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Abstract  Öz 

This study presents the effect of curvature ratio on transient vibration 
analysis of simply supported antisymmetric thick cross-ply laminated 
composite shells (LCS) on elastic foundation. In the analysis, the 
foundation is modeled with two parameters. These models are 
Pasternak and Winkler models. The equation of motion for laminated 
rectangular shells resting on elastic foundation is obtained through 
Hamilton’s principle. The analysis is achieved in Laplace domain. By 
using modified Durbin’s algorithm, calculations are transformed from 
Laplace domain to the time domain. The numerical results are 

presented in the form of graphics. 

 Bu çalışmada, elastik zemin üzerine oturan basit mesnetli antisimetrik 
çapraz-katlı dizilimli tabakalı kompozit silindirik kalın kabukların 
(LCS), zorlanmış titreşim analizi üzerine eğrilik oranının etkisi 
sunulmaktadır. Bu analizlerde, zemin iki parametre ile modellendi. Bu 
modeller Pasternak ve Winkler modelleridir. Hamilton prensipleri ile 
elastik zemin üzerindeki tabakalı kompozit dikdörtgen kabukların 
hareket denklemleri elde edilmiştir. Analizler, Laplace alanında elde 
edilmiştir. Modifiye Durbin yöntemi ile çözümler Laplace alanından 
zaman alanına dönüştürülmüştür. Sayısal sonuçlar grafikler şeklinde 
sunulmuştur. 

Keywords: Laminated composite, Transient vibration, Curvature 
effect, Elastic foundation, Shear deformation shell theory 

 Anahtar kelimeler: Tabakalı kompozit, Zorlanmış titreşim, Eğrilik 
etkisi, Elastik zemin, Kayma deformasyon kabuk teorisi 

1 Introduction 

Recently, due to the many paramount properties advanced 
composite materials such as laminated shells are found an 
application area in the engineering projects. Tremendous 
researches have been performed on the LCS to clarify the 
advantages of using these types of materials. One of the focused 
topics in research subject is the transient vibration analysis of 
composite shells on elastic foundation. 

In this paper, effect of curvature ratio and Winkler-Pasternak 
soil parameters on transient vibrations of anti-symmetrically 
cross-ply LCS on elastic foundation are analyzed (Figure 1). The 
equation of motion for laminated rectangular shells resting on 
elastic foundation is obtained through Hamilton’s principle. 
The closed form solutions are obtained by using Navier 
technique. The analysis is achieved in Laplace domain. By using 
modified Durbin’s algorithm [1], calculations are transformed 
to Laplace domain to the time domain. 

Reissner theory [2] is one of the theories which include the 
shear deformation effect and many researchers have studied on 
the dynamic analysis of LCP by using Reissner theory. Many 
researchers have studies the free vibration of laminated 
composite shells [3]-[5],[7]. Dogan and Arslan [6] investigated 
the effect of dimension on mode-shapes of composite shells. 
Sofiyev [8] studied the buckling of a cross-ply laminated non-
homogeneous orthotropic composite cylindrical thin shell 
under time dependent external pressure. 

 

 

Qatu [9] and Reddy [10] used energy function to develop 
governing equations of LCS and presented studies including the 
effect of shear deformation for composite shells. Toh, Gong and 
Shim [11] investigated the transient stresses generated by low 
velocity impact on orthotropic laminated cylindrical shells. 
Temel and Sahan [12] studied on the Transient analysis of 
orthotropic viscoelastic thick plates. Hui-Shen et al. [13] 
investigated dynamic behaviour of LCP on elastic foundation 
under thermomechanical loading. Pasternak [14] presented  
new method calculation for flexible substructures and modeled 
the foundation with two parameters. Akavci et al. [15] 
examined dynamic behavior of LCP on elastic foundation by 
using First-order Shear Deformation Theory (FSDT). Civalek 
[16] studied nonlinear dynamic response of laminated plates 
resting on nonlinear elastic foundations by the discrete singular 
convolution-differential quadrature coupled approaches.  

