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Abstract

In this paper, we topologically study the generalized metric space proposed by Branciari [3] via the weak
structure proposed by Császár [9, 10], and compare convergent sequences in several different senses. We also
introduce the concepts of available points and unavailable points on such structures. Besides, we define the
continuous function on structures and investigate further characterizations of continuous functions.
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1. Introduction and Preliminaries

Branciari [3] introduced the concept of a generalized metric space where the triangle inequality is replaced
by a rectangular inequality. Many authors studied the fixed point theory on such generalized metric space
(cf. [1, 2, 3, 4, 5, 6, 7]). Recall the notion of Branciari metric space.

Definition 1.1. [3] For a nonempty set X, let d : X ×X −→ [0,∞] be a map such that for any x, y ∈ X
and distinct u, v ∈ X \ {x, y},

(BMS1) d(x, y) = 0 if and only if x = y,
(BMS2) d(x, y) = d(y, x),
(BMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).
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The map d is called a Branciari metric, and the pair (X, d) is called a Branciari metric space, abbreviated
as BMS. The open ball and closed ball are defined respectively by

B(x, ε) = {y ∈ X : d(x, y) < ε}, B(x, ε] = {y ∈ X : d(x, y) ≤ ε}

for all x ∈ X and ε > 0.
A sequence {xn} in (X, d) is convergent to x if d(xn, x)→ 0 as n→∞.

The story in this paper starts from the topology of BMS. In contrast to the metric space, the topology
of BMS,

T = {S ⊂ X : ∀x ∈ S,∃r > 0 s.t. B(x, r) ⊂ S} ∪ {∅},

is difficult to describe. In the topology space (X, T ), an open ball may not be open. Furthermore, a terrible

fact is that xn
T−→ x (i.e., xn converges to x with respect to the topology T ) can not guarantee that xn → x,

i.e., d(xn, x)→ 0 (see Example 2.2 for details).
To remedy this problem, an alternative way is to define a new topology T̃ generated by all open balls

(as subbase). In this topology, the above problems are solved, that is, every open ball is open, and xn
T̃−→ x

implies xn → x.

However, a new phenomenon arises: xn → x can not guarantee xn
T̃−→ x (see Example 2.2).

In some sense, the topology equivalent to convergent sequences with respect to d has no equivalence
relation with open balls. How can we directly study the convergent sequence xn → x from topological view?

One way to overcome all the difficults is adopting the generalized topology proposed by Császár [9],
which removes the intersection property of finite number of open sets. Let T ′ = {∪B∈B0B : B0 ⊂ B}, where
B = {B(x, r) : x ∈ X, r > 0}. Then T ′ is a generalized topology on X which contains all the open balls as
its generalized topological base. With the aid of the generalized topology, we show an easy way to study
the convergent sequence xn → x using topological method in Sections 2 and 3.

The generalized topology was extended to weak structure by Császár [10], in which some families of sets
(like β(ω), ρ(ω), σ(ω), π(ω), α(ω)) play very fundamental roles. There have been some further results about
these families of sets, such as [11], [12]. In Section 4, we introduce the available points and unavailable points
on structures (mentioned by Császár in the introduction of [10]), and define the interior points, accumulation
points, isolated points of a set. With the help of these points, we define the interior operator and closure
operator, which are equivalent to the corresponding concepts defined by Császár. We also establish the
Kuratowski 7-sets theorem and some other results on structures. A main contribution is to characterize the
continuity on structures, where Theorems 5.7 and 5.11 are commendatory results in Section 5.

2. Convergent sequences with respect to d, T and T̃

Theorem 2.1. Let (X, d) be a BMS. Then we have:

xn
T̃−→ x ⇒ xn → x ⇒ xn

T−→ x.

The converse is false, i.e., xn
T̃−→ x 6⇐ xn → x 6⇐ xn

T−→ x.

