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Abstract

This is an expository paper containing remarks on solutions to some functional equations of a form,
that could be called of the radical type. Simple natural examples of them are the following two functional
equations

f
(

n
√
xn + yn

)
= f(x) + f(y),

f
(

n
√
xn + yn

)
+ f

(
n
√
|xn − yn|

)
= 2f(x) + 2f(y)

considered recently in several papers, for real functions and with given positive integer n, in connection with
the notion of Ulam (or Hyers-Ulam) stability. We provide a general method allowing to determine solutions
to them.

Keywords: functional equation, radical type, Cauchy equation, quadratic equation.
2010 MSC: 39B52.

1. Introduction and preliminaries

During the 16th International Conference on Functional Equations and Inequalities (Będlewo, Poland,
May 17-23, 2015), W. Sintunavarat presented a talk concerning the Ulam type stability (for information and
further references concerning this notion see, e.g., [4]) of the so-called radical functional equation

f
(√

x2 + y2
)
= f(x) + f(y), (1.1)
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in the class of real functions. A question of J. Schwaiger about the general solution of the equation was
answered a bit later by the author of this paper (see [14, p. 196]). Namely, a function f : R→ R (R stands
for the set of reals) satisfies equation (1.1) if and only if it is of the form:

f(x) = a(x2), x ∈ R,

with a function a : R → R that is additive (i.e., satisfies the condition: a(x + y) = a(x) + a(y) for every
x, y ∈ R). This paper contains some remarks on extensions and generalizations of this result.

Clearly, equation (1.1) is a particular case of the functional equation

f
(

n
√
xn + yn

)
= f(x) + f(y), (1.2)

which for k = 2, 3, 4 have been considered in [2, 3, 5, 7, 8, 9, 12, 15], and some descriptions of solutions to it
have been proposed (not always complete and correct). Moreover, the solutions and the Ulam type stability
of the equation

f
(√

ax2 + by2
)
= af(x) + bf(y) (1.3)

have been considered in [9, 10], for functions f mapping R into a real linear space X, with real a, b > 0 such
that a+ b 6= 1. The authors have proved that every such solution to (1.3) must be a quadratic function, i.e.,
a solution to the quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y). (1.4)

A somewhat similar is the Pythagorean mean functional equation

f
(√

x2 + y2
)
=

f(x)f(y)

f(x) + f(y)
, (1.5)

considered in [13] for f : (0,∞)→ R. It is clear that the cases when

f(x) + f(y) = 0

must be somehow excluded in (1.5) (which has not been done explicitly in [13]).
Moreover, the equation

f
(√

x2 + y2
)
+ f

(√
|x2 − y2|

)
= 2f(x) + 2f(y) (1.6)

and its generalized form

f
(√

ax2 + by2
)
+ f

(√
|ax2 − by2|

)
= 2a2f(x) + 2b2f(y) (1.7)

have been considered in [5, 9, 10, 15] for functions f mapping R into a real linear space X, with real a, b > 0
such that a+ b 6= 1.

It seems that a useful simple description of solutions to functional equations of similar type is of interest
and has not been published so far. Therefore we would like to present some general remarks on the issue
of solving such equations and obtain in this way much stronger versions and complements of some of the
results presented in [2, 3, 5, 7, 10, 9]. The reasonings that we use are well known and some of them can be
even considered to be routine (cf., e.g., [1, 11]).

Note that all those equations are simple particular cases of the following general functional equation

H
(
f
(

n

√
F1(xn1 , . . . , x

n
m)
)
, . . . , f

(
n

√
Fk(x

n
1 , . . . , x

n
m)
))

(1.8)

= G
(
f(x1), . . . , f(xm)

)
for the unknown functions f : R→ D, with given functions H : Dk → T , G : Dm → T , F1, . . . , Fk : Pm → P ,
where n, k and m are fixed positive integers with n > 1, T and D are nonempty sets, and

P := {xn : x ∈ R}.
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2. Main results

In the whole paper n, k, m, P , D, T , H, G, and F1, . . . , Fk have the same meaning as described at the
end of the previous section.

The next theorem is the main result of this paper. Namely, we have the following description of the
general solution f : R→ D to functional equation (1.8).