2  Materials and Methods 

A lamina is produced with the isotropic homogenous fibers and 
matrix materials. Any point on a fiber and/or on matrix and/or 
on matrix-fiber interface has crucial effect on the stiffness of the 
lamina (Figure 2-3). Due to the big variation on the properties 
of lamina from point to point, macro-mechanical properties.of 
lamina are determined based on the statistical approach. 
According to FSDT, the transverse normal do not remain 
perpendicular to the mid-surface after deformation. It will be 
assumed that the deformation of the plates and shells is 
completely determined by the displacement of its middle 
surface. 
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Figure 1: Laminated composite plate on elastic foundation. 

 

Figure 2: Laminated composite cylindrical shell [17]. 

 

Figure 3: Fiber and matrix materials in laminated  composite 
shell. 

Stress-strain equations for nth layer of laminated shell can be 
expressed in the lamina coordinates as follow, 

[
 
 
 
 
 
𝜎𝛼

𝜎𝛽

𝜎𝑧

𝜏𝛽𝑧

𝜏𝛼𝑧

𝜏𝛼𝛽]
 
 
 
 
 

=

[
 
 
 
 
 
 
�̅�11 �̅�12 �̅�13 0 0 �̅�16

�̅�12 �̅�22 �̅�23 0 0 �̅�26

�̅�13 �̅�23 �̅�33 0 0 �̅�36

0 0 0 �̅�44 �̅�45 0

0 0 0 �̅�45 �̅�55 0

�̅�16 �̅�26 �̅�36 0 0 �̅�66]
 
 
 
 
 
 

[
 
 
 
 
 
𝜀𝛼

𝜀𝛽
𝜀𝑧

𝛾𝛽𝑧

𝛾𝛼𝑧

𝛾𝛼𝛽]
 
 
 
 
 

 (1) 

The displacement based on shell theory can be written as 

u(α, β, z)=u
0
(α, β)+z φx (α, β) 

v(α, β, z)=v
0
(α, β)+zφy(α, β) 

w(α, β, z)=w
0

(α, β) 

(2) 

Where u, v, w, φα and φβ are displacements and rotations in α, 

β, z direction, orderly. uo, vo and wo are mid-plane 
displacements. 

ε𝛼 =
1

(1 + 𝑧 𝑅𝛼⁄ )
(𝜀0∝ + 𝑧𝜅𝛼) 

ε𝛽 =
1

(1 + 𝑧 𝑅𝛽⁄ )
(𝜀0𝛽 + 𝑧𝜅𝛽) 

ε𝛼𝛽 =
1

(1 + 𝑧 𝑅𝛼⁄ )
(𝜀0∝𝛽 + 𝑧𝜅𝛼𝛽) 

ε𝛽𝛼 =
1

(1 + 𝑧 𝑅𝛽⁄ )
(𝜀0𝛽𝛼 + 𝑧𝜅𝛽𝛼) 

𝛾𝛼𝑧 =
1

(1 + 𝑧 𝑅𝛼⁄ )
(𝛾0∝𝑧 + 𝑧(𝜓𝛼 ∕ 𝑅𝛼)) 

𝛾𝛽𝑧 =
1

(1 + 𝑧 𝑅𝛽⁄ )
(𝛾0𝛽𝑧 + 𝑧(𝜓𝛽 ∕ 𝑅𝛽)) 

(3) 

