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Abstract

In this paper we present some of my favorite problems, all the time open, in the fixed point theory. These
problems are in connection with the following two:

• Which properties have the fixed point equations for which an iterative algorithm is convergent ?
• Let us have a fixed point theorem, T , and an operator f (single or multivalued) which does not satisfy

the conditions in T . In which conditions the operator f has an invariant subset Y such that the restriction
of f to Y , f

∣∣
Y
, satisfies the conditions of T ?
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1. Introduction

In this paper we present some problems, all the time open problems, in the fixed point theory. These
problems are in connection with the following two research directions:

(I) Which properties have the fixed point equations for which an iterative algorithm is convergent ?

(II) Let us have a fixed point theorem, T , and an operator f (single or multivalued) which does not satisfy
the conditions in the theorem T . In which conditions the operator f has an invariant subset Y such
that the restriction of f to Y , f

∣∣
Y
, satisfies the conditions of T ?

Throughout this paper, the standard notations and terminology are used. See for example, [33], [37] and
[49]. For the basic fixed point theorems, see: [13], [19], [3], [9], [49] and [55].
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2. Picard and weakly Picard operators

Let (X,→) be an L-space ( (X, τ)-topological space, τ→; (X, d)-metric space, d→; (X, ‖·‖)-normed space,
‖·‖→, ⇀; . . .) and f : X → X be an operator.

By definition, f is a weakly Picard operator if the sequence {fn(x)}n∈N converges for all x ∈ X at its
limit (which may depend on x) is a fixed point of f . If f is a weakly Picard operator, then we consider the
operator f∞ : X → X, defined by, f∞(x) := lim

n→∞
fn(x).

We remark that the operator f∞ is a set retraction on the fixed point set of f , Ff .
If f is a weakly Picard operator and Ff = {x∗}, then by definition f is called Picard operator. If f is a

Picard operator, we have that,
Ff = Ffn = {x∗}, for all n ∈ N∗

and if f is a weakly Picard operator, then,

Ff = Ffn 6= ∅, for all n ∈ N∗.

In the case of a metric space and of a contraction we have the following result.

Theorem 2.1 (see [47]). Let (X, d) be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) f is a Picard operator (Ff = {x∗}).

(ii) d(x, x∗) ≤ ψ(d(x, f(x))), for all x ∈ X, where ψ(t) = t
1−l , t ≥ 0.

(iii) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

(iv) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

From this result, the following problem rises:

Problem 2.2. Let (X, d) be a complete metric space and f : X → X be an operator. Which metric
conditions on f imply a similar conclusion as that of Theorem 2.1 ?

Let us consider another result:

Theorem 2.3 (see [48]). Let (X, d) be a complete metric space and f : X → X be an operator. We suppose
that:

(1) There exists l ∈]0, 1[ such that,

d(f2(x), f(x)) ≤ ld(x, f(x)), for all x ∈ X,

i.e., f is a graphic contraction.

(2) lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X.

Then we have:
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(i) f is a weakly Picard operator.

(ii) d(x, f∞(x)) ≤ 1
1−ld(x, f(x)), for all x ∈ X.

(iii) For x∗ ∈ Ff , let Xx∗ := {x ∈ X | fn(x)→ x∗ as n→∞}. Let {yn}n∈N be a sequence in Xx∗ such that

d(yn, f(yn))→ 0 as n→∞.

Then, yn → x∗ as n→∞.

(iv) Let {yn}n∈N be a sequence in Xx∗, x∗ ∈ Ff . If l < 1
3 and

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

This result suggests the following problem:

Problem 2.4 (see [48]). Which metric conditions imposed on an operator f imply a similar conclusion as
that in Theorem 2.3 ?

For a better understanding of the above problems, let us consider the following considerations:

(a) A weakly Picard operator f : (X, d) → (X, d) satisfies a retraction-displacement condition (see [8]) if
there exists an increasing function ψ : R+ → R+, ψ(0) = 0 and continuous in 0, such that

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

This condition is useful in studying the data dependence of the fixed point, and of Ulam stability of
the fixed point equations (see [44]).

So, conclusions (ii) in Theorems 2.1 and 2.3 are retraction-displacement conditions for the operator f .