Proof. Suppose xn
T̃−→ x. Then for any U ∈ T̃ with x ∈ U , there exists N > 0 such that xn ∈ U for any

n > N . Taking U = B(x, ε), we have d(xn, x) < ε for n > N , which deduces that xn → x.
Assume xn → x. For any V ∈ T with x ∈ V , there exists B(x, ε) ⊂ V . So, there is N > 0 such that

xn ∈ B(x, ε) ⊂ V for n > N . Accordingly, xn
T−→ x.

See Example 2.2 for the counter-example of the converse.
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Example 2.2. Let X = [0, 1] and let d : [0, 1]× [0, 1]→ [0,+∞) be a symmetric function defined by

d(y, x) = d(x, y) =


|x− y|, if x ∈ [0, 1] ∩Q and y ∈ [0, 1] \Q,
1, if x 6= y, x, y ∈ [0, 1] ∩Q or x, y ∈ [0, 1] \Q,
0, if x = y.

It can be easily verified that (X, d) is a BMS.
We will prove that T is the standard Euclidean topology on [0, 1], and T̃ is the discrete topology on [0, 1].

For 0 < r < 1, keep

B(x, r) =

{
{y ∈ [0, 1] \Q : |y − x| < r} ∪ {x}, if x ∈ [0, 1] ∩Q,
{y ∈ [0, 1] ∩Q : |y − x| < r} ∪ {x}, if x ∈ [0, 1] \Q,

in mind.
For any U ∈ T \{∅} and x ∈ U , there exists r > 0 such that B(x, r) ⊂ U . Without loss of generality, we

may assume x ∈ Q∩ [0, 1]. Then {y ∈ [0, 1] \Q : |y− x| < r} ⊂ U , i.e., (x− r, x+ r)∩ [0, 1] \Q ⊂ U . Thus,
for any y ∈ (x− r, x+ r)∩ [0, 1] \Q, there exists ry ≤ r−|x− y| such that {z ∈ [0, 1]∩Q : |z− y| < ry} ⊂ U ,
i.e., (y − ry, y + ry) ∩ [0, 1] ∩Q ⊂ U . Therefore,⋃

y∈(x−r,x+r)∩[0,1]\Q

(y − ry, y + ry) ∩ [0, 1] ∩Q ⊂ U,

i.e., (x−r, x+r)∩[0, 1]∩Q ⊂ U . Together with (x−r, x+r)∩[0, 1]\Q ⊂ U , we obtain (x−r, x+r)∩[0, 1] ⊂ U .
On the other hand, for any y ∈ (x−r, x+r)∩[0, 1], let r′ = r−|x−y| > 0. Then B(y, r′) ⊂ (x−r, x+r)∩[0, 1],
which implies that (x− r, x+ r)∩ [0, 1] ∈ T . So, {(x− r, x+ r)∩ [0, 1] : x ∈ [0, 1], r > 0} forms a topological
base of T . This means that T is the Euclidean topology on [0, 1].

Since B(x, r) ∈ T̃ , ∀x ∈ [0, 1] and r > 0, we have B(x, r) ∩ B(y, r′) ∈ T̃ , ∀x, y ∈ [0, 1], ∀r, r′ > 0. For
x ∈ [0, 1] ∩Q and y ∈ [0, 1] \Q,

B(x, r) ∩B(y, r′) =


∅, if r, r′ ≤ |x− y|,
{x}, if r ≤ |x− y| < r′,

{y}, if r′ ≤ |x− y| < r,

{x, y}, if |x− y| < r, r′.

Hence, {x}, {y} ∈ T̃ . This deduces that every singleton set is an open set, which means that T̃ is a discrete
topology.

Since | 1n − 0| → 0 and d( 1
n , 0) = 1 6→ 0, we have 1

n
T−→ 0 and 1

n 6→ 0.

Since d(
√
2
n , 0) =

√
2
n → 0 and {0} is an open set in T̃ , one has

√
2
n → 0 and

√
2
n 6
T̃−→ 0.

3. The second countability and the separability on BMS

We call a Branciari metric space a strong separable space if there exists a countable subset A of X
such that for any x ∈ X, there is a Cauchy sequence {xn} ⊂ A with different terms such that xn → x,
n→ +∞ unless x is a isolated point in A. Here A is said to be a strong dense set.