𝜀0𝛼 =
1

𝐴

𝜕𝑢0

𝜕𝛼
+

𝑣0

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤0

𝑅𝛼
 

𝜀0𝛽 =
1

𝐵

𝜕𝑣0

𝜕𝛽
+

𝑢0

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

𝑤0

𝑅𝛽
 

𝜀0𝛼𝛽 =
1

𝐴

𝜕𝑣0

𝜕𝛼
−

𝑢0

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤0

𝑅𝛼𝛽
 

𝜀0𝛽𝛼 =
1

𝐵

𝜕𝑢0

𝜕𝛽
−

𝑣0

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

𝑤0

𝑅𝛼𝛽
 

𝛾0𝛼𝑧 =
1

𝐴

𝜕𝑤0

𝜕𝛼
−

𝑢0

𝑅𝛼
−

𝑣0

𝑅𝛼𝛽
+ 𝜓𝛼  

𝛾0𝛽𝑧 =
1

𝐵

𝜕𝑤0

𝜕𝛽
−

𝑣0

𝑅𝛽
−

𝑢0

𝑅𝛼𝛽
+ 𝜓𝛽  

𝜅𝛼 =
1

𝐴

𝜕𝜓𝛼

𝜕𝛼
+

𝜓𝛽

𝐴𝐵

𝜕𝐴

𝜕𝛽
 

𝜅𝛽 =
1

𝐵

𝜕𝜓𝛽

𝜕𝛽
+

𝜓𝛼

𝐴𝐵

𝜕𝐵

𝜕𝛼
 

𝜅𝛼𝛽 =
1

𝐴

𝜕𝜓𝛽

𝜕𝛼
−

𝜓𝛼

𝐴𝐵

𝜕𝐴

𝜕𝛽
 

𝜅𝛽𝛼 =
1

𝐵

𝜕𝜓𝛼

𝜕𝛽
−

𝜓𝛽

𝐴𝐵

𝜕𝐵

𝜕𝛼
 

(4) 

Potential energy can define as 

𝛱 = 𝑈 − 𝑊 (5) 

and Lagrangian funtion is 

𝐿 = 𝑇 − 𝛱 (6) 

Lagrangian function is set to zero and  the Hamilton principle is 
applied to the Lagrange equation. Hamilton’s principle can be 
used to find equation of motion for shell structures. 

𝛿 ∫(𝑇 + 𝑊 − (𝑈 + 𝑈𝐹)

𝑡2

𝑡1

𝑑𝑡 = 0 (7) 

where T is the kinetic energy of the structure  

𝑇 =
𝜌

2
∫ {

𝜕𝑢

𝜕𝑡
}
2

+ {
𝜕𝑣

𝜕𝑡
}
2

+ {
𝜕𝑤

𝜕𝑡
}
2

𝑑𝛼𝑑𝛽𝑑𝑧 (8) 
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W is the work of the external forces 

𝑊 = ∫ ∫(𝑞𝛼𝑢0 + 𝑞𝛽𝑣0 + 𝑞𝑛𝑤0 + 𝑚𝛼𝜓𝛼

𝑦𝑥

+ 𝑚𝛽𝜓𝛽) 𝐴𝐵𝑑𝛼𝑑𝛽 

(9) 

in which qα, qβ, qz, mα, mβ are the external forces and moments, 
respectively. U is the strain energy and UF is the spring strain 
energy defined as, 

𝑈 =
1

2
∫ {𝜎𝛼𝜀𝛼 + 𝜎𝛽𝜀𝛽 + 𝜎𝑧𝜀𝑧 + 𝜎𝛼𝛽𝛾𝛼𝛽 + 𝜎𝛼𝑧𝛾𝛼𝑧
𝑉

+ 𝜎𝛽𝑧𝛾𝛽𝑧}𝑑𝑉 

(10) 

𝑈𝐹 =
1

2
∫ (𝑘0𝑤

2 + 𝑘1 [(
𝜕𝑤

𝜕𝛼
)

2

+ (
𝜕𝑤

𝜕𝛽
)
2

]) 𝑑𝛼𝑑𝛽 (11) 

Where k0 is the Winkler foundation parameter and k1 is the 
Pasternak foundation parameter. Solving equation 2 gives set 
of equations called equations of motion for shell structures. 
This gives equation 12 in simplified form as, 

𝜕

𝜕𝛼
(𝐵𝑁𝛼) +

𝜕

𝜕𝛽
(𝐴𝑁𝛽𝛼) +

𝜕𝐴

𝜕𝛽
𝑁𝛼𝛽 −

𝜕𝐵

𝜕𝛼
𝑁𝛽 +

𝐴𝐵

𝑅𝛼

𝑄𝛼 +
𝐴𝐵

𝑅𝛼𝛽

𝑄𝛽

+ 𝐴𝐵𝑞𝛼 = 𝐴𝐵(𝐼1̅�̈�
2 + 𝐼1̅�̈�𝛼

2
) 

