0. (2.10)

On the other hand, we observe that repeated application of (2.8) leads to

dn+1 <
1

s
dn <

1

s2
dn−1 < · · · <

1

sn+1
d0. (2.11)

Now, taking into account (2.4), we substitute x = xn−1 and x = xn+1 in (2.23). This yields

d(xn, xn+2) = d(Txn−1, Txn+1)
≤ α(xn−1, xn+1)d(Txn−1, Txn+1)

≤ β(M(xn−1, xn+1))M(xn−1, xn+1) <
1

s
M(xn−1, xn+1),

(2.12)

for all n ≥ 1, where

M(xn−1, xn+1) = max {d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)}
= max {d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)} ,

(2.13)

Regarding (2.8), the maximum M(xn−1, xn+1) is either d(xn−1, xn+1) or d(xn−1, xn), that is, either en or
dn. From the inequality (2.12) we have

en+1 = d(xn, xn+2) <
1

s
M(en) =

1

s
max{en, dn} (2.14)

for all n ∈ N. In addition, from (2.8) we have

dn+1 < dn ≤ max{en, dn},

from which we deduce
max{en+1, dn+1} ≤ max{en, dn} for all n ≥ 1,
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that is, the sequence {max{en, dn}} is non increasing and hence, it converges to some l ≥ 0. Assume that
l > 0. Taking into account (2.10) we obtain

l = limn→∞max{en, dn} = max{limn→∞ en, limn→∞ dn}
= max{limn→∞ en, 0} = limn→∞ en.

On the other hand, letting n→∞ in (2.14) we conclude

l = lim
n→∞

en+1 < lim
n→∞

max{en, dn} = l,

which contradicts the assumption l > 0. Hence, l = 0, and then we have

lim
n→∞

en = lim
n→∞

d(xn−1, xn+1) = 0. (2.15)

Next, we will prove that xn 6= xm for all n 6= m. Assume that xn = xm for some m,n ∈ N with n 6= m.
By the initial assumption, we have d(xn, xn+1) > 0 for each n ∈ N. Without loss of generality we may take
m > n+ 1. The assumption xn = xm implies

d(xn, Txn) = d(xm, Txm).

Recalling the inequality (2.7) we have

d(xn, xn+1) = d(xn, Txn) = d(xm, Txm)
= d(Txm−1, Txm) ≤ α(xm−1, xm)d(Txm−1, Txm)

≤ β(M(xm−1, xm))M(xm−1, xm) <
1

s
M(xm−1, xm),

(2.16)

where
M(xm−1, xm) = max {d(xm−1, xm), d(xm−1, Txm−1), d(xm, Txm)}

= max {d(xm−1, xm), d(xm−1, xm), d(xm, xm+1)}
= max {d(xm−1, xm), d(xm, xm+1)} = d(xm−1, xm),

(2.17)

because of (2.8). Then we have,

d(xm, xm+1) <
1

s
d(xm−1, xm) ≤ d(xm−1, xm),

for all m > n+ 1. Continuing the process we conclude,

d(xm, xm+1) < d(xm−1, xm) < d(xm−1, xm) < . . . < d(xn, xn+1), (2.18)

which contradicts the assumption xn = xm for some m 6= n. Therefore, our initial assumption is incorrect
and we should have xn 6= xm for all m 6= n.

Now we will prove that {xn} is a Cauchy sequence, that is,

lim
n→∞

d(xn, xn+k) = 0, for all k ∈ N. (2.19)

Notice that (2.19) holds for k = 1 and k = 2 due to (2.10) and (2.15). Therefore, we assume that k ≥ 3. We
consider separately the cases with odd and even k ∈ N.

Case 1. Let k = 2m+ 1 where m ≥ 1. We have xl 6= xs for all l 6= s and xl 6= xl+1 for all l ≥ 0, so that
we can apply repeatedly the condition 3. in Definition 1.3 which implies

d(xn, xn+k) = d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]
...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)]
+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)] + . . .+ sm+1[d(xn+2m, xn+2m+1)]
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)
+ . . .+ sn+2m−1d(xn+2m, xn+2m+1).
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Then, by the inequality (2.11) we conclude

d(xn, xn+k) ≤
1

sn−1
d(x0, x1) +

1

sn
d(x0, x1) + . . .+

1

sn+2m
d(x0, x1)

= d(x0, x1)

[
n+2m∑
k=0

1

sk
−

n−2∑
k=0

1

sk

]
= d(x0, x1)

[
sn+2m+1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
.

