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Abstract
In this paper, we define L-fuzzy invariant metric space, and generalize some well known results in metric and
fuzzy metric space including Uniform continuity theorem and Ascoli-Arzela theorem.
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1. Introduction
One of the most important problems in fuzzy topology is to obtain an appropriate concept of fuzzy metric. This problem has
been investigated by many authors [1]-[10] from different points of views. In particular, Park [8] introduced the notion of
intuitionistic fuzzy metric as a generalization of fuzzy metric introduced and studied by George and Veeramani [2].

In this paper, we define L-fuzzy invariant metric space, study completeness and observe that a compact L-fuzzy invariant
metric space is separable. Further, we introduce the notion of uniform continuity and equicontinuity. Finally, we prove Uniform
continuity theorem and Ascoli-Arzela theorem.

2. L-fuzzy invariant metric space

Lemma 2.1. [11] Consider the set L∗ and operation ≤L∗ defined by L∗ = {(x1,x2) : (x1,x2) ∈ [0,1]2 and x1 + x2 ≤ 1} and
(x1,x2)≤L∗ (y1,y2)⇐⇒ x1 ≤ y1 and x2 ≥ y2 for every (x1,x2) ,(y1,y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Definition 2.2. [9] An intuitionistic fuzzy set Aζ ,η in a universe U is an object Aζ ,η = {(ζA(u),ηA(u)) : u ∈U} where, for all
u ∈U, ζA(u) ∈ [0,1] and ηA(u) ∈ [0,1] are called the membership degree and non-membership degree, respectively, of u in
Aζ ,η , and furthermore they satisfy ζA(u)+ηA(u)≤ 1.

For every zi = (xi,yi)∈ L∗, if ci ∈ [0,1] such that Σn
j=1c j = 1 then c1(x1,y1)+c2(x2,y2)+ ...+cn(xn,yn) = Σn

j=1c j(x j,y j) =(
Σn

j=1c jx j,Σ
n
j=1c jy j

)
∈ L∗.

We denote its units by 0L∗ = (0,1) and 1L∗ = (1,0). Classically, a triangular norm (shortly t-norm) ∗= T on [0,1] is defined
as an increasing, commutative and associative mapping T : [0,1]2→ [0,1] satisfying T (1,x) = 1∗ x = x for all x ∈ [0,1]. A
triangular conorm (shortly t-conorm) ♦= S is defined as an increasing, commutative and associative mapping S : [0,1]2→ [0,1]
satisfying S(0,x) = 0♦x = x for all x ∈ [0,1]. Using the lattice (L∗,≤L∗), these definitions can be extended.

Definition 2.3. [12] A triangular norm ℑ on L∗ is a mapping ℑ : (L∗)2→ L∗ satisfying the following conditions, for every
x,y,z, t ∈ L∗ :
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(a) ℑ(x,1L∗) = x,

(b) ℑ(x,y) = ℑ(y,x),

(c) ℑ(x,ℑ(y,z)) = ℑ(ℑ(x,y),z),

(d) x≤L∗ z and y≤L∗ t imply ℑ(x,y)≤L∗ ℑ(z, t).

Definition 2.4. [11, 12]
A continuous t-norm ℑ on L∗ is called continuous t-representable if and only if there exist a continuous t-norm ∗ and a

continuous t-conorm ♦ on [0,1] such that ℑ(x,y) = (x1 ∗ y1,x2♦y2) for all x = (x1,x2) ,y = (y1,y2) ∈ L∗.

Now define a sequence ℑn recursively by ℑ1 = ℑ and

ℑ
n(x1, ...,xn+1) = ℑ(ℑn−1(x1, ...,xn),xn+1)

for n≥ 2 and xi ∈ L∗.

Definition 2.5. [11, 12]
A negator N on L∗ is any decreasing mapping N : L∗→ L∗ satisfying N (0L∗)= 1L∗ and N (1L∗)= 0L∗ . If N (N (x))= x

for all x ∈ L∗ then N is called an involutive negator. A negator N on [0,1] is a decreasing mapping N:[0,1]→ [0,1] satisfying
N(0) = 1 and N(1) = 0. NS denotes the standard negator on [0,1] defined as NS(x) = 1− x for all x ∈ [0,1].