To describe the second countability on generalized metric space, we replace ‘topology’ by ‘generalized
topology’, in which every generalized open set is defined to be the union of a family of balls B(x, r) in X.

We call U a generalized topological base of X, if any generalized open set V can be written as the union
of some generalized open sets from U .

A BMS is said to be a generalized second countable BMS if there is a generalized topological base
with countable members.
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Note that ρ(x, y) := infz∈X d(x, z) + d(z, y) ≤ d(x, y) and ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for any x, y, z ∈ X
(see [6]). For describing more properties, we introduce the (K) condition as follows:
(K) There is k ∈ (0, 1) such that ρ(x, y) ≥ kd(x, y) for any x, y ∈ X.

Theorem 3.1. Let (X, d) be a Branciari metric space. We have the following results.

(1) If X is strong separable, then it must be a generalized second countable space.

(2) If X is generalized second countable, then X is separable.

(3) If X is generalized second countable with the condition (K), then X is strong separable.

Proof. (1) Let A ⊂ X be a countable strong dense subset, and B = {B(a, q) : a ∈ A, q ∈ Q+}. We will
show that each B(x, r) can be covered by some elements in B, where r ∈ R+ and x ∈ X.

If y ∈ B(x, r) ∩ A is an isolated point of A, then there exists r′ ∈ Q+ such that B(y, r′) ∩ A = {y}. If
B(y, r′) \ A 6= ∅, then for any z ∈ B(y, r′) \ A, there exists a Cauchy sequence {zn} ⊂ A satisfying zn → z
with zn 6= z, zn 6= zm, n 6= m. So d(y, zn) ≤ d(y, z) + d(z, zm) + d(zm, zn) → d(y, z) < r′ as n,m → +∞.
That is, zn ∈ B(y, r′) ∩A for sufficiently large n, which contradicts with B(y, r′) ∩A = {y}. Consequently,
B(y, r′) \A = ∅, and thus B(y, r′) = {y} ⊂ B(x, r).

Next, we assume y ∈ B(x, r) is not an isolated point of A, Let δ be a positive rational number with
δ ≤ r−d(x, y). Since A is strong dense in X, there exists a Cauchy sequence {xn} in A converging to y with
xn 6= y and xn 6= xm for any n 6= m. Thus, there is some N ∈ N such that d(xn, y) < δ

2 and d(xn, xm) < δ
2

for all n,m > N . Let m be a natural number with m > N . Now for each z ∈ B(xm,
δ
2), we show that

d(z, x) < r.
Case I: z 6= xm.

d(z, x) ≤ d(z, xm) + d(xm, y) + d(y, x)

<
δ

2
+
δ

2
+ d(y, x) = r.

Case II: z = xm.

d(xm, x) ≤ d(xm, xn) + d(xn, y) + d(y, x)

<
δ

2
+
δ

2
+ d(y, x) = r.

This proves y ∈ B(xm,
δ
2) ⊂ B(x, r), and hence B is a countable base for X. Therefore, X is generalized

second countable.
(2) Let U = {U1, U2, · · · } be a topological base. Take xn ∈ Un, and let A = {xn : n ∈ N}. Now we show

that A is a countable dense set in X. In fact, for any x ∈ X, and m ∈ N+, there is a Unm contained in
B(x, 1

m), so xnm ∈ B(x, 1
m), i.e., lim

m→+∞
xnm = x.

(3) We only need to show that, under the condition (K), xn → x implies that {xn} is Cauchy. Indeed,

d(xn, xm) ≤ 1

k
ρ(xn, xm) ≤ 1

k
(ρ(xn, x) + ρ(xm, x))

≤ 1

k
(d(xn, x) + d(xm, x))→ 0, n,m→ +∞.

An analogous result of Theorem 3.1 on partial metric space was provided in [8].
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4. Structures

Let X be a nonempty set and A be a subset of X. We denote by Ac the complement of A.