𝜕

𝜕𝑥
(𝐴𝑁𝑦) +

𝜕

𝜕𝑥
(𝐵𝑁𝑥𝑦) +

𝜕𝐵

𝜕𝑥
𝑁𝑦𝑥 −

𝜕𝐴

𝜕𝑦
𝑁𝑥 +

𝐴𝐵

𝑅𝑦

𝑄𝑦 +
𝐴𝐵

𝑅𝑥𝑦

𝑄𝑥

+ 𝐴𝐵𝑞𝑦 = 𝐴𝐵(𝐼1̅�̈�
2 + 𝐼2̅�̈�𝑦

2
) 

−𝐴𝐵 (
𝑁𝑥

𝑅𝑥

+
𝑁𝑦

𝑅𝑦

+
𝑁𝑥𝑦+𝑁𝑦𝑥

𝑅𝑥𝑦

) +
𝜕

𝜕𝑥
(𝐵𝑄𝑥) +

𝜕

𝜕𝑦
(𝐴𝑄𝑦) + 𝐴𝐵𝑞𝑧

+ 𝑘0𝑤 + 𝑘1Δ
2𝑤 = 𝐴𝐵(𝐼1̅�̈�

2) 

𝜕

𝜕𝑥
(𝐵𝑀𝑥) +

𝜕

𝜕𝑦
(𝐴𝑀𝑦𝑥) +

𝜕𝐴

𝜕𝑦
𝑀𝑥𝑦 −

𝜕𝐵

𝜕𝑥
𝑀𝑦 − 𝐴𝐵𝑄𝑥 +

𝐴𝐵

𝑅𝑥

𝑃𝑥

+ 𝐴𝐵𝑚𝑥 = 𝐴𝐵(𝐼2̅�̈�
2 + 𝐼3̅�̈�𝑥

2
) 

𝜕

𝜕𝑦
(𝐴𝑀𝑦) +

𝜕

𝜕𝑥
(𝐵𝑀𝑥𝑦) +

𝜕𝐵

𝜕𝑥
𝑀𝑦𝑥 −

𝜕𝐴

𝜕𝑦
𝑀𝑥 − 𝐴𝐵𝑄𝑦 +

𝐴𝐵

𝑅𝑦

𝑃𝑦

+ 𝐴𝐵𝑚𝑦 = 𝐴𝐵(𝐼2̅�̈�
2 + 𝐼3̅�̈�𝑦

2
) 

 

(12) 

Equation 12 is defined as equation of motion for thick shell. 
Here, A and B equal zero. The force and moment resultants are 

[
 
 
 
 
 
 
 
 
𝑁𝛼

𝑁𝛽

𝑁𝛼𝛽

𝑁𝛽𝛼

𝑀𝛼

𝑀𝛽

𝑀𝛼𝛽

𝑀𝛽𝛼]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
�̅�11 𝐴12 �̅�16 𝐴16 �̅�11 𝐵12 �̅�16 𝐵16

𝐴12 �̂�22 𝐴26 �̂�26 𝐵12 �̂�22 𝐵26 �̂�26

�̅�16 𝐴26 �̅�66 𝐴66 �̅�16 𝐵26 �̅�66 𝐵66

𝐴16 �̂�26 𝐴66 �̂�66 𝐵16 �̂�26 𝐵66 �̂�66

�̅�11 𝐵12 �̅�16 𝐵16 �̅�11 𝐷12 �̅�16 𝐷16

𝐵12 �̂�22 𝐵26 �̂�26 𝐷12 �̂�22 𝐷26 �̂�26

�̅�16 𝐵26 �̅�66 𝐵66 �̅�16 𝐷26 �̅�66 𝐷66

𝐵16 �̂�26 𝐵66 �̂�66 𝐷16 �̂�26 𝐷66 �̂�66]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜀0𝛼

𝜀0𝛽

𝜀0𝛼𝛽

𝜀0𝛽𝛼

𝜅𝛼

𝜅𝛽

𝜅𝛼𝛽

𝜅𝛽𝛼 ]
 
