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2Recep Tayyip Erdoğan University, Faculty of Arts and Science, Department of Mathematics, Rize, Turkey.
ORCID: 0000-0003-1658-201X
* Corresponding Author E-mail: serkandemiriz@gmail.com

Abstract: The sequence spaces c0(L̂), c(L̂), `∞(L̂) and `p(L̂) have been recently introduced and studied by Karakaş and Karabu-
dak. The aim of this paper is to extend the results of Karakaş and Karabudak to the paranormed case and is to work the spaces
c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p). Furthermore, Lucas core of a complex-valued sequence has been introduced, and we prove
some inclusion theorems related to this new type of core.
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1 Introduction

In mathematics, the Fibonacci numbers are the numbers in the following integer sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

The sequence (fn) of Fibonacci numbers is given by the linear recurrence relations

f0 = 0, f1 = 1 and fn = fn−1 + fn−2, n ≥ 2.

This sequence has many interesting properties and applications in arts, sciences and architecture. For example, the ratio sequence of
Fibonacci numbers converges to the golden ratio which is important in sciences and arts.

Similar to the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a
Fibonacci integer sequence. The first two Lucas numbers are L0 = 2 and L1 = 1 as opposed to the first two Fibonacci numbers f0 = 0 and
f1 = 1. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined
as follows:

Ln =

 2 , n = 0,
1 , n = 1,
Ln−1 + Ln−2 , n > 1.

The sequence of Lucas number is:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ....

The ratio of the successive both Fibonacci and Lucas numbers is as known golden ratio. There are many applications of golden ratio in many
places of mathematics and physics, in general theory of high energy particle theory [1]. Also, some basic properties of Lucas numbers [1] are
given as follows:

Ln =

(
1 +
√

5

2

)n
+

(
1−
√

5

2

)n
(Binet’s formula for Lucas numbers)

L2
n − Ln−1Ln+1 = 5(−1)n and

n∑
k=1

L2
k = LnLn+1 − 2 (Additional identities)

lim
n→∞

Ln
Ln−1

=
1 +
√

5

2
= ϕ (Golden ratio)
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Lucas numbers was first used by Karakaş and Karabudak [2] in the theory of summability. Let Ln be the nth Lucas number for every n ∈ N.
Then, the infinite Lucas matrix L̂ = (L̂nk) is defined by

L̂nk =

 L2
k−1

Ln · Ln−1 + 2
, 1 ≤ k ≤ n,

0 , k > n

where n, k ∈ N [2]. Recently, a lot of papers have been studying by many researchers on Lucas and Fibonacci sequences. For instance, see
[3–12].

Assume here and after that (pk) be a bounded sequences of strictly positive real numbers with sup pk = H and L = max{1, H} and by F
and Nk, we shall denote the collection of all finite subsets of N and the set of all n ∈ N such that n ≥ k, respectively. Then, the paranormed
sequence spaces `∞(p), c(p), c0(p) and `(p) were defined by Maddox [13] (see also Maddox [14] and Nakano [15]) as follows:

`∞(p) = {x = (xk) ∈ w : sup
k∈N
|xk|pk <∞},

c(p) = {x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some l ∈ R},

c0(p) = {x = (xk) ∈ w : lim
k→∞

|xk|pk = 0},

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
,

which are the complete spaces paranormed by

g1(x) = sup
k∈N
|xk|pk/L ⇐⇒ inf pk > 0 and g2(x) =

(∑
k

|xk|pk
)1/L

,

respectively. We shall assume throughout that p−1k + (p
′

k)−1 = 1 provided 1 < inf pk < H <∞.
It is well known that paranormed spaces have more general properties than normed spaces. Recently, there have been many studies on both

normed and paranormed sequence spaces. The reader can look at the articles on this subject [16–20, 22–32].
In this work, we generalize the normed sequence spaces defined by Karakaş and Karabudak [2] to paranormed spaces. Let µ denote any of

the spaces c0, c, `∞ and `p. We prove that µ(L̂, p) is linearly paranorm isomorphic to µ(p) and determine the α−, β− and γ−duals of the
µ(L̂, p). Furthermore, Lucas core of a complex-valued sequence has been introduced, and we prove some inclusion theorems related to this
new type of core.

2 The Paranormed Sequence Spaces c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p)

In this section, we define the new sequence spaces c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p) by using the sequences of Lucas numbers, and
prove that these sequence spaces are the complete paranormed linear metric spaces and compute their α−, β− and γ− duals.

We define the sequence spaces c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p) by

c0(L̂, p) =

{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣ 1

LnLn+1 + 2

n∑
i=1

L2
i−1xi

∣∣∣∣pn = 0

}
,

c(L̂, p) =

{
x = (xk) ∈ w : ∃l ∈ C 3 lim

n→∞

∣∣∣∣ 1

LnLn+1 + 2

n∑
i=1

L2
i−1xi − l

∣∣∣∣pn = 0

}
,

`∞(L̂, p) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣ 1

LnLn+1 + 2

n∑
i=1

L2
i−1xi

∣∣∣∣pn <∞
}
,

`(L̂, p) =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣ 1

LnLn+1 + 2

n∑
i=1

L2
i−1xi

∣∣∣∣pn <∞
}
.

