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Abstract

We obtain a result on Ulam stability for a linear differential equation in Banach spaces. As application we
give a result on the stability of Heun’s differential equation.
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1. Introduction

In chapter six of the book Problems in Modern Mathematics, S.M. Ulam formulated the following ques-
tion: When is it true that by changing "a little" the hypothesis of a theorem one can still assert that the
conclusion of the theorem remains true or approximately true? For very general functional equations one
can ask the following question: when is it true that the solution of an equation differing slightly from a given
one, must by necessity be close to the solution of the given equation? (see [13], pg. 63).

A precise formulation of such a question was made by S.M. Ulam in 1940 in the case of the equation of the
homomorphism of groups, during a talk at Madison University, Wisconsin. S.M. Ulam called the equation of
homomorphism stable if the answer to the previous question is affirmative. For more details and results on
the stability of functional equations we refer the reader to [1, 2, 3]. The first answer to Ulam’s question was
given by D.H. Hyers who proved that Cauchy’s functional equation is stable (see [3]). M. Obłoza investigated
for the first time the Ulam stability of differential equations and the relation between Lyapunov and Ulam
stability [7, 8].
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A characterization of Ulam stability of the first order linear differential equation was obtained by T.
Miura, S. Miyajima and S.E. Takahasi [6]. Results on Ulam stability of some second order linear differential
equations were obtained by S.M. Jung using the power series method [4, 5]. D. Popa, G. Pugna and I. Raşa
studied the stability of the linear differential equation of order n and of Euler’s linear differential equation
[9, 10, 11].

Remark that, as far as we know, a characterization of Ulam stability for a second order linear differential
equation of general form is not available, but there are many papers containing stability results for various
particular forms of this equation.

In the present paper we consider a linear differential equation of second order of general form in Banach
spaces and study its Ulam stability. The main result is obtained under the hypothesis that the corresponding
scalar equation admits a solution different from zero.

Finally, we give an application to Ulam stability of Heun’s differential equation.

2. Main result

In what follows let I = (a, b), a, b ∈ R ∪ {±∞}, c ∈ I ∪ ({a, b} ∩ R), K be one of the fields R or C,
p, q ∈ C(I,K), (X, ‖·‖) be a Banach space over the field K. We give a result on generalized Ulam stability
of the second order linear differential equation

y
′′
(x) + p(x)y

′
(x) + q(x)y(x) = 0, x ∈ I, (2.1)

where y ∈ C2(I,X) is the unknown.
The equation (2.1) is called Ulam stable if for each ε > 0 there exists δ > 0 such that for every

y ∈ C2(I,X) satisfying the relation∥∥∥y′′
(x) + p(x)y

′
(x) + q(x)y(x)

∥∥∥ ≤ ε, x ∈ I, (2.2)

there exists a solution y0 ∈ C2(I,X) of the equation (2.1) with the property

‖y(x)− y0(x)‖ ≤ δ, x ∈ I. (2.3)

In other words the equation (2.1) is called Ulam stable if for every solution y of (2.2) there exists an
exact solution y0 of the equation (2.1) close to y. If in the previous definition ε and δ are replaced by some
functions ϕ and ψ depending on x ∈ I, the equation (2.1) is called generalized Ulam stable. Recall first a
result of D. Popa and I. Raşa on the stability of the first order linear differential equation which will be used
in the sequel.

Theorem 2.1. [9] Let λ ∈ C(I,K), f ∈ C(I,X), ε ∈ C(I,R), with ε > 0 on I. Then for every y ∈ C1(I,X)
satisfying the relation ∥∥∥y′

(x)− λ(x) · y(x)− f(x)
∥∥∥ ≤ ε(x), x ∈ I, (2.4)

there exists a unique u ∈ C1(I,X) such that u′
(x)− λ(x)u(x)− f(x) = 0, x ∈ I, and

‖y(x)− u(x)‖ ≤ ψc(x), x ∈ I, (2.5)

where
ψc(x) := e<L(x)