 
 
 
 
 
 

 

(13) 

[
 
 
 
𝑄𝛼

𝑄𝛽

𝑃𝛼

𝑃𝛽 ]
 
 
 

=

[
 
 
 
 
�̅�55 𝐴45 �̅�55 𝐵45

𝐴45 �̂�44 𝐵45 �̂�44

�̅�55 𝐵45 �̅�45 𝐷45

𝐵45 �̂�44 𝐷45 �̂�66]
 
 
 
 

[
 
 
 
 
 
 
𝛾0𝛼𝑧

𝛾0𝛽𝑧

−
𝜓𝛼

𝑅𝛼

−
𝜓𝛽

𝑅𝛽 ]
 
 
 
 
 
 

 (14) 

Where, 

�̅�𝑖𝑗=𝐴ij-c
0
Bij 

�̂�𝑖𝑗=𝐴ij+c
0
Bij 

�̅�𝑖𝑗=𝐵ij-c
0
Dij 

�̂�𝑖𝑗=𝐵ij+c
0
Dij 

�̅�𝑖𝑗=𝐷ij-c
0
Eij 

�̂�𝑖𝑗=𝐷ij+c
0
Eij 

(15) 

i,j=1,2,4,5,6 

A𝑖𝑗= ∑ �̅�𝑖𝑗
(𝑘)

𝑁

𝑘=1

(ℎk − ℎk−1) 

B𝑖𝑗=
1

2
∑ �̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

(ℎk
2 − ℎk−1

2) 

D𝑖𝑗=
1

3
∑ �̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

(ℎk
3 − ℎk−1

3) 

E𝑖𝑗=
1

4
∑ �̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

(ℎk
4 − ℎk−1

4) 

i,j=1,2,6 

(16) 

A𝑖𝑗= ∑ 𝐾𝑖𝐾𝑗�̅�𝑖𝑗
(𝑘)

𝑁

𝑘=1

(ℎk − ℎk−1) 

B𝑖𝑗=
1

2
∑ 𝐾𝑖𝐾𝑗�̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

(ℎk
2 − ℎk−1

2) 

D𝑖𝑗=
1

3
∑ 𝐾𝑖𝐾𝑗�̅�𝑖𝑗

(𝑘)
𝑁

𝑘=1

(ℎk
3 − ℎk−1

3) 

i,j=4,5 

(17) 

k is Nth layer of the shell per unit midsurface area. Where the 
parameter Ki and Kj is the shear correction factor. Here, K is 
taken as 5/6. Co value and mass moment inertia terms are 

c0= (
1

𝑅𝛼
−

1

𝑅𝛽
) (18) 

[𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5]=A𝑖𝑗= ∑ ∫ 𝜌(𝑘)
ℎ𝑘

ℎ𝑘−1

𝑁

𝑘=1

[1, 𝑧, 𝑧2, 𝑧3, 𝑧4]𝑑𝑧 (19) 

𝐼𝑖= (𝐼𝑖 + 𝐼𝑖+1 (
1

𝑅𝛼
−

1

𝑅𝛽
) +

𝐼𝑖+2

𝑅𝛼𝑅𝛽
) (20) 

ρ(k) is the mass density of the kth layer of the shell per unit 
midsurface area. The Navier type solution might be 
implemented to thick and thin shells. This type solution 
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assumes that the displacement section of the shells can be 
denoted as sine and cosine trigonometric functions. 

Assume a shell with shear diaphragm boundaries on all edges. 
For simply supported thick shells, boundary conditions can be 
arranged as follows: 

𝑁𝛼=w
0
=v0 = 𝑀𝛼=ψ

β
= 0          𝛼 = 0, 𝑎 

𝑁𝛽=w
0

=u0 = 𝑀𝛽=ψ
α

= 0          𝛼 = 0, 𝑏 
(21) 

The displacement functions of satisfied the boundary 
conditions apply; 

u0(α,β,t)= ∑ ∑ 𝑈𝑚𝑛

∞

𝑛=0

∞

𝑚=0

cos(𝛼𝑚𝛼) sin(𝛽𝑛𝛽) sin(𝜔𝑚𝑛𝑡) 