Theorem 2.1. Let f be a function mapping R into D. Assume that one of the following two conditions is
valid:

(i) n is odd;

(ii) there are e1, . . . , em−1 ∈ f(R) such that

G(e1, . . . , em−1, u) 6= G(e1, . . . , em−1, v), u, v ∈ D,u 6= v. (2.1)

Then f satisfies functional equation (1.8) if and only if there exists a solution h : P → D of the equation

H
(
h
(
F1(x1, . . . , xm)

)
, . . . , h

(
Fk(x1, . . . , xm)

))
(2.2)

= G
(
h(x1), . . . , h(xm)

)
,

such that

f(x) = h(xn), x ∈ R. (2.3)

Proof. Assume that f fulfils (1.8). Let

h(x) = f
(

n
√
x
)
, x ∈ P. (2.4)

We show that (2.2) holds.
To this end take x1, . . . , xm ∈ P and write

yi := n
√
xi, i = 1, . . . ,m.

Then, by (1.8),

H
(
h
(
F1(x1, . . . , xm)

)
, . . . , h

(
Fk(x1, . . . , xm)

))
(2.5)

= H
(
f
(

n

√
F1(yn1 , . . . , y

n
m)
)
, . . . , f

(
n

√
Fk(y

n
1 , . . . , y

n
m)
))

= G
(
f(y1), . . . , f(ym)

)
= G

(
f
(

n
√
x1
)
, . . . , f

(
n
√
xm
))

= G
(
h(x1), . . . , h(xm)

)
.

Clearly, if n is odd, then P = R and consequently, by (2.4),

f(x) = h(xn), x ∈ R.

So, assume that n is even. Then P = [0,∞) and, according to (2.4),

f(x) = h(xn), x ∈ [0,∞). (2.6)

Next, according to (ii), there exist e1, . . . , em−1 ∈ f(R) such that (2.1) is valid. Let v1, . . . , vm−1 ∈ f(R) be
such that

ei = f(vi), i = 1, . . . ,m.
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It is easily seen that, for each x ∈ R,

G
(
e1, . . . , em−1, f(−x)

)
= G

(
f(v1), . . . , f(vm−1), f(−x)

)
= H

(
f
(

n

√
F1

(
vn1 , . . . , v

n
m−1, x

n
) )

, . . . , f
(

n

√
Fk

(
vn1 , . . . , v

n
m−1, x

n
) ))

= G
(
f(v1), . . . , f(vm−1), f(x)

)
= G

(
e1, . . . , em−1, f(x)

)
.

Thus, in view of (2.1), we have proved that

f(−x) = f(x), x ∈ R, (2.7)

whence (on account of (2.6))
f(x) = h(xn), x ∈ R.

Now, assume that f(x) = h(xn) for every x ∈ R, with some solution h : P → D of equation (2.2). Then
(2.4) holds. We are to show that f is a solution to functional equation (1.8). So, take y1, . . . , ym ∈ R. Then
yn1 , . . . , y

n
m ∈ P and consequently

H
(
f
(

n

√
F1(yn1 , . . . , y

n
m)
)
, . . . , f

(
n

√
Fk(y

n
1 , . . . , y

n
m)
))

= H
(
h
(
F1

(
yn1 , . . . , y

n
m

))
, . . . , h

(
Fk

(
yn1 , . . . , y

n
m

)))
= G

(
h
(
yn1
)
, . . . , h

(
ynm
))

= G
(
f(y1), . . . , f(ym)

)
.

Let F be a field, D = T = F, k = 1, m = 2, F1(x1, x2) ≡ x1 + x2, G(u, v) ≡ uv and H(u) ≡ u. Then
functional equation (1.8) takes the form

f
(

n
√
xn + yn

)
= f(x)f(y) (2.8)

and Theorem 2.1 implies the following very simple corollary.

Corollary 2.2. A function f : R→ F satisfies functional equation (2.8) if and only if there exists a solution
g : P → F to the equation

g(x+ y) = g(x)g(y), (2.9)

such that f(x) = g(xn) for x ∈ R.

Proof. Let f be a solution to (2.8). If f(x) ≡ 0, then it is enough to take g(x) ≡ 0. If there is x ∈ R with
f(x) 6= 0, then condition (ii) holds and we can use Theorem 2.1.

The converse also follows from Theorem 2.1.