∣∣∣∣∫ x

c
e−<L(t)ε(t)dt

∣∣∣∣ , x ∈ I, (2.6)

and L is an antiderivative of λ, i.e., L′
= λ on I.
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Throughout this paper we suppose that concerning the equation (2.1) the following hypothesis is satisfied:
(H) There exists a function w ∈ C2(I,K), w(x) 6= 0 for every x ∈ I, such that

w
′′
(x) + p(x)w

′
(x) + q(x)w(x) = 0, x ∈ I. (2.7)

In other words the hypothesis (H) says that the corresponding scalar equation associated to the equation
(2.1) admits a solution which does not vanish on I.

A representation theorem for the solutions of the equation (2.1) is given in the next lemma.

Lemma 2.2. Let y ∈ C2(I,X) be a solution of the equation (2.1) and x0 ∈ I ∪ ({a, b}∩R). Then there exist
k1, k2 ∈ X such that

y(x) = w(x)

(
k1

∫ x

x0

e−Λ(t)dt + k2

)
, x ∈ I, (2.8)

where Λ is an antiderivative of the function

λ =
2w

′
+ pw

w
. (2.9)

Proof. Let y be a solution of (2.1) and u(x) = y(x)
w(x) , x ∈ I. Then y = wu, y′

= w
′
u + wu

′ , y′′
=

w
′′
u+ 2w

′
u

′
+ wu

′′ and

u
′′
(x) +

2w
′
(x) + p(x)w(x)

w(x)
u

′
(x) = 0, x ∈ I. (2.10)

Then the function z = u
′ satisfies the relation

(z(x)eΛ(x))
′

= 0, x ∈ I,

so there exists k1 ∈ X such that z(x) = k1e
−Λ(x), x ∈ I.

Finally, for a certain k2 ∈ X,

u(x) = k1

∫ x

x0

e−Λ(t)dt+ k2, x ∈ I.

We conclude that (2.8) is true.

The main result of this paper is contained in the next theorem.

Theorem 2.3. Let ϕ ∈ C(I,R), ϕ > 0. For every y ∈ C2(I,X) satisfying the relation∥∥∥y′′
(x) + p(x)y

′
(x) + q(x)y(x)

∥∥∥ ≤ ϕ(x), x ∈ I, (2.11)

and every c1 ∈ I ∪ ({a, b} ∩ R) there exists a solution y0 ∈ C2(I,X) of the equation (2.1) such that

‖y(x)− y0(x)‖ ≤ |w(x)| ·
∣∣∣∣∫ x

c1

ψc(t)dt

∣∣∣∣ , x ∈ I, (2.12)

where P is an antiderivative of p and

ψc(x) =
1

|w(x)|2 e<P (x)

∣∣∣∣∫ x

c
e<P (t)ϕ(t) · |w(t)| dt

∣∣∣∣ , x ∈ I. (2.13)

Moreover, if c1 = c then y0 is uniquely determined.
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Proof. Let y ∈ C2(I,X) satisfying (2.11) and u(x) = y(x)
w(x) , x ∈ I. Then (2.11) becomes∥∥∥∥∥u′′

(x) +
2w

′
(x) + p(x)w(x)

w(x)
u

′
(x)

∥∥∥∥∥ ≤ ϕ(x)

|w(x)|
, x ∈ I,

or ∥∥∥z′
(x) + λ(x)z(x)

∥∥∥ ≤ ϕ(x)

|w(x)|
, x ∈ I,

where

λ(x) =
2w

′
(x) + p(x)w(x)

w(x)
, z(x) = u

′
(x), x ∈ I.

Let ε(x) := ϕ(x)
|w(x)| , x ∈ I, and L an antiderivative of −λ, L = −Λ. Then

<L(x) = −2ln |w(x)| − <P (x), x ∈ I.

According to Theorem 2.1, it follows that there exists a unique z0 ∈ C1(I,X) such that

z
′
0(x) + λ(x)z0(x) = 0, x ∈ I,

and
‖z(x)− z0(x)‖ ≤ ψc(x), x ∈ I.