𝑣0(α,β,t)= ∑ ∑ 𝑉𝑚𝑛

∞

𝑛=0

∞

𝑚=0

sin(𝛼𝑚𝛼) cos(𝛽𝑛𝛽) sin(𝜔𝑚𝑛𝑡) 

𝑤0(α,β,t)= ∑ ∑ 𝑊𝑚𝑛

∞

𝑛=0

∞

𝑚=0

sin(𝛼𝑚𝛼) sin(𝛽𝑛𝛽) sin(𝜔𝑚𝑛𝑡) 

𝜓𝛼(α,β,t)= ∑ ∑ 𝑊𝑚𝑛

∞

𝑛=0

∞

𝑚=0

cos(𝛼𝑚𝛼) sin(𝛽𝑛𝛽) sin(𝜔𝑚𝑛𝑡) 

𝜓𝛽(α,β,t)= ∑ ∑ 𝑊𝑚𝑛

∞

𝑛=0

∞

𝑚=0

sin(𝛼𝑚𝛼) cos(𝛽𝑛𝛽) sin(𝜔𝑚𝑛𝑡) 

(22) 

where αm=mπ/a, βn=nπ/b. 

Substituting the above equations into the equation of motion in 
matrix form, 

[
 
 
 
 
M11 0 0 M14 0
0 M22 0 0 M25

0 0 M33 0 0
M41 0 0 M44 0
0 M52 0 0 M55]

 
 
 
 

[
 
 
 
 
 
�̈�𝑚𝑛

�̈�𝑚𝑛

�̈�𝑚𝑛

�̈�𝛼𝑚𝑛

�̈�𝛽𝑚𝑛]
 
 
 
 
 

+

[
 
 
 
 
K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55]
 
 
 
 

[
 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑚𝑛

𝜓𝛼𝑚𝑛

𝜓𝛽𝑚𝑛]
 
 
 
 

=

[
 
 
 
 
−𝑃𝛼

−𝑃𝛽

−𝑃𝑛

𝑚𝛼

𝑚𝛽 ]
 
 
 
 

 

(23) 

Equation 23 can be arranged in a closed form as follows:  

[𝑀𝑚𝑛]{�̈�𝑚𝑛}+[𝐾𝑚𝑛]{𝐷𝑚𝑛}={𝑃} (24) 

where [Mmn], [Kmn], {P} and {Dmn} are mass and stiffness 
matrices, load and unknown displacement vectors, 
respectively. By taking the Laplace transform with respect to 
time, the above complex equation can be reduced as linear 
relationship in Laplace domain as follows: 

⌈𝑧2[𝑀𝑚𝑛]+[𝐾𝑚𝑛]⌉{�̅�𝑚𝑛}={�̅�} (25) 

where )(  denotes parameters in Laplace domain and z is the 

Laplace parameter. Initial conditions for the displacement and 
velocity vectors are taken be zero. As a special application for 
the current study, vibration analysis might be performed by 
simply eliminating the loads and substituting the Laplace 
parameter “z” with “iω”. Therefore, eigenvalues can present us 

the natural frequencies. The calculations are transformed from 
Laplace domain to time domain using the Durbin’s algorithm. 

Differential equations can be solved with the help of the 
numerical operation method which is Laplace transformation 
method. In this approach it is possible to remove the time 
parameter by using Laplace transformation. Non-time 
dependent differential equations can easily be solved with 
numerical methods. The solutions obtained in the Laplace 
space can be transformed into time space using Durbin's 
modified using inverse Laplace transform technique.  

3 Numerical solutions and discussions  

In current research, forced vibration analyses of symmetric and 
anti-symmetric LCS on elastic foundation are investigated. 
Navier solution procedure for dynamic response of LCS is 
obtained. The computer programs have been prepared using 
Mathematica [18] program separately for the solution of the 
dynamic response of LCS on elastic foundation. 

In this part, different numerical problems are given about 
dynamic analysis of LCS. Firstly, prepared computer program 
was validated and this problem is investigated under an 
impulsive load. The effects of the R/a ratios and foundation 
parameters on dynamic response are also investigated. 

