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Abstract

The aim of this paper is to state and prove Wardowski type fixed point theorem in metric spaces. The paper
includes an example which shows that our result is a proper extension of some known results.
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1. Introduction and Preliminaries

Starting from one of the fundamental results of fixed point theory known as the Banach contraction
principle [5], several authors proved many interesting extensions and generalizations ([1]-[4], [6]-[18]).

In 2012, D. Wardowski [14], using functions F : R+ → R proved a fixed point theorem concerning a new
type of contractions, called F−contractions.

Let function F : R+ → R such that:
(F1) F is strictly increasing, that is, for all x, y ∈ R+ if x < y then F (x) < F (y);
(F2) For each sequence {αn} of positive numbers,

lim
n→∞

αn = 0 if only if lim
n→∞

F (αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

(
αkF (α)

)
= 0

We denote by F the family of all that functions.
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Definition 1.1. [14] Let (X, d) be a metric space. A map T : X → X is said to be an F−contraction on
(X, d) if there exists F ∈ F and τ > 0 such that for all x, y ∈ X

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) (1)

Theorem 1.2. [14] Let (X, d) be a complete metric space and T : X → X be an F−contraction. Then T
has a unique fixed point x∗ and for all x ∈ X the sequence {Tnx} is convergent to x∗.

Remark 1.3. From (F1) and (1) it follows that

F (d(Tx, Ty)) ≤ F (d(x, y))− τ < F (d(x, y))⇒
⇒ d(Tx, Ty) < d(x, y)

for all x, y ∈ X such that Tx 6= Ty. Also, T is a continuous operator.

Afterwards, Wardowski and Van Dung [15] have introduced the notion of a F−weak contraction, in this
way.

Definition 1.4. [15] Let (X, d) be a metric space. A map T : X → X is said to be a F−weak contraction
on (X, d) if there exists F ∈ F and τ > 0 such that for all x, y ∈ X satisfying d(Tx, Ty) > 0, the following
holds:

τ + F (d(Tx, Ty)) ≤ F (M(x, y)) (2)

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

By using this notion, Wardowski and Van Dung [15] have demonstrated a fixed point theorem which
generalizes the theorem 1.2 as follows.

Theorem 1.5. [15] Let (X, d) be a complete metric space and T : X → X be a F−weak contraction. If T
or F is continous, then T has a unique fixed point x∗ and for all x ∈ X the sequence {Tnx} is convergent
to x∗.

Latter, Piri and Kumam [12] introduced a large class of functions by replacing the condition (F3) in the
definition of F−contraction with the following

(F3′) F is continous on (0,∞)
and they denote the family of all functions F : R+ → R which satisfies the conditions (F1) , (F2) , and

(F3′) by F.
With this assumptions, Piri and Kumam [12] proved the next fixed point theorem.

Theorem 1.6. [12].Let (X, d) be a complete metric space and a mapping T : X → X. Suppose there exists
F ∈ F and τ > 0 such that, for all x, y ∈ X

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

In this paper, using the ideea from [10], we introduce a new type of F−contraction, and prove a fixed
point theorem which generalizes some known results.



Andreea Fulga, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 57–63. 59

2. Main results

First, let FE denote the familly of all functions F : R+ → R which satisfies the following conditions:
(FE1) F is strictly increasing, that is, for all x, y ∈ R+, if x < y then F (x) < F (y);
(FE2) There exists τ > 0 such that τ + lim

t→t0
inf F (t) > lim

t→t0
supF (t), for every t0 > 0.

Definition 2.1. Let (X, d) be a metric space. A map T : X → X is said to be a FE−contraction on (X, d)
if there exists F ∈ FE and τ > 0 such that for all x, y ∈ X

d(Tx, Ty) > 0⇒ τ + F (d (Tx, Ty)) ≤ F (E(x, y)) (3)

where
E(x, y) = d(x, y) + |d(x, Tx)− d (y, Ty)| . (4)

Remark 2.2. (1) Every FE− contraction is an F− contraction, but the inverse implication does not hold.
(2) Not every F− weak contraction is a FE contraction .

The following example shows that the statements from previous remark hold.

Example 2.3. Let X =
[
0, 7

10

]
∪{1} and d(x, y) = |x− y| , x, y ∈ X.Then (X, d) is a complete metric space.

Define T : X → X by

Tx =

{
x
2 , 0 ≤ x ≤ 7

10
1
4 , x = 1

and choosing F (α) = lnα, α ∈ (0,∞) and τ = ln 7.
Since T is not continuous, T is not an F−contraction. In addition to that, for x = 1

4 and y = 1 we have

d

(
T

1

4
, T1

)
=

∣∣∣∣18 − 1

4

∣∣∣∣ =
1

8
> 0

and

M

(
1

4
, 1

)
= max

{
d

(
1

4
, 1

)
, d

(
1

4
, T

1

4

)
, d (1, T1) ,

d
(
1, T 1

4

)
+ d

(
1
4 , T1

)
2

}

= max

{
1

8
,
3

4
,
3

4
,

7

16

}
=

3

4
.