Now let c1 ∈ I ∪ ({a, b} ∩ R), u0 ∈ C1(I,X) such that u′
0(x) = z0(x), x ∈ I, and u0(c1) − u(c1) = 0.

Hence ∥∥∥u′
(x)− u′

0(x)
∥∥∥ ≤ ψc(x), x ∈ I,

and ∥∥∥∥∫ x

c1

(u
′
(t)− u′

0(t))dt

∥∥∥∥ ≤ ∣∣∣∣∫ x

c1

∥∥∥u′
(t)− u′

0(t)
∥∥∥ dt∣∣∣∣ ≤ ∣∣∣∣∫ x

c1

ψc(t)dt

∣∣∣∣ ,
therefore

‖u(x)− u0(x)‖ ≤
∣∣∣∣∫ x

c1

ψc(t)dt

∣∣∣∣ , x ∈ I.

Let
y0(x) = w(x)u0(x), x ∈ I.

Then y0 satisfies the equation (2.1) and

‖y(x)− y0(x)‖ ≤ |w(x)| ·
∣∣∣∣∫ x

c1

ψc(t)dt

∣∣∣∣ , x ∈ I.

The existence is proved.
Uniqueness. Suppose that c1 = c and for an y ∈ C2(I,X) satisfying (2.11) there exist two solutions y1,
y2 ∈ C2(I,X) of the equation (2.1) such that

‖y(x)− yk(x)‖ ≤ |w(x)| ·
∣∣∣∣∫ x

c
ψc(t)dt

∣∣∣∣ , x ∈ I.

Then, according to Lemma 2.1

y1(x) = w(x)

(
k1

∫ x

c
e−Λ(t)dt+ k2

)
,

y2(x) = w(x)

(
k3

∫ x

c
e−Λ(t)dt+ k4

)
,

x ∈ I, (2.14)
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where k1, k2, k3, k4 ∈ X. We get

‖y1(x)− y2(x)‖ ≤ ‖y1(x)− y(x)‖+ ‖y(x)− y2(x)‖

≤ 2 |w(x)| ·
∣∣∣∣∫ x

c
ψc(t)dt

∣∣∣∣ , x ∈ I,

or taking account of (2.14) it follows∥∥∥∥(k1 − k3)

∫ x

c
e−Λ(t)dt+ k2 − k4

∥∥∥∥ ≤ 2

∣∣∣∣∫ x

c
ψc(t)dt

∣∣∣∣ , x ∈ I. (2.15)

Letting x→ c in (2.15) we get k2 = k4. Thus (2.15) becomes∥∥∥∥(k1 − k3)

∫ x

c
e−Λ(t)dt

∥∥∥∥ ≤ 2

∣∣∣∣∫ x

c
ψc(t)dt

∣∣∣∣ , x ∈ I.

Since e−Λ(c) 6= 0, it follows that there exists a neighborhood V of c such that

‖k1 − k3‖ ≤ 2

∣∣∣∣
∫ x
c ψc(t)dt∫ x
c e
−Λ(t)dt

∣∣∣∣ , x ∈ I ∩ V, x 6= c.

Taking account of

lim
x→c

∫ x
c ψc(t)dt∫ x
c e
−Λ(t)dt

= lim
x→c

(∫ x
c ψc(t)dt

)′(∫ x
c e
−Λ(t)dt

)′ =
ψc(c)

e−Λ(c)
=

0

e−Λ(c)
= 0,

it follows k1 = k3, therefore y1 = y2.
Uniqueness is proved.