In the case (pn) = e = (1, 1, 1, ...), the sequence spaces c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p) are, respectively, reduced to the sequence
spaces c0(L̂), c(L̂), `∞(L̂) and `(L̂) which are introduced by Karakaş and Karabudak [2].

Define the sequence y = (yk), which will be frequently used as the L̂−transform of a sequence x = (xk), i.e.,

yk = L̂k(x) =
1

Lk.Lk−1 + 2

k∑
i=1

L2
i−1.xi ; (k ∈ N0).

Theorem 1. The following statements hold:
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(i) The sequence spaces c0(L̂, p), c(L̂, p) and `∞(L̂, p) are the complete linear metric spaces paranormed by g, defined by

g(x) = sup
k∈N

∣∣∣∣ 1

Lk.Lk−1 + 2

k∑
i=1

L2
i−1.xi

∣∣∣∣pk/L.
(ii) `(L̂, p) is a complete linear metric space paranormed by

g∗(x) =

(∑
k

∣∣∣∣ 1

Lk.Lk−1 + 2

k∑
i=1

L2
i−1.xi

∣∣∣∣pk)1/L

.

Therefore, one can easily check that the absolute property does not hold on the spaces c0(L̂, p), c(L̂, p) , `∞(L̂, p) and `(L̂, p) that is
h(x) 6= h(|x|) for at least one sequence in those spaces, and this says that c0(L̂, p), c(L̂, p), `∞(L̂, p) and `(L̂, p) are the sequence spaces of
non-absolute type; where |x| = (|xk|).

Theorem 2. The sequence spaces c0(L̂, p), c(L̂, p) ,`∞(L̂, p) and `(L̂, p) are linearly isomorphic to the spaces c0(p), c(p), `∞(p) and `(p),
respectively, where 0 < pk ≤ H <∞.

Theorem 3. The matrix D = (dnk) is defined by

dnk =



∆̃

[
ak
L2
k−1

]
(LkLk−1 + 2) , (0 ≤ k ≤ n− 1)

LnLn−1 + 2

L2
n−1

an , (k = n)

0 , (k > n)

for all k, n ∈ N and M ∈ N2. Let K∗ = {k ∈ N : 0 ≤ k ≤ n} ∩K for K ∈ F and M ∈ N2. Define the sets L̂6(p), L̂7, L̂8(p), L̂9, L̂10(p),
L̂11(p), L̂12(p), L̂13(p) as follows:

L̂6(p) =
⋃
M>1

{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

|dnk|M−1/pk <∞

}
,

L̂7 =
{
a = (ak) ∈ w : lim

n→∞
|dnk| exists for each k ∈ N

}
,

L̂8(p) =
⋃
M>1

{
a = (ak) ∈ w : ∃(αk) ∈ R 3 sup

n∈N

n∑
k=0

|dnk − αk|M−1/pk <∞

}
,

L̂9 =

{
a = (ak) ∈ w : ∃α ∈ R 3 lim

n→∞

∣∣∣∣∣
n∑
k=0

dnk − α

∣∣∣∣∣ = 0

}
,

L̂10(p) =
⋂
M>1

{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

|dnk|M−1/pk <∞

}
,

L̂11(p) =
⋂
M>1

{
a = (ak) ∈ w : ∃(αk) ∈ R 3 lim

n→∞

n∑
k=0

|dnk − αk|M1/pk = 0

}
,

L̂12(p) =
⋃
M>1

{
a = (ak) ∈ w : sup

n
sup
k∈K∗

|dnkM−1|pk <∞
}
,

L̂13(p) =
⋃
M>1

a = (ak) ∈ w : sup
n

∑
k∈K∗

|dnkM−1|p
′
k <∞

 .

Then,

(i) {c0(L̂, p)}β = L̂6(p) ∩ L̂7 ∩ L̂8(p),

(ii) {c(L̂, p}β = {c0(L̂, p)}β ∩ L̂9,

(iii) {`∞(L̂, p)}β = L̂10(p) ∩ L̂11(p),

(iv) {`(L̂, p)}β = L̂12(p) ∩ L̂13(p).
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3 Lucas Core

Following Knopp, a core theorem is characterized a class of matrices for which the core of the transformed sequence is included by the core of
the original sequence. For example Knopp Core Theorem [[33], p.138] states that K− core(Ax) ⊆ K − core(x) for all real valued sequences
x whenever A is a positive matrix in the class (c : c)reg .

Now, let us write

yn(x) = L̂n(x) =
1

LnLn−1 + 2

n∑
k=1

L2
k−1xk; (k ∈ N0).

Then we can define L̂− core of a complex sequence as follows:
Let Hn be the least closed convex hull containing yn(x), yn+1(x), , . . .. Then, L̂− core of x is the intersection of all Hn, i.e.,

L̂− core(x) =

∞⋂
n=1

Hn.

Now, we may give some inclusion theorems. For brevity, in what follows we write ẽnk in place of

1

LnLn−1 + 2

n∑
k=1

L2
k−1xk.

Theorem 4. Let B ∈ (c : c(L̂))reg . Then, L̂− core(Bx) ⊆ K − core(x) for all x ∈ `∞ if and only if

lim
n

∑
k

|ẽnk| = 1. (1)

Theorem 5. Let B ∈ (st ∩ `∞ : c(L̂))reg . Then, L̂− core(Bx) ⊆ st− core(x) for all x ∈ `∞ if and only if (1) holds.
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