Then,

τ + F

(
d

(
T

1

4
, T1

))
= ln 7 + ln

(
1

8

)
= ln

(
7

8

)
≥ ln

(
3

4

)
= F

(
M

(
1

4
, 1

))
so T is not a F−weak contraction.

For x ∈
[
0, 7

10

]
and y = 1, we have

d (Tx, T1) = d

(
x

2
,
1

4

)
=
|2x− 1|

4

and

E(x, 1) = d (x, 1) + |d (x, Tx)− d (1, T1)|

= 1− x+

∣∣∣∣x2 − 3

4

∣∣∣∣ =
7− 6x

4
.
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Therefore,

ln 7 + ln (d (Tx, T1)) ≤ ln (E(x, 1))⇔

ln 7 + ln

(
|2x− 1|

4

)
≤ ln

(
7− 6x

4

)
⇔

7 · |2x− 1|
4

≤ 7− 6x

4
.

For x ≤ 1
2 ,

7 · 1− 2x

4
≤ 7− 6x

4
⇔ 7− 14x ≤ 7− 6x⇔ x ≥ 0,

and for x > 1
2

7 · 2x− 1

4
≤ 7− 6x

4
⇔ 14x− 7 ≤ 7− 6x⇔ x ≤ 7

10

which prove that T is a FE−contraction.

Now we state the main result of the paper.

Theorem 2.4. Let (X, d) be a complete metric space and T : X → X be a FE− contraction. Then T has
a unique fixed point x∗ and for all x0 ∈ X the sequence {Tnx0} is convergent to x∗.

Proof. Let x0 ∈ X be arbitrary and fixed and we define xn+1 = Txn = Tnx0 for all n ∈ N. If there exists
n0 ∈ N∪{0} such that xn0+1 = xn0 , because xn0+1 = Txn0 , we obtain that Txn0 = xn0 , so xn0 is a fixed
point of T.

Now, we suppose that xn+1 6= xn for all n ∈ N∪{0} . So, d(xn, xn+1) > 0, (∀)n ∈ N∪{0} and from (3)
it follows that, for all n ∈ N

d (xn, xn+1) = d (Txn−1, Txn) > 0⇒
⇒ τ + F (d (Txn−1, Txn)) ≤ F (E(xn−1, xn))

⇔ τ + F (d (xn, xn+1)) ≤
≤ F (d(xn−1, xn) + |d(xn−1, Txn−1)− d(xn, Txn)| ⇔
⇔ τ + F (d (xn, xn+1)) ≤
≤ F (d(xn−1, xn) + |d(xn−1, xn)− d(xn, xn+1)|

or, if we denote by dn = d (xn−1, xn) , we have

τ + F (dn+1) ≤ F (dn + |dn − dn+1|) . (5)

If there exists n ∈ N such that dn+1 ≥ dn, then (5) becomes

τ + F (dn+1) ≤ F (dn+1)⇒ τ ≤ 0.

But, this is a contradiction, so, for dn+1 < dn we have

τ + F (dn+1) ≤ F (2dn − dn+1) (6)

⇔ F (dn+1) ≤ F (2dn − dn+1)− τ < F (2dn − dn+1)

and using (FE1)
dn+1 < 2dn − dn+1.

Therefore, the sequence {dn} is strictly increasing and bounded.
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Now, let d = lim
n→∞

dn and we suppose that d > 0. Because dn ↘ d it results that (2dn − dn+1) ↘ d and

taking the limit as n→∞ in (6), we get

τ + F (d+ 0) ≤ F (d+ 0)⇒ τ ≤ 0.

It is a contradiction, so
d = lim

n→∞
dn = lim

n→∞
d (xn−1, xn) = 0. (7)

In order to prove that {xn} is a Cauchy sequence in (X, d) , we suppose the contrary, that is, there exists
ε > 0 and the sequences {n(k)} , {m(k)} of positive integers, with n(k) > m(k) > k such that

d(xn(k), xm(k)) ≥ ε and d
(
xn(k)−1, xm(k)

)
< ε (8)

for any k ∈ N.
Then, we have

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k))

< d(xn(k), xn(k)−1) + ε.

Letting k →∞ and using (7) it follows

lim
k→∞

d(xn(k), xm(k)) = ε. (9)

Furthermore, using the triangle inequality, we obtain that

0 ≤
∣∣d (xn(k)+1, xm(k)+1

)
− d

(
xn(k), xm(k)

)∣∣
= d

(
xn(k)+1, xn(k)

)
+ d

(
xm(k), xm(k)+1

)
and

lim
k→∞

∣∣d (xn(k)+1, xm(k)+1

)
− d

(
xn(k), xm(k)

)∣∣
= lim

k→∞

[
d
(
xn(k)+1, xn(k)

)
+ d

(
xm(k), xm(k)+1

)]
= 0.