3. Application

We give an application concerning the Ulam stability of Heun’s differential equation.
Heun differential equation is usually written in the form

y
′′
(x) +

(
γ

x
+

δ

x− 1
+

ε

x− a

)
y
′
(x) +

αβx− q
x(x− 1)(x− a)

y(x) = 0,

where a, α, β, γ, δ, ε, q are real (or complex) constants, a 6= 0, a 6= 1 and α+β+1 = γ+ δ+ε. Heun equation
has many applications in physical science. It is recently encountered in problems in general relativity and
astrophysics. We deal with Ulam stability of a particular case of Heun’s equation, namely

y
′′
(x) +

(
1

x
+

1

x− 1
+
−2n

x− 1
2

)
y
′
(x) +

−2nx+ n

x(x− 1)(x− 1
2)
y(x) = 0, (3.1)

where n is a positive integer and y ∈ C2(I,R).
A particular solution of the equation (3.1), related to Bernstein polynomials, is

Fn(x) =

n∑
k=0

((
n
k

)
(xk(1− x)n−k)

)2

, x ∈ [0, 1].

See for more details [12]. We will prove that equation (3.1) is Ulam stable in classical sense on the interval
I = (0, 1

2).



D. Popa, G.Pugna and I. Raşa, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 106-112. 111

Theorem 3.1. Let ε > 0. For every y ∈ C2(I,R) such that∣∣∣∣∣y′′
(x) +

(
1

x
+

1

x− 1
+
−2n

x− 1
2

)
y
′
(x) +

−2nx+ n

x(x− 1)(x− 1
2)
y(x)

∣∣∣∣∣ ≤ ε, x ∈ I, (3.2)

there exists a unique solution y0 of the equation (3.1) with the property

|y(x)− y0(x)| ≤ Mε

2
, x ∈ I,

where M = maxx∈[0, 1
2

] ψ(x), and

ψ(x) =
(1

2 − x)2n

x(1− x)F 2
n(x)

∫ x

0

t(1− t)
(1

2 − t)2n
Fn(t)dt, x ∈

(
0,

1

2

)

ψ(0) = ψ

(
1

2

)
= 0.

Proof. Let y ∈ C2(I,R) be a function satisfying (3.2) and

p(x) =
1

x
+

1

x− 1
+
−2n

x− 1
2

, q(x) =
−2nx+ n

x(x− 1)(x− 1
2)
, x ∈ I.

Then P (x) = ln x(1−x)

( 1
2
−x)2n

, and for c = 0, ϕ(x) = ε, x ∈ I, in (2.13) we have

ψ0(x) =
ε(1

2 − x)2n

x(1− x)F 2
n(x)

∫ x

0

t(1− t)
(1

2 − t)2n
Fn(t)dt, x ∈ I.

The function ψ0

ε can be extended to a continuous function on the interval [0, 1
2 ]. Indeed

lim
x→0

ψ0(x) =
ε

22n
lim
x→0

1

x

∫ x

0

t(1− t)
(1

2 − t)2n
Fn(t)dt

=
ε

22n
lim
x→0

x(1− x)

(1
2 − x)2n

Fn(x) = 0,

according to l’Hospital’s theorem. Analogously

lim
x→ 1

2

ψ0(x) =
4ε

F 2
n(1

2)
lim
x→ 1

2

(
1

2
− x
)2n ∫ x

0

t(1− t)
(1

2 − t)2n
Fn(t)dt

=
4ε

F 2
n(1

2)
lim
x→ 1

2

∫ x
0

t(1−t)
( 1
2
−t)2nFn(t)dt

(1
2 − x)−2n

=
4ε

F 2
n(1

2)
lim
x→ 1

2

(
1

2
− x
)
· x(1− x)Fn(x)

2n
= 0.

Therefore we can extend ψ0

ε to a continuous function ψ on [0, 1
2 ] with

ψ(0) = ψ

(
1

2

)
= 0.

Taking w(x) = Fn(x), x ∈ I, c = c1 = 0 in Theorem 2.2 it follows that there exists a unique solution y0

of the equation (3.1) such that

|y(x)− y0(x)| ≤ εFn(x)

∫ x

0
ψ(t)dt, x ∈ I.



D. Popa, G.Pugna and I. Raşa, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 106-112. 112

On the other hand supx∈IFn(x) = 1, hence

Fn(x)

∫ x

0
ψ(t)dt ≤

∫ 1
2

0
Mdt =

M

2
, x ∈ I.

The theorem is proved.
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