Let X denote a linear space over a field K with 2 6= 0, α, β ∈ K, and a, b ∈ R+. Let D = T = X, k = 1,
F1(x1, x2) ≡ ax1 + bx2, H(u) ≡ u and G(u, v) ≡ αu+ βv. Then functional equation (1.8) has the form

f
(

n
√
axn + byn

)
= αf(x) + βf(y), (2.10)

which generalizes simultaneously equations (1.2) and (1.3). Note that Theorem 2.1 implies at once the
following:

Corollary 2.3. Assume that α 6= 0 or β 6= 0. A function f : R → X satisfies functional equation (2.10) if
and only if there exists a solution g : P → X to the equation

g(ax+ by) = αg(x) + βg(y) (2.11)

such that f(x) = g(xn) for x ∈ R.



Janusz Brzdęk, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 125-135. 129

The next proposition describes solutions g : P → X to (2.11) (R+ stands for the set of nonnegative reals).

Proposition 2.4. Let P0 ∈ {R+,R}. Assume that α 6= 0 or β 6= 0. Then a function g : P0 → X satisfies
equation (2.11) if and only if,

(a) in the case α+ β 6= 1, there exists a solution h : R→ X to the additive Cauchy equation

h(x+ y) = h(x) + h(y), (2.12)

such that

h(ax) = αh(x), h(by) = βh(y), x ∈ R, (2.13)

and

g(x) = h(x), x ∈ P0. (2.14)

(b) in the case α + β = 1, there are w ∈ X and a solution h : R→ X to equation (2.12) such that (2.13)
holds and

g(x) = h(x) + w, x ∈ P0. (2.15)

Proof. Let g0 : P0 → X satisfy functional equation (2.11) and g0(0) = 0. Taking x = 0 and next y = 0 in
(2.11), we get

g0(ax) = αg0(x), g0(by) = βg0(y), x ∈ P0, (2.16)

whence

g0(ax+ by) = αg0(x) + βg0(y) = g0(ax) + g0(by), x ∈ P0. (2.17)

Clearly, (2.17) means that

g0(x+ y) = g0(x) + g0(y), x ∈ P0. (2.18)

Take x, y, z, w ∈ P0 with x− w = z − y. Then x+ y = z + w and, by (2.18),

g0(x) + g0(y) = g0(x+ y) = g0(z + w) = g0(z) + g0(w),

which implies that
g0(x)− g0(w) = g0(z)− g0(y).

Consequently, we can define h : R→ X by

h(x− y) = g0(x)− g0(y), x, y ∈ P0.

Note that

h(x) = h(x− 0) = g0(x)− g0(0) = g0(x), x ∈ P0, (2.19)

and

h(−x) = h(0− x) = g0(0)− g0(x) = −g0(x), x ∈ P0. (2.20)

Hence, by (2.16), we get

h(ax) = αh(x), h(by) = βh(y), x ∈ R. (2.21)
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We are yet to show that h fulfils the additive Cauchy equation (2.12). To this end take u, v ∈ R. There
exist x1, x2, y1, y2 ∈ P0 with u = x1 − x2 and v = y1 − y2. Note that x1 + y1, x2 + y2 ∈ P0 and, by (2.18),

h(u+ v) = h(x1 − x2 + y1 − y2)
= h(x1 + y1 − (x2 + y2))

= g0(x1 + y1)− g0(x2 + y2)

= g0(x1) + g0(y1)− (g0(x2) + g0(y2))

= g0(x1)− g0(x2) + g0(y1)− g0(y2)
= h(x1 − x2) + h(y1 − y2) = h(u) + h(v).

Now, assume that g : P0 → X satisfies equation (2.11). First consider the case α + β 6= 1. Then, with
x = y = 0 in (3.2), we deduce that g(0) = 0. Consequently the reasoning presented above, with g0 = g, ends
the proof of the necessary condition.

If α+ β = 1, we write
g0(x) := h(x)− h(0), x ∈ R+.

Then g0(0) = 0 and, as we have shown above, there is a solution h : R → X to equation (2.12) such that
(2.13) holds. Hence statement (b) is true with w := g0(0).

The converse is easy to check.

Remark 2.5. If K = R and a function h : R → X satisfies equation (2.12) and conditions (2.13), then it is
easily seen that

h(anx) = αnh(x), h(bny) = βnh(y), x ∈ R, n ∈ N.