Definition 4.1. Let X be a nonempty set and let S be a nonempty family of subsets of X, then S is called
a structure on X. The elements of S are called open sets and the complements of open sets are called closed
sets.

Definition 4.2. For x ∈ X, Sx := {u ∈ S : x ∈ u} is said to be the open neighbourhood system of x.

Definition 4.3. We call points in X−
⋃
u∈S

u the unavailable points and in
⋃
u∈S

u the available points, denoted

by UK(X) and K(X), respectively.

Proposition 4.4. For x ∈ X, x ∈ K(X) if and only if Sx is nonempty.

Proof. Clearly, by Definitions 4.2 and 4.3, it is easy to see that Sx 6= ∅ if and only if x ∈
⋃
u∈S

u = K(X).

Definition 4.5. For x ∈ A ⊂ X, x is called an interior point of A if there exists u ∈ Sx such that u ⊂ A.
The interior of A is the union of all interior points of A, denoted by i(A). If A has no interior points, we
denote i(A) = ∅.

Similar to the Lemma 2.2 in [10], we immediately get that i(A) is the union of all open sets contained
in A.

Definition 4.6. For x ∈ K(X) and A ⊂ X, we call x an accumulation point of A if ∀u ∈ Sx, u
⋂
A−{x} 6=

∅. We call x an isolated point of A if ∃u ∈ Sx, u
⋂
A = {x}.

Definition 4.7. The derived set of A is the union of all accumulation points of A, denoted by d(A). The
closure of A is the union of all unavailable points of X, all accumulation points and all isolated points of A,
denoted by c(A).

We simply use iA, dA and cA instead of i(A), d(A) and c(A), respectively.

Remark 4.8. It follows from Definition 4.7 that cA = dA
⋃
A
⋃

UK(X).

Proposition 4.9. (1) cA = {x : ∀u ∈ Sx, u
⋂
A 6= ∅}

⋃
UK(X).

(2) If A is a closed set, then A = cA. If A is an open set, then A = iA.
(3) If the union of any subfamily of S always belongs to S, then A is closed iff A = cA and A is open iff

A = iA.

Proof. (1) It follows directly from Remark 4.8.
(2) We only show that A is closed ⇒ A = cA. Suppose that cA − A 6= ∅, then we pick x ∈ cA − A.

Note that Ac ∈ Sx, but Ac
⋂
A = ∅, which is a contradiction, so cA = A.

(3) We only need to show ∀A ⊂ X, iA ∈ S.
For any x ∈ iA, there exists u ∈ Sx such that u ⊂ A. If u − iA 6= ∅, then picking y ∈ u − iA, we have

y ∈ A
⋂

(iA)c. So, ∀v ∈ Sy, v 6⊂ A. Note that u ∈ Sy, so u 6⊂ A. This is a contradiction.
Hence, we get u − iA = ∅, which means that ∀x ∈ iA, ∃ux ∈ Sx such that x ∈ ux ⊂ iA. Then

iA =
⋃
x∈iA

ux, where ux ∈ S. Thus iA ∈ S.

Remark 4.10. Proposition 4.9 (1) is an equivalent definition of cA.
If S is closed under arbitrary union, then iA is the maximal open set contained in A.

Proposition 4.11. (1) c∅ = UK(X).
(2) A ⊂ cA.
(3) cA = ccA.
(4) A ⊂ B ⇒ cA ⊂ cB. If S is closed under finite intersection, then cA

⋃
cB = c(A

⋃
B).
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Proof. (1) Suppose c∅ 6= UK(X). Then ∀x ∈ c∅ − UK(X), ∀u ∈ Sx, u
⋂
∅ 6= ∅, which is a contradiction.