Letting n→∞ in the last inequality we obtain

0 ≤ lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

d(x0, x1)

[
sn+2m+1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
= 0. (2.20)

Case 2. Let k = 2m where m ≥ 2. Again, repeated application of the inequality 3. in Definition 1.3 yields

d(xn, xn+k) = d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)]
...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)]
+ . . .+ sm−1 [d(xn+2m−4, xn+2m−3) + d(xn+2m−3, xn+2m−2)
+ d(xn+2m−2, xn+2m)]
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)
+ . . .+ sn+2m−3d(xn+2m−3, xn+2m−2) + sm−1d(xn+2m−2, xn+2m).

By the inequality in (2.11), we have

d(xn, xn+k) ≤
1

sn−1
d(x0, x1) +

1

sn
d(x0, x1) + . . .+

1

sn+2m−2d(x0, x1)

+ sm−1d(xn+2m−2, xn+2m)

= d(x0, x1)

[
n+2m−2∑

k=0

1

sk
−

n−2∑
k=0

1

sk

]
+ sm−1d(xn+2m−2, xn+2m)

= d(x0, x1)

[
sn+2m−1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
+ sm−1d(xn+2m−2, xn+2m).

(2.21)

From (2.15) we have lim
n→∞

sm−1d(xn+2m−2, xn+2m) = 0 and hence, letting n→∞ in (2.21) we deduce

0 ≤ lim
n→∞

d(xn, xn+k)

= limn→∞

{
d(x0, x1)

[
sn+2m−1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
+ sm−1d(xn+2m−2, xn+2m)

}
= 0.

As a result, for any k ∈ N, we have
lim
n→∞

d(xn, xn+k) = 0,

that is, the sequence {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete Branciari b-metric
space, there exists u ∈ X such that

lim
n→∞

d(xn, u) = 0. (2.22)

Since T is a continuous mapping, then, from (2.22) we have

lim
n→∞

d(Txn, Tu) = lim
n→∞

d(xn+1, Tu) = 0,
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that is, the sequence {xn} converges to Tu. Then the Proposition 1.7 implies that Tu = u, that is, u is a
fixed point of T .

Adding an additional condition to the statement of the Theorem 2.2, we can prove the uniqueness of the
fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.2 hold. Assume that for every pair x and y of fixed points
of T , α(x, y) ≥ 1. Then the fixed point of the mapping T is unique.

Proof. Since the existence of a fixed point is already proved in Theorem 2.2, we need to prove only the
uniqueness. Assume that the map T has two distinct fixed points, say x, y ∈ X, such that x 6= y, or
d(x, y) > 0. We put these two points in the contractive condition (2.23) and use the fact that α(x, y) ≥ 1
which gives

d(x, y) = α(x, y)d(Tx, Ty) ≤ β(M(x, y))M(x, y) <
1

s
M(x, y),

where,
M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)} = d(x, y).

This implies

d(x, y) <
1

s
d(x, y),

which is a contradiction and hence, d(x, y) = 0, or, x = y. This completes the proof of the uniqueness.

In the next theorem we replace the continuity of the mapping T by the so-called α-regularity of the
Branciari b-metric space.

Theorem 2.4. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and α : X ×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.23)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) For any sequence {xn} ⊂ X such that limn→∞ d(xn, x) = 0 and satisfying α(xn, xn+1) ≥ 1 for all

n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Proof. Taking x0 ∈ X as the element satisfying the condition (i), we construct the sequence {xn} as usual,
that is, xn = Txn−1, for n ∈ N.

The convergence of this sequence can be shown exactly as in the proof of Theorem 2.2.
Let u be the limit of {xn}, that is,

lim
n→∞

d(xn, u) = 0.

We will show that u is a fixed point of T . For the sequence {xn} which converges to u we have from (2.3)
that α(xn, xn+1) ≥ 1 for all n ∈ N0. Then, the condition (ii) in the statement of the theorem implies that

α(xn, u) ≥ 1, for all n ∈ N0.
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We write the contractive inequality (2.23) for xn and u, that is,

d(xn+1, Tu) = d(Txn, Tu) ≤ α(xn, u)d(Txn, Tu)
≤ β(M(xn, u))M(xn, u) <

1

s
M(xn, u),

(2.24)

where
M(xn, u) = max{d(xn, u), d(xn, xn+1), d(u, Tu)}.

Since the sequence {xn} is Cauchy and limn→∞ d(xn, u) = 0, by the Proposition 1.7 we have,

lim
n→∞

d(xn+1, Tu) = d(u, Tu). (2.25)

On the other hand,

lim
n→∞

M(xn, u) = lim
n→∞

max{d(xn, u), d(xn, xn+1), d(u, Tu)} = d(u, Tu). (2.26)

Therefore, by letting n→∞ in (2.24) and regarding (2.25) and (2.26) we obtain

d(u, Tu) = lim
n→∞

d(xn+1, Tu) <
1

s
lim
n→∞

M(xn, u) =
1

s
d(u, Tu). (2.27)

This yields d(u, Tu) = 0, hence, u is a fixed point of T . We skip the uniqueness proof since it is identical to
the proof of Theorem 2.3.