Consequently, if r := an0 ∈ Q (rationals) for some n0 ∈ N, then

rh(x) = h(rx) = h(an0x) = αn0h(x), x ∈ R.

Hence an0 = r = αn0 or h(x) ≡ 0. The same is true for b and β.
For some further comments and references concerning similar issues we refer to [11, ch. XIII, §10].

Remark 2.6. As far as we know, the only published description of solutions h : R → X (with K = R) to
functional equation (1.3) (i.e., to (2.10) with n = 2, α = a and β = b) states that if a+ b 6= 1, then f must
be a quadratic function (see [9, Theorem 2.3]). Clearly, this description follows at once from Proposition 2.4
(a). Certainly, Proposition 2.4 provides much more general and precise information.

3. Further applications

In this section, as before, R+ stands for the set of nonnegative reals, P := {xn : x ∈ R}, X denotes a
linear space over a field K with 2 6= 0, α, β ∈ K, a, b ∈ (0,∞), and n ∈ N. We always assume that α 6= 0 or
β 6= 0.

Clearly, if D = T = X, k = 2, F1(x1, x2) ≡ ax1 + bx2, F2(x1, x2) ≡ |ax1 − bx2|, H(u, v) ≡ u + v and
G(u, v) ≡ αu+ βv, then functional equation (1.8) takes the form

f
(

n
√
axn + byn

)
+ f

(
n
√
|axn − byn|

)
= αf(x) + βf(y), (3.1)

which is a generalization of equations (1.6) and (1.7). Consequently, Theorem 2.1 implies the following:

Corollary 3.1. A function f : R→ X satisfies functional equation (3.1) if and only if there exists a solution
h : P → X to the equation

h(ax+ by) + h(|ax− by|) = αh(x) + βh(y) (3.2)

such that f(x) = h(xn) for x ∈ R.



Janusz Brzdęk, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 125-135. 131

We provide descriptions of solutions to (3.2) in the next proposition and corollary. To this end, let us
recall that q : R→ X is quadratic if it satisfies functional equation (1.4) (see also Remark 3.6).

Theorem 3.2. Let P0 ∈ {R+,R} and h : P0 → X be such that h(0) = 0. Then h satisfies functional equation
(3.2) if and only if there is a quadratic function q : R→ X such that

q(ax) =
α

2
q(x), q(bx) =

β

2
q(x), x ∈ R, (3.3)

and

h(x) = q(x), x ∈ P0. (3.4)

Proof. Taking x = 0 and next y = 0 in (3.2), we get

h(ax) =
α

2
h(x), h(bx) =

β

2
h(x), x ∈ R+. (3.5)

Consequently

h(ax+ by) + h(|ax− by|) = 2
α

2
h(x) + 2

β

2
h(y)

= 2h(ax) + 2h(by), x, y ∈ R+,

whence

h(u+ v) + h(|u− v|) = 2h(u) + 2h(v), u, v ∈ R+. (3.6)

Define q : R→ X by

q(x) = h(|x|), x ∈ R. (3.7)

Clearly,

h(x) = q(x), x ∈ R+, (3.8)

and (3.5) implies

q(ax) =
α

2
q(x), q(bx) =

β

2
q(x), x ∈ R+. (3.9)

Next, q is even (in view of (3.7)), so (3.9) implies (3.3) also when P0 = R. We show that q is quadratic.
So, fix u, v ∈ R. If u, v ∈ R+, then

q(u+ v) + q(u− v) = h(u+ v) + h(|u− v|)
= 2h(u) + 2h(v) = 2q(u) + 2q(v).

If u, v ∈ (−∞, 0), then

q(u+ v) + q(u− v) = h(−u− v) + h(| − u− (−v)|)
= 2h(−u) + 2h(−v) = 2q(u) + 2q(v).

Further, if u ≥ 0 and v < 0, then

q(u+ v) + q(u− v) = q(u− (−v)) + q(u+ (−v))
= h(|u− (−v)|) + h(u+ (−v))
= 2h(u) + 2h(−v) = 2q(u) + 2q(v).
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Finally, if u < 0 and v ≥ 0, then q(u− v) = h(|u− v|) = q(v − u), whence

q(u+ v) + q(u− v) = q(v + u) + q(v − u)
= q(v − (−u)) + q(v + (−u))
= h(|v − (−u)|) + h(v + (−u))
= 2h(v) + 2h(−u) = 2q(u) + 2q(v).