Consequently, c∅ = UK(X).
(2) It follows directly from Proposition 4.9 (1).
(3) ∀x ∈ ccA, ∀u ∈ Sx, u

⋂
cA 6= ∅. Take y ∈ u

⋂
cA. Then u ∈ Sy and thus u

⋂
A 6= ∅. It follows that

x ∈ cA. Accordingly, ccA ⊂ cA and combining with (2), we get cA = ccA.
(4) ∀x ∈ cA, ∀u ∈ Sx, u

⋂
A 6= ∅. Thus u

⋂
B 6= ∅, and then x ∈ cB, i.e., cA ⊂ cB. In consequence,

cA
⋃
cB ⊂ c(A

⋃
B).

Now assume that S is closed under finite intersection. Suppose c(A
⋃
B) − cA

⋃
cB 6= ∅. Let x ∈

c(A
⋃
B)− cA

⋃
cB. Then there exist uA, uB ∈ Sx such that uA

⋂
A = ∅, uB

⋂
B = ∅. Let u = uA

⋂
uB ∈

Sx. Then u
⋂
A = ∅, u

⋂
B = ∅, and thus u

⋂
(A
⋃
B) = (u

⋂
A)
⋃

(u
⋂
B) = ∅.

This is a contradiction with x ∈ c(A
⋃
B). Therefore, cA

⋃
cB = c(A

⋃
B).

Similarly, we have:

Proposition 4.12. (1) i∅ = ∅. (2) iA ⊂ A. (3) iA = iiA.
(4) A ⊂ B ⇒ iA ⊂ iB. If S is closed under finite intersection, then iA

⋂
iB = i(A

⋂
B).

Proposition 4.13. (1) d∅ = ∅.
(2) ddA ⊂ A

⋃
dA.

(3) A ⊂ B ⇒ dA ⊂ dB. If S is closed under finite intersection, then dA
⋃
dB = d(A

⋃
B).

Next we show the relations among these operators, i(·), c(·) and d(·).

Proposition 4.14. (1) (cAc)c = iA, (iAc)c = cA.
(2) If x ∈ dA, then c(A− {x}) = cA.
(3) dA = {x ∈ K(X) : x ∈ c(A− {x})}.

Proof. (1) It has been shown in Theorem 2.1 [10].
(2) We only need to show cA ⊂ c(A−{x}). Assume there exists y ∈ cA− c(A−{x}) ⊂ K(X). Then let

u ∈ Sy such that u
⋂

(A − {x}) = ∅. It follows that u
⋂
A ⊂ {x}, u

⋂
A 6= ∅, i.e., u

⋂
A = {x}. It is easy

to see that u ∈ Sx. Then by x ∈ d(A), we get u
⋂
A− {x} 6= ∅, which is a contradiction.

(3) ∀x ∈ d(A), x ∈ cA = c(A − {x}), so d(A) ⊂ {x ∈ K(X) : x ∈ c(A − {x})}. On the other
hand, if x ∈ K(X)

⋂
c(A − {x}), then x ∈ d(A − {x})

⋃
(A − {x}), i.e., x ∈ d(A − {x}) ⊂ d(A). Hence

{x ∈ K(X) : x ∈ c(A− {x})} ⊂ d(A).

Inspired by Proposition 4.14 (3), we can define a dual concept of derived set.

Definition 4.15. eA = {x ∈ X : x ∈ i(A
⋃
{x})} is called the dual derived set of A.

From Proposition 4.14 (1), we know that c and i are dual operators. Moreover, the following result
concludes that d and e are also dual operators (relative to K(X)).

Proposition 4.16. eA = d(Ac)c ∩K(X) and dA = e(Ac)c ∩K(X) hold for any subset A of X.

Proof. We only need to prove eA = d(Ac)c∩K(X). For any x ∈ e(A), we have x ∈ K(X) and x ∈ i(A
⋃
{x}).

By Proposition 4.14 (1) we obtain c(Ac − {x}) = c((A
⋃
{x})c) = (i(A

⋃
{x}))c. Hence, x 6∈ c(Ac − {x}),

that is, x 6∈ d(Ac). Thus e(A) ⊂ d(Ac)c ∩K(X).
On the other hand, for any x ∈ d(Ac)c ∩K(X), we have x ∈ K(X) but x 6∈ c(Ac − {x}) = (i(A

⋃
{x}))c,

i.e., x ∈ i(A
⋃
{x}). So, x ∈ eA and then d(Ac)c ∩K(X) ⊂ eA.