(b) Conclusions (iii) in Theorems 2.1 and 2.3 can be formulated as follows: The fixed point problem for
the operator f is well posed.

(c) Conclusions (iv) in Theorems 2.1 and 2.3 can be formulated as follows: The operator f has the
Ostrowski property.

Problem 2.5. To study similar problems in the case of multivalued operators.

References for Problems 2.2 - 2.5: [47], [48], [39], [50], [52], [8], [28], [31], [32], [49], [51], [56], [57], [54],
. . .

Problem 2.6. To study similar problems in the case of a convergent iterative algorithm.

References: [42], [27], [7], [6], [25], [26], . . .

3. Conjecture on global asymptotic stability

Let (X,→) be an L-space and f : X → X be an operator. A fixed point x∗ of f is by definition globally
asymptotically stable if f is a Picard operator, i.e., fn(x)→ x∗ as n→∞, for all x ∈ X.

In 1976, J.P. LaSalle presented (see [20]) the following conjecture:

Conjecture 1 (LaSalle’s Conjecture). Let f : Rm → Rm be such that:

(i) there exists x∗ ∈ Rm with f(x∗) = x∗;
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(ii) f ∈ C1(Rm,Rm);

(iii) the spectral radius of the differential of f at x, ρ(df(x)) < 1, for all x ∈ Rm.

Then, x∗ is globally asymptotically stable.

Papers on this conjecture were given by (see [46]): A. Cima - A. Gasull - F. Mañosas (1995, 1999, 2001,
2011, 2014), G. Meisters (1996), A.G. Aksoy - M. Martelli (2001), A. Castañeda - V. Guiñez (2012), D.
Cheban (2014), . . . The results are as follow:

(a) counterexamples to LaSalle Conjecture;

(b) classes of functions for which LaSalle Conjecture is a theorem;

(c) to study the dynamic generated by a function f ∈ C1(Rm,Rm), with ρ(df(x)) < 1, for all x ∈ Rm.

We have the following remark: Let (X,→) be an L-space and f : X → X be an operator. The following
statements are equivalent:

(i) f is a Picard operator;

(ii) for all k ∈ N∗, fk is a Picard operator;

(iii) there exists k ∈ N∗ such that fk is a Picard operator.

Starting from this general remark, in [46] the following conjecture is presented.

Problem 3.1 (a conjecture). Let X be a real Banach space, Ω ⊂ X be an open, convex subset and
f : Ω→ Ω be an operator. We suppose that:

(i) f ∈ C1(Ω, X);

(ii) ρ(dfk(x)) < 1, for all x ∈ Ω and all k ∈ N∗;

(iii) Ff 6= ∅.

Then, f is a Picard operator.

In connection with the above conjecture the following problems arise:

Problem 3.2. In which conditions we have that:

ρ(df(x)) < 1, for all x ∈ Ω ⇒ ρ(dfk(x)) < 1, for all x ∈ Ω and all k ∈ N∗?

Problem 3.3. In which conditions we have that:

ρ(df(x)) < 1, for all x ∈ Ω ⇒ f is nonexpansive with respect to
an equivalent norm on X?

We remember that if (X, ‖·‖) is a complex Banach space and f : X → X is a bounded linear operator
with the spectrum σ(f), then (see [17], [5], [14], [4], . . . )

ρ(f) = sup
λ∈σ(f)

|λ| = lim
n→∞

‖fn‖
1
n = inf

n∈N∗
‖fn‖

1
n = inf

|·|∼‖·‖
|f |.

If X is a real Banach space and f : X → X is a bounded linear operator, XC the complexification of X,
fC : XC → XC the complexification of f , then by definition, ρ(f) := ρ(fC).

References: [46], [20], [4], [25], [26], . . .
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4. Nonexpansive operators and graphic contractions

Problem 4.1. Let (X, ‖·‖) be a (real or complex) Banach space. Which nonexpansive operators f : X → X
are graphic contractions ?