If P0 = R+, then (3.8) is just equality (3.4), whence this finishes the proof of the necessary condition.
So, it remains to prove that (3.4) holds also in the case P0 = R. To this end fix y ∈ (−∞, 0). There is

x ∈ R+ with ax+ by > 0 and ay + bx > 0 and consequently, by (3.2), (3.3) and (3.8),

βh(y) = h(ax+ by) + h(|ax− by|)− αh(x)
= q(ax+ by) + q(ax− by)− αq(x)
= q(ax+ by) + q(ax− by)− 2q(ax)

= 2q(by) = βq(y),

αh(y) = h(ay + bx) + h(|ay − bx|)− βh(x)
= q(ay + bx) + q(ay − bx)− βq(x)
= q(ay + bx) + q(ay − bx)− 2q(bx)

= 2q(ay) = αq(y),

which means that h(y) = q(y) (whether α = 0 or β = 0). This completes the proof of the necessary condition
also for P0 = R.

Now, we prove the sufficient condition. So, assume that there is a quadratic function q : R → X such
that (3.3) and (3.4) are valid. Then, with x = 0 in (1.4), we get

q(y) = q(−y), y ∈ R, (3.10)

and consequently

h(ax+ by) + h(|ax− by|) = q(ax+ by) + q(|ax− by|)
= q(ax+ by) + q(ax− by)
= 2q(ax) + 2q(by) = αq(x) + βq(y)

= αh(x) + βh(y), x, y ∈ P0.

Corollary 3.3. Let P0 ∈ {R+,R}. Then h : P0 → X satisfies functional equation (3.2) if and only if,

(a) in the case α+ β 6= 2, there is a quadratic function q : R→ X such that (3.3) and (3.4) are valid;

(b) in the case α+ β = 2, there are w ∈ X and a quadratic function q : R→ X such that (3.3) holds and

h(x) = q(x) + w, x ∈ P0. (3.11)

Proof. Let h : P0 → X be a solution to (3.2).
First consider the case α + β 6= 2. Then x = y = 0 in (3.2) yield f(0) = 0. Hence we can simply apply

Theorem 3.2.
So, assume that α+ β = 2 and write

h0(x) := h(x)− h(0), x ∈ P0.
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Then h0(0) = 0 and

h0(ax+ by) + h0(|ax− by|) = h(ax+ by)− h(0) + h(|ax− by|)− h(0)
= αh(x) + βh(y)− 2h(0)

= α(h(x)− h(0)) + β(h(y)− h(0))
= αh0(x) + βh0(y), x, y ∈ P0.

Hence using again Theorem 3.2, but with h replaced by h0, we obtain (3.11) with w = h(0).
The converse is easy to check in view of (3.10).

Corollary 3.4. A function h : R→ R satisfies functional equation (3.2) if and only if it is a solution to the
equation

h(ax+ by) + h(ax− by) = αh(x) + βh(y). (3.12)

Proof. Let h0 : R→ R be a solution to equation (3.12) with h0(0) = 0. Taking first x = 0 and next y = 0 in
(3.12) gives

h0(ax) =
α

2
h0(x), h0(ax) =

β

2
h0(x), x ∈ R. (3.13)

Hence

h0(ax+ by) + h0(ax− by) = αh0(x) + βh0(y)

= 2h0(ax) + 2h0(ay), x, y ∈ R,

which means that

h0(x+ y) + h0(x− y) = 2h0(x) + 2h0(y), x, y ∈ R. (3.14)

Suppose that h : R→ R is a solution to equation (3.12). If α+ β 6= 2, then (3.12) with x = y = 0 gives
h(0) = 0, whence (3.14) holds for h0 = h. Consequently, by Corollary 3.3, h is a solution to (3.2).

If α+ β = 2, then the function h0 : R→ R, given by h0(x) := h(x)− h(0) for x ∈ R, also is a solution to
(3.12) and h0(0) = 0. Hence (3.14) is valid, which means that h0 is quadratic. Since h(x) ≡ h0(x) + h(0), h
is a solution to (3.2) (again by Corollary 3.3).