The following theorem is a counterpart of Kuratowski 7-sets theorem.

Theorem 4.17. Let A ⊂ X. The number of distinct sets which can be obtained from A by successively
taking c and i (in any order) is at most 7. The inclusion relations of the 7 sets are iA ⊂ A ⊂ cA and
iA ⊂ iciA ⊂ ciA ∩ icA ⊂ ciA ∪ icA ⊂ cicA ⊂ cA, which can be written as a Hasse diagram as follows:
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iA

A

iciA

icA ciA

cicA

cA

Proof. It is easy to check the result by Theorem 2.1 and Proposition 2.6 in [10].

As a supplement of Theorem 2.1(c) in [12], we have:

Proposition 4.18. Let A be a subset of X. Then the following statements are equivalent:
(1) cA = cicA.
(2) For any open set u satisfying u

⋂
A 6= ∅, we have u

⋂
icA 6= ∅.

Proof. ⇐: ∀x ∈ cA
⋂

K(X), ∀u ∈ Sx, u
⋂
A 6= ∅. So u

⋂
icA 6= ∅ and hence x ∈ cicA. Therefore,

cA ⊂ cicA. Since cicA ⊂ cA (by Theorem 4.17), we have cA = cicA.
⇒: If there exists V such that V

⋂
A 6= ∅ and V

⋂
icA = ∅, then icA ⊂ V c. Note that V c is closed. So

cicA ⊂ V c, i.e., cicA
⋂
V = ∅. Since cA

⋂
V 6= ∅, there exists x ∈ cA such that x 6∈ cicA.

5. Continuous map, open map and closed map

Definition 5.1. Let x ∈ K(X), f(x) ∈ K(Y ). f : X → Y is said to be continuous at x if for all v ∈ Sf(x),
there exists u ∈ Sx such that f(u) ⊂ v. We call f a continuous map, if it is continuous at every point in
K(X)

⋂
f−1(K(Y )).

To get more properties of continuous mapping, we introduce the following concepts.

Definition 5.2. In (X,S), let A ⊂ X. We call A a generalized closed set if cA = A. We call A a generalized
open set if A = iA.

Definition 5.3. Let S∼ = {iA : A ⊂ X} and let iS∼A denote the interior of A in (X,S∼). Similarly, the
open neighborhood system of x in (X,S∼) is denoted by S∼x .

Proposition 5.4. S∼ = {A : A ⊂ iA} = {A : A = iA} is a set of all generalized open sets in X.

Proposition 5.5. iA = iS∼A is open in (X,S∼).

Proof. We first show that if S ⊂ B, then iSA ⊂ iBA. Without loss of generality, we assume iA 6= ∅. Then
∀x ∈ iA, ∃u ∈ Sx ⊂ iBA and u ⊂ A. So x is an interior point of A in (X,B). Hence iA ⊂ iBA.

Now we prove that if B = S∼, then iS∼A ⊂ iA. Assume that iS∼A−iA 6= ∅, then we take x ∈ iS∼A−iA.
There exists u ∈ S∼ such that x ∈ u ⊂ A. Take v ⊂ X satisfying u = iv. By x ∈ iv, there exists w ∈ S such
that x ∈ w ⊂ iv = u ⊂ A. So x is an interior point of A in (X,S), and then x ∈ iA, which is a contradiction.
Thus iS∼A = iA. ∀A ⊂ X, iS∼A = iA ∈ S∼. So iS∼A is open in (X,S∼).

Proposition 5.6. ∅ ∈ S∼ and S∼ is closed under arbitrary union.

Proof. Since i∅ = ∅, we have ∅ ∈ S∼. For any B ⊂ S∼ and ∀A ∈ B,

A ⊂
⋃
B∈B

B ⇒ iA ⊂ i

(⋃
B∈B

B

)
⇒
⋃
A∈B

iA ⊂ i

(⋃
B∈B

B

)
.