Commentaries: If f is a graphic contraction then inf
x∈X
‖x− f(x)‖ = 0. If Ω ⊂ X is an invariant subset of

f and f is a graphic contraction then, inf
x∈X
‖x− f(x)‖ = 0. On the other hand, in the case of nonexpansive

operators we have the following Goebel-Karlovitz Lemma (see [12]): Let Ω ⊂ X be a convex, closed and
bounded subset. Let D ⊂ Ω be a weakly compact, convex, minimal invariant set for a nonexpansive operator
f : Ω → Ω. If for a sequence {xn}n∈N, lim

n→∞
‖xn − f(xn)‖ = 0, then for any z ∈ D, we have that,

lim
n→∞

‖z − xn‖ = diam(D).
So, the above problem is a hard one.

Problem 4.2. Let X be an ordered Banach space. Which increasing, linear and nonexpansive operators
f : X → X are graphic contractions ?

Problem 4.3. Let X be a Banach space. Which multivalued nonexpansive operators T : X → P (X) are
graphic contractions ?

References: [36], [40], [43], [45], [1], [2], [10], [16], [19], [18], [30], [39], [49], . . .

5. Abstract and concrete Gronwall lemmas

Let (X,→,≤) be an ordered L-space and f : X → X be an operator. The following results are well
known (see [38]:

Lemma 5.1 (Abstract Gronwall Lemma for Picard operators). We suppose that:

(i) f is a Picard operator (Ff = {x∗});

(ii) f is an increasing operator.

Then we have that:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ x∗;

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ x∗.

Lemma 5.2 (Abstract Gronwall Lemma for weakly Picard operators). We suppose that:

(i) f is a weakly Picard operator;

(ii) f is an increasing operator

Then we have that:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞(x);

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞(x).

The above abstract Gronwall lemmas are very usefully for giving some concrete Gronwall lemmas. On
the other hand a large number of concrete Gronwall lemmas are obtained by direct proofs. The following
problems are arising:

Problem 5.3. In which Gronwall lemmas the upper bounds are fixed points of the corresponding operator
?

Problem 5.4. If there are found solutions for the Problem 5.3, which of them are consequences of some
abstract Gronwall lemmas ?

References: [38], [35], [21], [11], [22], [23], [33], [39], [49], . . .
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6. Invariant subsets with fixed point property

For a rigorous formulation of a problem (II), from Introduction, we recall a few basic notions and
examples of the fixed point structure theory (see [37]).

Let C be a class of structured sets (ordered sets, ordered linear spaces, topological spaces, metric spaces,
Hilbert spaces, Banach spaces, ordered Banach spaces, generalized metric spaces, . . . ). Let Set∗ be the class
of nonempty sets and if X is a nonempty set, then, P (X) := {Y ⊂ X | Y 6= ∅}. We also shall use the
following notations:

P (C) := {U ∈ P (X) | X ∈ C},
M(U, V ) := {f : U → V | f is an operator},
M(U) := M(U,U),
S : C ( Set∗, X 7→ S(X) ⊂ P (X),
M : DM ⊂ P (C)× P (C) ( M(P (C), P (C)), (U, V ) 7→M(U, V ) ⊂M(U, V )

By a fixed point structure (f.p.s.) on X ⊂ C we understand a triple (X,S(X),M) with the following
properties:

(i) U ∈ S(X) ⇒ (U,U) ∈ DM ;

(ii) U ∈ S(X), f ∈M(U) ⇒ Ff 6= ∅;

(iii) M is such that:

(Y, Y ) ∈ DM , Z ∈ P (Y ), (Z,Z) ∈ DM ⇒M(Z) ⊃ {f
∣∣
Z
| f ∈M(Y )}.

Here are some examples of f.p.s.

Example 6.1 (The f.p.s. of progressive operators). Let C be the class of partially ordered sets. For
(X,≤) ∈ C, let

S(X) := {Y ∈ P (X) | (Y,≤) has at least a maximal element}

and
M(Y ) := {f : Y → Y | x ≤ f(x), for all x ∈ Y }.

Then, (X,S(X),M) is a f.p.s.

Example 6.2 (The Tarski’s f.p.s.). Let C be the class of partially ordered sets. For (X,≤) ∈ C, let

S(X) := {Y ∈ P (X) | (Y,≤) is a complete lattice}

and
M(Y ) := {f : Y → Y | f is an increasing operator}.

Then, (X,S(X),M) is a f.p.s.