Next, using fundamental notions above, we give a metric generalization on vector space in the sense of George and
Veeramani [2].

Definition 2.6. Let µ and ν are fuzzy sets from X× (0,∞) to [0,1] such that µ(x, t)+ν(x, t)≤ 1 for all x ∈ X and t > 0. The
3-tuble (X ,Mµ,ν ,ℑ) is said to be an L-fuzzy invariant metric space if X is a vector space, ℑ is a continuous t-representable and
Mµ,ν is a mapping from X× (0,∞) to L∗ satisfying the following conditions, for every x,y ∈ X and t,s > 0

(a) Mµ,ν(x, t)>L∗ 0L∗ ,

(b) Mµ,ν(x, t) = 1L∗ if and only if x = 0,

(c) Mµ,ν(x− y, t) = Mµ,ν(y− x, t),

(d) Mµ,ν(x+ y, t + s)≥L∗ ℑ(Mµ,ν(x, t),Mµ,ν(y,s)),

(e) Mµ,ν(x, .) : (0,∞)→ L∗ is continuous.

In this case, Mµ,ν is said to be an L-fuzzy invariant metric on X . Here Mµ,ν(x, t) = (µ(x, t),ν(x, t)).

Example 2.7. Let (X ,‖.‖) be a normed space. Denote ℑ(a,b) = (a1b1,min(a2 +b2,1)) for all a = (a1,a2),b = (b1,b2) ∈ L∗

and let µ ,ν be fuzzy sets on X× (0,∞) defined as follows:

Mµ,ν(x, t) = (µ(x, t),ν(x, t)) =
(

htn

htn +m‖x‖
,

m‖x‖
htn +m‖x‖

)
for all t,h,m,n ∈ R+. Then (X ,Mµ,ν ,ℑ) is an L-fuzzy invariant metric space. If h = m = n = 1 then (X ,Mµ,ν ,ℑ) is a standard
L-fuzzy invariant metric space. Also, if we define

Mµ,ν(x, t) = (µ(x, t),ν(x, t)) =
(

t
t +m‖x‖

,
‖x‖

t +‖x‖

)
in which m > 1, then (X ,Mµ,ν ,ℑ) is an L-fuzzy invariant metric space in which Mµ,ν(x, t)<L∗ 1L∗ for all x ∈ X.

Definition 2.8. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space.
For t > 0, define the open ball B(x,r, t) with center x ∈ X and radius r ∈ (0,1) as

B(x,r, t) = {y ∈ X : Mµ,ν(x− y, t)>L∗ (NS(r),r)}.

A subset A ⊆ X is called open if for each x ∈ A, there exist r ∈ (0,1) and t > 0 such that B(x,r, t) ⊆ A. Let τMµ,ν denote the
family of all open subsets of X. τMµ,ν is called the topology induced by L-fuzzy invariant metric Mµ,ν .
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Definition 2.9. A sequence {xn} in an L-fuzzy invariant metric space (X ,Mµ,ν ,ℑ) is said to be Cauchy if for each ε ∈ (0,1)
and t > 0, there exists n0 ∈ N such that

Mµ,ν(xn− xm, t)>L∗ (NS(ε),ε)

for each n,m≥ n0. The sequence {xn} is said to be convergent to x ∈ X in X and denoted by xn
Mµ,ν−→ x if Mµ,ν(xn− x, t)→ 1L∗

whenever n→ ∞ for every t > 0. An L-fuzzy invariant metric space is said to be complete if and only if every Cauchy sequence
is convergent.

The proofs of following two lemmas are similar from classical cases and omitted [2, 3].

Lemma 2.10. Let Mµ,ν be an L-fuzzy invariant metric. Then, for any t > 0, Mµ,ν(x, t) is non-decreasing with respect to t in
(L∗,≤L∗) for all x ∈ X.

Lemma 2.11. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space. Then Mµ,ν is continuous function on X× (0,∞).

Theorem 2.12. Every L-fuzzy invariant metric space is normal.