If h : R→ R is a solution to equation (3.2), then it has the form described in Corollary 3.3 and it is easy
to check that h fulfils also (3.12).

Corollary 3.5. Let n be odd. A function f : R→ X fulfils the equation

f
(

n
√
axn + byn

)
+ f

(
n
√
|axn − byn|

)
= αf(x) + βf(y) (3.15)

if and only if it is a solution to the functional equation

f
(

n
√
axn + byn

)
+ f

(
n
√
axn − byn

)
= αf(x) + βf(y). (3.16)

Proof. According to Corollary 3.1, a function f : R → X satisfies functional equation (3.15) if and only if
there exists a solution g : R→ X to the equation (3.2) such that f(x) ≡ g(xn).

Analogously, by Theorem 2.1, a function f : R → X satisfies functional equation (3.16) if and only if
there exists a solution g : R→ X to the equation (3.12) such that f(x) ≡ g(xn).

Since, in view of Corollary 3.4, equations (3.2) and (3.12) have the same solutions g : R → X, this
completes the proof.
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Remark 3.6. It is well known (see, e.g., [1]) that a function q : R→ X is quadratic if and only if there exists
L : R2 → X that is symmetric (i.e., L(x, y) = L(y, x) for all x, y ∈ R) and biadditive (i.e., L(x, y + z) =
L(x, y) + L(x, z) for all x, y, z ∈ R) such that

q(x) = L(x, x), x ∈ R.

Clearly, conditions (3.3) are equivalent to

L(ax, ax) =
α

2
L(x, x), L(bx, bx) =

β

2
L(x, x), x ∈ R. (3.17)

Next, note that

4L(x, y) = L(x+ y, x+ y)− L(x− y, x− y), x, y ∈ R.

Hence (3.3) (or (3.17)) implies the following two conditions

4L(ax, ay) = q(a(x+ y))− q(a(x− y)) (3.18)

=
α

2
(q(x+ y)− q(x− y))

= 2αL(x, y), x, y ∈ R,

4L(bx, by) = 2βL(x, y), x, y ∈ R. (3.19)

So, conditions (3.18) and (3.19) are equivalent to (3.17) and, in view of Corollary 3.3, we can state the
following:

Corollary 3.7. Let P0 ∈ {R+,R}. Then h : P0 → X satisfies functional equation (3.2) if and only if,

(a) in the case α+ β 6= 2, there is a symmetric and biadditive function L : R2 → X such that

L(ax, ay) =
α

2
L(x, y), L(bx, by) =

β

2
L(x, y), x, y ∈ R, (3.20)

and

h(x) = L(x, x), x ∈ P0; (3.21)

(b) in the case α+ β = 2, there are w ∈ X and a symmetric and biadditive function L : R2 → X such that
(3.20) is valid and

h(x) = L(x, x) + w, x ∈ P0. (3.22)

Finally, let us observe that from Corollaries 3.1 and 3.7 we can easily deduce the following:

Corollary 3.8. A function f : R→ X satisfies functional equation (3.1) if and only if,

(a) in the case α + β 6= 2, there is a symmetric and biadditive function L : R2 → X such that (3.20) is
valid and

f(x) = L(xn, xn), x ∈ R; (3.23)

(b) in the case α+ β = 2, there are w ∈ X and a symmetric and biadditive function L : R2 → X such that
(3.20) is valid and

f(x) = L(xn, xn) + w, x ∈ R. (3.24)
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Note that from Corollary 3.8 it results that the description of solutions for the equation

f
(

n
√
xn + yn

)
+ f

(
n
√
|xn − yn|

)
= 2f(x) + 2f(y), (3.25)

which is a generalization of (1.6), is quite simple. Namely, we have the following:

Corollary 3.9. A function f : R→ X satisfies functional equation (3.25) if and only if there is a symmetric
and biadditive function L : R2 → X such that f(x) = L(xn, xn) for x ∈ R.

Remark 3.10. According to our best knowledge, the only published so far description (see [9, Theorem 2.3])
of solutions f : R → X (with K = R) of functional equation (1.7) (i.e., of (3.1) with n = 2, α = 2a2 and
β = 2b2) states that if a2 + b2 6= 1, then f must be a solution to the functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (3.26)

It is easy to check that this description (with n = 2) follows from Corollary 3.8 (a), which provides much
more general and precise information.
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