Example 6.3 (The f.p.s. of contractions). Let C be the class of complete metric spaces. Let

S(X) := {Y ∈ P (X) | Y is closed}

and
M(Y ) := {f : Y → Y | f is a contraction}.

Then, (X,S(X),M) is a f.p.s.
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Example 6.4 (The f.p.s. of Schauder). Let C be the class of Banach spaces. Let

S(X) := {Y ∈ P (X) | Y is compact and convex}

and
M(Y ) := {f : Y → Y | f is continuous}.

Then, (X,S(X),M) is a f.p.s.

Now, our problem (II) takes the following form:

Problem 6.5. Let (X,S(X),M) be a f.p.s. on X ∈ C and f : A→ A be an operator with A ⊂ X. In which
conditions there exists Y ⊂ A such that

(a) Y ∈ S(X);

(b) f(Y ) ⊂ Y ;

(c) f
∣∣
Y
∈M(Y ) ?

We have a similar problem in the case of multivalued operators.
References: [37], [41], [29], [49], . . .

7. Strict fixed point problems

Let X be a nonempty set and T : X → P (X) be a multivalued operator. Let FT := {x ∈ X | x ∈ T (x)}
be the set of fixed point of T and (SF )T := {x ∈ X | T (x) = {x}} be the strict fixed point set of T .

We have the following result (see [33], p.87):
Let (X, d) be a metric space and T : X → P (X) be a multivalued l-contraction. If, (SF )T 6= ∅, then,

FT = (SF )T = {x∗}.

The following problem is arising:

Problem 7.1. For which multivalued generalized contractions we have that

(SF )T 6= ∅ ⇒ FT = (SF )T = {x∗} ?

Problem 7.2. Let (X,S(X),M◦) be a multivalued fixed point structure (see [37]) on X ∈ C. Let Y ∈ S(X)
and T ∈M◦(Y ). In which conditions we have that

FT = (SF )T ?

Commentaries:

(1) Let f, g : R→ R be such that:

(a) Ff = Fg;

(b) x ≤ f(x) ≤ g(x), for all x ∈ R.

Let T : R→ P (R) be defined by,

T (x) := {tf(x) + (1− t)g(x) | t ∈ [0, 1]}.

Then we have that, FT = (SF )T .
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(2) Let (X, d) be a metric space, X =
⋃
λ∈Λ

Xλ be a partition of X, and for each λ ∈ Λ, Tλ : Xλ → P (Xλ)

be a multivalued contraction with respect to the Pompeiu-Hausdorff functional. We suppose that,
(SF )Tλ 6= ∅, for all λ ∈ Λ.

Let T : X → P (X) be defined by, T (x) = Tλ(x), if x ∈ Xλ, λ ∈ Λ.

It is clear that, FT = (SF )T 6= ∅.

(3) Let (X,S(X),M) be a fixed point structure of progressive operators on a partially ordered set (X,≤).
Let Y ∈ S(X) and f, g ∈M(Y ). We suppose that:

(a) f(x) ≤ g(x), for all x ∈ Y ;

(b) x < f(x), for each nonmaximal element x ∈ Y .

Let T : Y → P (Y ) be a multivalued operator defined by,

T (x) := {y ∈ Y | f(x) ≤ y ≤ g(x)}.

Then, FT = (SF )T 6= ∅.

References: [34], [53], [28], [49], [31], . . .

8. Commutative pairs of operators with coincidence property

Problem 8.1. Which are the f.p.s. (X,S(X),M), X ∈ C, with the following property:

Y ∈ S(X), f, g ∈M(Y ), f ◦ g = g ◦ f ⇒ there
exists x ∈ Y such that f(x) = g(x)?

Commentaries:

(1) In the case of Tarski’s fixed point structure we have that, Ff ∩ Fg 6= ∅.

(2) In the case of Schauder’s fixed point structure, the Problem 8.1 takes the following form:

Conjecture 2 (Horn’s Conjecture). Let X be a Banach space, Y ⊂ X, compact and convex subset
and f, g : Y → Y be two continuous operators. If f ◦ g = g ◦ f , then there exists x ∈ Y such that
f(x) = g(x).