Proof. Let (X ,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space and F,G be two disjoint closed subsets of X . Let x ∈ X . Then
x ∈ Gc since Gc is open there exist tx > 0 and rx ∈ (0,1) such that B(x,rx, tx)∩G = ∅ for all x ∈ F . Similarly, there exist
ty > 0 and ry ∈ (0,1) such that B(x,ry, ty)∩F =∅ for all y ∈ G. Let s = min

{
rx, tx,ry, ty

}
. Then we can find a s0 ∈ (0,s) such

that ℑ((NS(s0),s0),(NS(s0),s0))>L∗ (NS(s),s). Define U = ∪x∈F B(x,s0,s/2) and V = ∪y∈GB(y,s0,s/2). Clearly U and V are
open sets such that F ⊂U and G⊂V . Now, we claim that U ∩V =∅. Let z ∈U ∩V . Then there exist x ∈ F and y ∈ G such
that z ∈ B(x,s0,s/2) and z ∈ B(y,s0,s/2). Therefore, we have

Mµ,ν(x− y,s) ≥ L∗ℑ(Mµ,ν(x− z,s/2),Mµ,ν(z− y,s/2)
≥ L∗ℑ((NS(s0),s0),(NS(s0),s0))>L∗ (NS(s),s).

Hence y∈B(x,s,s). Since s< tx,rx we have B(x,s,s)⊂B(x,rx, tx). Thus B(x,rx, tx)∩G is nonempty which is a contradiction.
Therefore U ∩V =∅. Hence X is normal.

Remark 2.13. From the above theorem, we can easily deduce that every metrizable space is normal. Since every L-fuzzy
invariant metric space is normal, Urysohn’s lemma and Tietze extension theorem are true in the case of L-fuzzy invariant metric
space.

Definition 2.14. A function f from an L-fuzzy invariant metric space X to an other L-fuzzy invariant metric space Y is said to be
uniformly continuous if for given t > 0 and r ∈ (0,1), there exist t0 > 0 and r0 ∈ (0,1) such that Mµ,ν(x−y, t0)>L∗ (NS(r0),r0)
implies Mµ,ν( f (x)− f (y), t)>L∗ (NS(r),r).

As usual by a compact L-fuzzy invariant metric space we mean an L-fuzzy invariant metric space (X ,Mµ,ν ,ℑ) such that
(X ,τMµ,ν ) is a compact topological space.

Theorem 2.15 (Uniform continuity theorem). If f is a continuous function from a compact L-fuzzy invariant metric space X to
an other L-fuzzy invariant metric space Y , then f is uniformly continuous.

Proof. Let t > 0 and s ∈ (0,1). Then we can find r ∈ (0,1) such that ℑ((NS(r),r), (NS(r),r)) >L∗ (NS(s),s). Since f :
X → Y is continuous, for each x ∈ X we can find tx > 0 and rx ∈ (0,1) such that Mµ,ν(x− y, t) >L∗ (NS(rx),rx) implies
Mµ,ν( f (x)− f (y), t

2 )>L∗ (NS(r),r). But rx ∈ (0,1) and then we can find sx ∈ (0,rx) such that ℑ((NS(sx),sx),(NS(sx),sx))>L∗

(NS(rx),rx). Since X is compact and {B(x,sx,
tx
2 : x ∈ X} is an open covering of X , there exist x1,x2, ...,xk in X such that

X = ∪k
i=1B(xi,sxi ,

txi
2 ). Put s0 = minsxi and t0 = min

txi
2 , i = 1,2, ...,k. For any x,y ∈ X , if Mµ,ν(x− y, t0)>L∗ (NS(s0),s0), then

Mµ,ν( f (x)− f (y),
txi
2 )>L∗ (NS(sxi),sxi). Since x ∈ X , there exists a xi such that Mµ,ν(x− xi,

txi
2 )>L∗ (NS(sxi),sxi). Hence we

have Mµ,ν( f (x)− f (xi),
t
2 )>L∗ (NS(r),r). Now

Mµ,ν(xi− y, txi) ≥ L∗ℑ(Mµ,ν(xi− x,
txi

2
),Mµ,ν(x− y,

txi

2
))

≥ L∗ℑ((NS(sxi),sxi),(NS(sxi),sxi))>L∗ (NS(rxi),rxi).

Therefore Mµ,ν( f (xi)− f (y), t
2 )>L∗ (NS(r),r). Now we have

Mµ,ν( f (x)− f (y), t) ≥ L∗ℑ(Mµ,ν( f (x)− f (xi),
t
2
),Mµ,ν( f (xi)− f (y),

t
2
)

≥ L∗ℑ((NS(r),r),(NS(r),r))>L∗ (NS(s),s).