In the analysis, following parameters are studied for Winkler 
and Pasternak foundation as; 

k0=
𝐾0𝑎

4

𝐸2ℎ
3  , k1=

𝐾1𝑎
2

𝐸2ℎ
3  (26) 

As a first example, a simply supported anti-symmetric [0°/90°] 
laminated composite plate subjected to uniformly distributed 
step impulsive load is considered (Figure 4). The results 
obtained have been compared in Figure 5. In numerical 
calculations for forced vibration of LCP, the material and 
geometrical properties are defined as: a = 1m, a/b =1, a/h =10, 
ρ = 2000 kg/m3, E1 = 25×103 MPa, E1/E2 =25, G12/E2 = G13/E2 = 
0.5, G23/E2 = 0.2, υ = 0.25. A uniformly distributed step 
impulsive load, qo= 1000 N/m2, is applied on the plate. Laplace 
transform parameter (N=512) and time increment value of 
(dt=0.00064) have been used. 

 

Figure 4: Dynamic load. 

 

Figure 5: Vertical displacement versus time for [0/90]. 

It can be seen from Figure 5 that the results between current 
study and other studies for the vertical displacement values are 
very close to each other. 
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In second example, the material and geometrical properties are 
defined as: a = 1m , a/b = 1; a/h = 10; R/a=∞ (plate), 10, 1, 0.5, 
0.382(cylinder), ρ = 2000 kg/m3, E1 = 25×103 MPa, E1/E2 =25, 
G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, υ = 0.25. The number of 
terms that taken into account in the m and n cycle is seven (i.e. 
m=7 and n=7). 

A uniformly distributed step impulsive load, qo= 2000 N/m2, is 
applied on the shell. The influences of R/a and foundation 
parameters on the forced vibration of the anti-symmetrically 
LCS under time-dependent load are investigated. In this part, 
Laplace transform parameter (N=512) and time increment 
value of (dt=0.0001) have been used. 

Forced vibration analysis for anti-symmetrically thick LCS on 
elastic foundation under time-dependent load with different 
values of R/a and foundation parameters when the E1/E2 is 

kept constant at 25 are given in Figs. 6-7. It might be observed 
in figures that rises in foundation parameters cause to a 
decrease on the displacement and stress amplitude for anti-
symmetrically laminated thick shells on elastic foundation. 
Also, decrease of R/a ratio disappeared the effect of Winkler 
parameter on the displacement amplitude. When the vertical 
displacement values corresponding to the maximum points on 
the curves are compared to each other, it can be seen from 
Figure 5 that the vertical displacements values on maximum 
points of curves decrease when the foundation parameters 
change from (k0=0, k1=0) to (k0=100, k1=0). The curve 
decreases a little more when the foundation parameters change 
from (k0=0, k1=0) to (k0=100, k1=10). Influence of Pasternak 
parameter on dynamic response is more prominent than 
Winkler parameter for the anti-symmetric laminated scheme. 

 

 

 

 

 

 

Figure 6: Effect of curvature on vertical displacement values of anti-symmetric [0/90/0/90] laminated composite shells on elastic 
foundation. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 24(6), 960-966, 2018 
A. Doğan 

 

965 
 

 

 

 

 

 

Figure 7: Effect of curvature on stress values of anti-symmetric [0/90/0/90] laminated composite shells on elastic foundation. 
 

4 Results 

In this study, forced vibration analyses of anti-symmetrically 
cross-ply laminated composite shells based on elastic 
foundation are investigated. The most important observations 
and results are summarized as follows: 

Curvature ratio (R/a) is an effective parameter on the 
foundation stiffness, increase of R/a ratios increased the 
displacement and stress values. 

For the cross-ply laminated composite shells, increase of 
foundation parameters (k0 and k1) decreased the displacement 
and stresses values.  

Results also showed that k1 is more effective than that of the k0.  

Not only the Winkler parameter is sufficient in the in the 
evaluation of the laminated shells on elastic foundation, but 
also Pasternak parameter have to taken into account. 
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