So,
lim
k→∞

d
(
xn(k)+1, xm(k)+1

)
= lim

k→∞
d
(
xn(k), xm(k)

)
= ε. (10)

On the other hand, because from (7)

lim
n→∞

d(xn, Txn) = lim
n→∞

d (xn, xn+1) = 0,

there exists N ∈ N such that

d(xn(k), Txn(k)) <
ε

4
and d(xm(k), Txm(k)) <

ε

4
, (∀) k ≥ N. (11)

Assuming by contradiction, that there exists l ∈ N such that d(xn(l)+1, xm(l)+1) = 0, from (11) and (7) it
follows that

ε ≤ d(xn(l), xm(l))

≤ d(xn(l), xn(l)+1) + d(xn(l)+1, xm(l)+1) + d(xm(l)+1, xm(l))

<
ε

4
+
ε

4
=
ε

2
.

This is a contradiction. So we proved that the inequality occurs

d(Txn(k), Txm(k)) = d(xn(k)+1, xm(k)+1) > 0 (12)
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for all k ≥ N, and using (3), there exists τ > 0 such that

τ + F
(
d(Txn(k), Txm(k))

)
≤ F

(
E(xn(k), xm(k)

)
)

for any k, where

E(xn(k), xm(k)) = d(xn(k), xm(k)) +
∣∣d (xn(k), Txn(k))− d (xm(k), Txm(k)

)∣∣
= d(xn(k), xm(k)) +

∣∣d (xn(k), xn(k)+1

)
− d

(
xm(k), xm(k)+1

)∣∣ .
Hence lim

k→∞
E(xn(k), xm(k)) = ε and by (10) we have

τ + lim
k→∞

inf F
(
d(Txn(k), Txm(k))

)
≤ lim inf

k→∞
F
(
E(xn(k), xm(k)

)
)

≤ lim sup
k→∞

F
(
E(xn(k), xm(k)

)
)⇔

⇔ τ + F (ε+) ≤ F (ε+)

which is a contradiction. This shows that {xn} is a Cauchy sequence and by completeness of X there
converges to some point x∗ ∈ X.

Next, we show that x∗ is a fixed point of T. We consider two cases:
(1) For any n ∈ N there exists kn > kn−1, k0 = 1 and xkn+1 = Tx∗. Then, x∗ = lim

n→∞
xkn+1 = Tx∗, so x∗

is fixed point of T.
(2) There exists m ∈ N such that for all n ≥ m, d(Txn, Tx

∗) > 0. Substituting x = xn and y = x∗ in
(3), there exists τ > 0 such that

τ + F (d(Txn, Tx
∗) ≤ F (E(xn, x

∗))⇔
τ + F (d(xn+1, Tx

∗)) ≤ F (d(xn, x
∗) + |d(xn, Txn)− d(x∗, Tx∗)|)⇔

τ + F (d(xn+1, Tx
∗)) ≤ F (d(xn, x

∗) + |d(xn, xn+1)− d(x∗, Tx∗)|).

We suppose that x∗ 6= Tx∗. letting n→∞, from(7) we obtain

τ + lim inf
t→d(x∗,Tx∗)

F (t) < lim inf
t→d(x∗,Tx∗)

F (t) < lim sup
t→d(x∗,Tx∗)

F (t)

which contradicts (FE2) of the hypothesis. Hence Tx∗ = x∗.
Now, let us show that T must have only one fixed point. If there exists another point y∗ ∈ X , x∗ = y∗

such that Ty∗ = y∗, then d (x∗, y∗) = d (Tx∗, T y∗) > 0 and we get

τ + F (d(Tx∗, Ty∗) ≤ F (E(x∗, y∗))⇔
τ + F (d(x∗, y∗)) ≤ F (d(x∗, y∗) + |d(x∗, Tx∗)− d(y∗, Ty∗)|)⇔
τ + F (d(x∗, y∗)) ≤ F (d(x∗, y∗) + |d(x∗, x∗)− d(y∗, y∗)|).⇔
τ + F (d(x∗, y∗)) ≤ F (d(x∗, y∗))

which is a contradiction.

Example 2.5. Let T be given as in Example 2.3. Since T is not a contraction, Theorem 1.2 is not applicable
to T and because T is not a F -weak contraction, Theorem 1.6 can not be applied. On the other hand let F
and τ be given as in Example 2.3. Then T is an FE contraction, and Theorem 2.4 can be applicable to T
and the unique fixed point of T is 0.
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