By A ∈ S∼ ⇔ A = iA, we get
⋃
A∈B

A ⊂ i(
⋃
A∈B

A) ⊂
⋃
A∈B

A. So i(
⋃
A∈B

A) =
⋃
A∈B

A, and then
⋃
A∈B

A ∈ S∼.
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With the aid of operators, i and c, we can study specific structures. For a subset A ⊂ X, let A ∈ α(S) iff
A ⊂ iciA; A ∈ σ(S) iff A ⊂ ciA; A ∈ π(S) iff A ⊂ icA; A ∈ β(S) iff A ⊂ cicA; A ∈ ρ(S) iff A ⊂ ciA ∪ icA.

By the counterparts of Theorems 3.1 and 3.2 [10] on structures, and Theorem 4.17 and Proposition 5.6
in the present paper, we immediately get:

Theorem 5.7. S∼, α(S), σ(S), π(S), ρ(S) and β(S) are generalized topologies on X and they satisfy:

S ⊂ S∼ ⊂ α(S) ⊂ σ(S) ∩ π(S) ⊂ σ(S) ∪ π(S) ⊂ ρ(S) ⊂ β(S).

Proposition 5.8. Assume x ∈ K(X) and f(x) ∈ K(Y ). Then f is continuous at x if and only if for each
v ∈ Sf(x), there exists iu ∈ S∼x such that f(iu) ⊂ v.

The following statements are equivalent: (1) f is continuous.
(2) The preimage of every open set is generalized open.
(3) The preimage of every generalized open set is generalized open.
(4) f−1(iB) ⊂ if−1(B).

Proof. If f(u) ⊂ v, then f(iu) ⊂ v. On the other hand, since x ∈ iu, there exists w ∈ Sx such that w ⊂ iu.
So f(w) ⊂ v.

(1) ⇒ (2): For any open set v, we will prove that f−1(v) is generalized open. For all x ∈ f−1(v), since
f is continous at x, there exists u ∈ Sx such that f(u) ⊂ v, which implies u ⊂ f−1(v). Therefore x is an
interior point of f−1(v). This shows that f−1(v) is generalized open.

(2) ⇒ (1): Assume that for all x ∈ X, v ∈ Sf(x). Since f−1(v) is generalized open, there exists u ∈ Sx
such that u ⊂ f−1(v), i.e., f(u) ⊂ v. This implies that f is continuous.

(3) ⇒ (2): Since open sets are generalized open, it is trivial.
(2) ⇒ (3): For any generalized open set iB ⊂ Y , iB can be written as iB =

⋃
vi, where vi is open.

Since f−1(iB) =
⋃
f−1(vi), and f−1(vi) is generalized open for any i, we deduce that f−1(iB) is generalized

open.
(4) ⇒ (3): Let B be a generalized open set. Then f−1(B) = f−1(iB) ⊂ if−1(B). Hence f−1(B) =

if−1(B), and thus f−1(B) is generalized open.
(3) ⇒ (4): Note that f−1(iB) is generalized open. So f−1(iB) = if−1(iB) ⊂ if−1(B).

Proposition 5.5, 5.6 and 5.8 indicate that we can assume S is closed under arbitrary union if we only
concentrate on continuity and interior. That is, in some sense, the generalized topology is enough.

Definition 5.9. We say that f : X → Y is open, if for any open set u ⊂ X, f(u) is generalized open.
We say that f : X → Y is closed, if for any closed set A ⊂ X, f(A) is generalized closed.

Theorem 5.10. Let f : X → Y be a map. Then we have:
(1) ∀A ⊂ X, cf(A) ⊂ f(cA) ⇔ f is closed.
(2) ∀A ⊂ X, f(cA) ⊂ cf(A) ⇔ f is continuous.
(3) ∀A ⊂ X, f(iA) ⊂ if(A) ⇔ f is open.
(4) ∀B ⊂ Y , cf−1(B) ⊂ f−1(cB) ⇔ f is continuous.
(5) ∀B ⊂ Y , f−1(cB) ⊂ cf−1(B) ⇔ f is open.
(6) ∀B ⊂ Y , if−1(B) ⊂ f−1(iB) ⇔ f is open.
(7) ∀B ⊂ Y , f−1(iB) ⊂ if−1(B) ⇔ f is continuous.