We next define another class of Geraghty type mappings on Branciari b-metric spaces.

Definition 2.5. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1 and let α : X ×X → [0,∞)
and β ∈ Fs be two given functions. A generalized Geraghty type α-admissible contractive mapping
T : X → X is of type (II) if it is α-admissible and satisfies

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X, (2.28)

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx) + d(y, Ty)]}.

Remark 2.6. For all x, y ∈ X the relation d(x, y) ≤ N(x, y) ≤M(x, y) holds.

An existence-uniqueness theorem for the class of contraction mappings introduced in Definition 2.5 is
stated below. We observe that the proof of this theorem is trivial once we take into account the Remark 2.6.

Theorem 2.7. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let α : X×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx) + d(y, Ty)]}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or, for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and α(xn, xn+1) ≥ 1

for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.
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By the Remark 2.6 we also easily conclude the following existence-uniqueness result.

Theorem 2.8. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let α : X×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

3. Consequences

In this section, we give some consequences of the Theorem2.2. First, we notice that a Branciari b-metric
spaces with s = 1 is simply a Branciari metric space.

Corollary 3.1. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Corollary 3.2. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2
[d(x, Tx), d(y, Ty)]}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.
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Corollary 3.3. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Also the choice α(x, y) = 1 gives fixed point results for self mappings on Branciari b-metric spaces. We
list some of these consequences below.

Corollary 3.4. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point.

Corollary 3.5. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx), d(y, Ty)]}.

Then T has a unique fixed point.

Corollary 3.6. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X,

Then T has a unique fixed point.

Finally, we give the following example which illustrates the theoretical results discussed above.

Example 3.7. Let X = A ∪ B where A =

{
1

2
,
1

4
,
1

6
,
1

8

}
and B = [1, 2]. Define the function d : X ×X →

[0,∞) such that d(x, y) = d(y, x) as follows.

For x, y ∈ B, or x ∈ A and y ∈ B, d(x, y) = |x− y| and

d(12 ,
1
4) = d(16 ,

1
8) = 0.2

d(12 ,
1
6) = d(14 ,

1
6) = d(14 ,

1
8) = 0.1

d(12 ,
1
8) = 1
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Clearly, d is a Branciari b-metric with s =
10

3
.

Let T : X → X be defined as

Tx =


x
8 if x ∈ B

1
6 if x ∈ A

We see that

d(Tx, Ty =


0 if x, y ∈ A
0.2 if x ∈ A, y = 1
0.1 if x ∈ A, y = 2
0.1 if x, y ∈ B

.

Then, for all x, y ∈ X the mapping T satisfies the condition

d(Tx, Ty) ≤ 3

20
d(x, y) =

1/2

10/3
d(x, y),

Hence, the conditions of the Corollary 3.6 hold with β(t) =
1

2s
=

3

20
and T has a unique fixed point which

is x = 1
6 .

4. Concluding Remarks

The general structure of the mappings discussed in this paper makes it possible to deduce many particular
existence and uniqueness results.

As it was already mentioned, by taking s = 1 and/or α(x, y) = 1 in all the theorems and corollaries,
various existing results on Branciari b-metric and Branciari metric spaces can be obtained.

On the other hand, it should be noticed that by choosing the function α in the definition of α-admissible
mappings in a particular way, it is possible to obtain existence and uniqueness results for maps defined on
partially ordered Branciari or Branciari b-metric space.

Indeed, if we define a partial ordering � on a Branciari b-metric space (X, d) and take T : X → X as an
increasing mapping, we can easily proof the following fixed point theorem.

Theorem 4.1. Let (X, d,�) be a complete Branciari b-metric space with a constant s ≥ 1 on which a partial
ordering � is defined. Suppose that T : X → X is an increasing mapping satisfying the following:

(i)
d(Tx, Ty) ≤ β(M(x, y))M(x, y),

for all x, y in X with x � y and some function β ∈ Fs where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

(ii) There exists x0 ∈ X such that x0 � Tx0 and x0 � T 2x0.
(iii) Either T is continuous or, for any increasing sequence {xn} ∈ X which converges to x we have xn � x

for all n ∈ N.

Then T has a fixed point. If, in addition any two fixed points of T are comparable, that is, x � y or y � x,
then the fixed point of T is unique.

Proof. Observe that all the conditions of Theorems 2.2, 2.3 and 2.4 hold if we choose the function α as

α(x, y) =

{
1 if x � y or y � x
0 if otherwise .

Then, the mapping T has a unique fixed point.

Finally, we note that all the consequent results of Theorems 2.2, 2.3 and 2.4 can be written on Branciari
b-metric spaces with a partial ordering and proved in a similar way.
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