(3) The Horn’s Conjecture includes:

Conjecture 3 (Schauder-Browder-Nussbaum Conjecture). Let X be a Banach space, Y ⊂ X be a
bounded, closed and convex subset and f : Y → Y be a continuous operator. If there exists n0 ∈ N∗
such that fn0 is compact, then Ff 6= ∅.

References: [37], [41], [15], [24], [18], [49], . . .

References

[1] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum,
8 (2003), 159-168.

[2] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ.
Carolinae, 44 (2003), No. 3, 555-563.

[3] J. Andres, L. Górniewicz, Topological Principles for Boundary Value Problems, Kluwer, 2003.
[4] J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory, Walter de Gruyter, 2004.
[5] G.R. Belitskii, Yu.I. Lyubich, Matrix Norm and their Applications, Birkhäuser, 1988.



I. A. Rus, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 1–10. 9

[6] V. Berinde, Iterative Approximation of Fixed Points, Springer, 2007.
[7] V. Berinde, Şt. Măruşter, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators,

J. Nonlinear and Convex Anal., 15 (2014), No. 5, 851-865.
[8] V. Berinde, A. Petruşel, I.A. Rus, M.A. Şerban, The retraction-displacement condition in the theory of fixed point equation

with a convergent iterative algorithm, In: T.M. Rassias and V. Gupta (Eds.), Mathematical Analysis, Approximation
Theory and Their Applications, Springer, 2016, 75-106.

[9] R.F. Brown, M. Furi, L. Górniewicz, B. Jiang (Eds.), Handbook of Topological Fixed Point Theory, Springer, 2005.
[10] T. Cătinaş, D. Otrocol, I.A. Rus, The iterates of positive linear operators with the set of constant functions as the fixed

point set, Carpathian J. Math., 32 (2016), No. 2, 165-172.
[11] C. Crăciun, N. Lungu, Abstract and concrete Gronwall lemmas, Fixed Point Theory, 10 (2009), No. 2, 221-228.
[12] K. Goebel, Problems I left behind, In: Proc. 10th IC-FPTA, 9-20, 2012, Cluj-Napoca.
[13] A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
[14] R.B. Hollmess, A formula for the spectral radius of an operator, Amer. Math. Monthly, 75 (1968), 163-166.
[15] W.A. Horn, Some fixed point theorems for compact maps and flows in Banach spaces, Trans. Amer. Math. Soc., 149 (1970),

391-404.
[16] J. Jachymski, Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems, Studia Math., 195 (2009),

No. 2, 99-112.
[17] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, 1982.
[18] W.A. Kirk, Metric fixed point theory: old problems and new directions, Fixed Point Theory, 11 (2010), No. 1, 45-58.
[19] W.A. Kirk, B. Sims (Eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.
[20] J.P. LaSalle, The Stability of Dynamical Systems, SIAM, 1976.
[21] N. Lungu, S.A. Ciplea, Optimal Gronwall lemmas, Fixed Point Theory, 18 (2017), No. 1, 293-304.
[22] N. Lungu, I.A. Rus, On a functional Volterra-Fredholm integral equation via Picard operators, J. Math. Ineq., 3 (2009),

No. 4, 519-527.
[23] N. Lungu, I.A. Rus, Gronwall inequalities via Picard operators, An. Şt. Univ. “Al. I. Cuza” (Iaşi), Mat., 58 (2012), f.2,

269-278.
[24] R.D. Nussbaum, The fixed point index and fixed point theorems for k-set-contractions, Ph.D. Dissertation, Univ. of Chicago,

1969.
[25] J.M. Ortega, Numerical Analysis, Acad. Press, New York, 1972.
[26] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Acad. Press, New York,

1970.
[27] A. Petruşel, I.A. Rus, An abstract point of view on iterative approximation schemes of fixed points for multivalued operators,

J. Nonlinear Sci. Appl., 6 (2013), 97-107.
[28] A. Petruşel, I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed

point theorem for a multivalued operator, J. Nonlinear and Convex Anal., 15 (2014), No. 3, 493-513.
[29] A. Petruşel, I.A. Rus, M.A. Şerban, Fixed point structures, invariant operators, invariant partitions, and applications to

Carathéodory integral equations, In: P.M. Pardalos and T.M. Rassias (Eds.), Contributions in Mathematics and Engineering,
Springer, 2016, . . .