Proof. Since the proofs are standard and similar, we only show (3) and (7).
(3). ⇒: For any open set V ⊂ X, f(V ) = f(iV ) ⊂ if(V ) ⊂ f(V ). So f(V ) = if(V ), i.e., f(V ) is open.

Thus, f is open.
⇐: If f is open, then ∀A ⊂ X, f(iA) = if(iA) ⊂ if(A).
(7). ⇐: If f is continuous, then ∀B ⊂ Y , f−1(iB) is generalized open. Note that f−1(iB) ⊂ f−1(B).

Thus f−1(iB) ⊂ if−1(B).
⇒: For any open set V ⊂ Y , f−1(V ) = f−1(iV ) ⊂ if−1(V ) ⊂ f−1(V ). So f−1(V ) = if−1(V ), i.e.,

f−1(V ) is generalized open. In consequence, f is continuous.



Dong Zhang, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 48–56. 56

Theorem 5.11. Let f : X → Y be a surjection. Assume ∀A ⊂ X, if(A) ⊂ f(iA). Then f is continuous.

Proof. Consider the set
H = {h : f(h(y)) = y,∀y ∈ Y, where h : Y → X}.

Clearly, H is nonempty since f : X → Y is a surjection. For any open set B ⊂ Y , f−1(B) =
⋃
h∈H

h(B),

we only need to prove that h(B) is generalized open. Accroding to if(h(B)) ⊂ f(ih(B)) ⊂ f(h(B)) and
f(h(B)) = B = iB, we get f(ih(B)) = f(h(B)). Since f |h(B) is an injection, we have h(B) = ih(B) and thus
h(B) is generalized open. Therefore, f−1(B) =

⋃
h∈H

h(B) is generalized open. It follows from Proposition

5.8 (2) that f is continuous.

Remark 5.12. (1) The conditions of Theorem 5.11 are all necessary. In fact, if we remove the condition
that f is a surjection, then Theorem 5.11 is false. Two examples are shown in Examples 5.13 and 5.14.

(2) The converse of Theorem 5.11 is not true, that is, if(A) ⊂ f(iA) is not always true when f is a
continuous surjection (see Example 5.15).

Example 5.13. Let X = {1, 2}, TX = {∅, {1}, X}, Y = {1, 2, 3} and TY = {∅, {1}, {2, 3}, Y }. Suppose
f : X → Y satisfying f(1) = 1 and f(2) = 2. Then f is an injection.

Note that f−1 ({2, 3}) = {2} is not open, which means that f is not continuous.
Since if(1) = {1} = f(i{1}), if(2) = {2}o = ∅ ⊂ f(i{2}) and if({1, 2}) = i{1, 2} = {1} ⊂ {1, 2} =

f (i{1, 2}), we get that f satisfies if(A) ⊂ f(iA),∀A ⊂ X.

Example 5.14. Let f(x) =

{
0, −1 ≤ x < 0,
1, 0 ≤ x ≤ 1.

Then f : [−1, 1] → R is not continuous. Note that

∀A ⊂ [−1, 1], f(A) ⊂ {0, 1}. So if(A) ⊂ i{0, 1} = ∅ ⊂ f(iA).

Example 5.15. Let X = {1, 2}, TX = {∅, {1}, X}, Y = {1} and TY = {∅, Y }. Set f : X → Y with
f(1) = 1 and f(2) = 1.

Note that f−1(1) = {1, 2} = X is open, which deduces that f is continuous. Since if(2) = i{1} = {1} 6⊂
∅ = f(∅) = f(i{2}), if(A) ⊂ f(iA) fails to hold.
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