[30] A. Petruşel, I.A. Rus, M.A. Şerban, Nonexpansive operators as graphic contractions, J. Nonlinear Anal. and Convex Anal.,
17 (2016), No. 7, 1409-1415.

[31] A. Petruşel, I.A. Rus, Multivalued Picard and weakly Picard operators, In: Fixed Point Theory and Applications (E. Llorens
Fuster, J. Garcia Falset and B. Sims (Eds.)), Yokohama Publ., 2004, 207-226.

[32] A. Petruşel, I.A. Rus, J.-C. Yao,Well-posedness in the generalized sense of the fixed point problems for multivalued operators,
Taiwanese J. Math., 11 (2007), No. 3, 903-914.

[33] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[34] I.A. Rus, Strict fixed point theory, Fixed Point Theory, 4 (2003), No. 2, 177-183.
[35] I.A. Rus, Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian J. Math., 20 (2004), No. 1,

125-134.
[36] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292 (2004), 259-264.
[37] I.A. Rus, Fixed Point Structure Theory, Cluj Univ. Press, Cluj-Napoca, 2006.
[38] I.A. Rus, Gronwall lemmas: ten open problems, Sci. Math. Jpn., 70 (2009), No. 2, 221-228.
[39] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), No. 1, 191-219.
[40] I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D), Stud. Univ. Babeş-Bolyai, Math.,

55 (2010), No. 4, 243-248.
[41] I.A. Rus, Five open problems in fixed point theory in terms of fixed point structures (I): singlevalued operators, In: Proc.

10th IC-FPTA, 39-60, 2012, Cluj-Napoca.
[42] I.A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations,

Fixed Point Theory, 13 (2012), No. 1, 179-192.
[43] I.A. Rus, Heuristic introduction to weakly Picard operator theory, Creat. Math. Inform., 23 (2014), No. 2, 243-252.
[44] I.A. Rus, Results and problems in Ulam stability of operatorial equations and inclusions, In: T.M. Rassias (Ed.), Handbook

of Functional Equations: Stability Theory, Springer, 2014, 323-352.
[45] I.A. Rus, Iterates of increasing linear operators, via Maia’s fixed point theorem, Stud. Univ. Babeş-Bolyai, Math., 60 (2015),



I. A. Rus, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 1–10. 10

No. 1, 91-98.
[46] I.A. Rus, Remarks on a LaSalle conjecture on global asymptotic stability, Fixed Point Theory, 17 (2016), No. 1, 159-172.
[47] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai, Math., 61

(2016), No. 3, 343-358.
[48] I.A. Rus, Relevant classes of weakly Picard operators, An. Univ. Vest Timişoara, Mat.-Inform., 54 (2016), No. 2, 3-19.
[49] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
[50] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed

Point Theory, 7 (2006), No. 1, 3-22.
[51] I.A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed point setof some multivalued weakly Picard operators,

Nonlinear Anal., 52 (2003), 1947-1959.
[52] I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem,

Carpathian J. Math., 29 (2013), No. 2, 239-258.
[53] A. Sîntămărian, Metrical strict fixed point theorems for multivalued mappings, Seminar on Fixed Point Theory, Preprint

No. 3, 1997, Babeş-Bolyai Univ., Cluj-Napoca, 27-30.
[54] M.A. Şerban, Saturated fibre contraction principle, Fixed Point Theory, 18 (2017), No. 2, 729-740.
[55] T. van der Walt, Fixed and Almost Fixed Points, Math. Centrum, Amsterdam, 1963.
[56] J. Wang, Y. Zhou, M. Medved, Picard and weakly Picard operators techniques for nonlinear differential equations in Banach

spaces, J. Math. Anal. Appl., 389(2012), 261-274.
[57] D.Y. Zhou, Basic Theory of Fractional Differential Equations, World Sci. Publ. Co., 2014.


	1 Introduction
	2 Picard and weakly Picard operators
	3 Conjecture on global asymptotic stability
	4 Nonexpansive operators and graphic contractions
	5 Abstract and concrete Gronwall lemmas
	6 Invariant subsets with fixed point property
	7 Strict fixed point problems
	8 Commutative pairs of operators with coincidence property