Hence f is uniformly continuous.
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Remark 2.16. Let f be a uniformly continuous function from the L-fuzzy invariant metric space X to an other L-fuzzy invariant
metric space Y . If {xn} is a Cauchy sequence in X, then { f (xn)} is also a Cauchy sequence in Y .

Theorem 2.17. Every compact L-fuzzy invariant metric space is separable.

Proof. Let (X ,Mµ,ν ,ℑ) be the given compact L-fuzzy invariant metric space and t > 0, r ∈ (0,1). Since X is compact, there
exist x1,x2, ...,xn in X such that X = ∪n

i=1B(xi,r, t). In particular, for each n ∈ N, we can find a finite subset An such that
X = ∪a∈AB(a,rn,

1
n ) in which rn→ 0L∗ . Let A = ∪n∈NAn. Then A is countable. Now, we claim that X ⊂ A. For that let x ∈ X ,

then, for each n, there exists an ∈ An such that x ∈ B(an,rn,
1
n ). Thus an is converges to x. Since an ∈ An for all n then x ∈ A.

Therefore A is dense in X , thus X is separable.

Definition 2.18. Let X be any nonempty set and (Y,Mµ,ν ,ℑ) be an L-fuzzy invariant metric space. Then a sequence { fn} of
functions from X to Y is said to be converge uniformly to a function f from X to Y if for given r ∈ (0,1) and t > 0, there exists
n0 ∈ N such that Mµ,ν( fn(x)− f (x), t)>L∗ (NS(r),r) for all n≥ n0 and x ∈ X.

Definition 2.19. A family F of functions from an L-fuzzy invariant metric space X to a complete L-fuzzy invariant metric space
Y is said to be equicontinuous if for given r ∈ (0,1) and t > 0, there exists r0 ∈ (0,1) and t0 > 0 such that Mµ,ν(x− y, t0)>L∗

(NS(r0),r0) implies Mµ,ν( f (x)− f (y), t)>L∗ (NS(r),r) for all f ∈ F.

Lemma 2.20. Let { fn} be an equicontinuous sequence of functions from an L-fuzzy invariant metric space X to a complete
L-fuzzy invariant metric space Y . If { fn} converges for each point of a dense subset D of X, then { fn} converges for each point
of X and the limit function is continuous.

Proof. Let s∈ (0,1) and t > 0 be given. Then we can find r∈ (0,1) such that ℑ2((NS(r),r),(NS(r),r), (NS(r),r))>L∗ (NS(s),s).
Since F = { fn} is an equicontinuous family, for given r ∈ (0,1) and t > 0, there exist r1 ∈ (0,1) and t1 > 0 such that for each
x,y ∈ X , Mµ,ν(x− y, t1) >L∗ (NS(r1),r1) implies Mµ,ν( fn(x)− fn(y), t

3 ) >L∗ (NS(r),r) for all fn ∈ F . Since D is dense in X ,
there exists y ∈ B(a,r1, t1)∩D and { fn(y)} converges for that y. Since { fn(y)} is a Cauchy sequence, for given r ∈ (0,1) and
t > 0, there exists n0 ∈ N such that Mµ,ν( fn(y)− fm(y), t

3 )>L∗ (NS(r),r) for all m,n≥ n0. Now for any x ∈ X , we have

Mµ,ν( fn(x)− fm(x), t) ≥ L∗ℑ
2(Mµ,ν( fn(x)− fn(y),

t
3
),

Mµ,ν( fn(y)− fm(y),
t
3
),Mµ,ν( fm(x)− fm(y),

t
3
))

≥ L∗ℑ
2((NS(r),r),(NS(r),r),(NS(r),r))

> L∗(NS(s),s)

Hence { fn(x)} is a Cauchy sequence in Y . Since Y is complete, fn(x) converges. Let f (x) = limn→∞ fn(x). We claim that
f is continuous. Let s0 ∈ (0,1) and t0 > 0 be given. Then we can find that r0 ∈ (0,1) such that ℑ2((NS(r0),r0),(NS(r0),r0),
(NS(r0),r0)) >L∗ (NS(s0),s0). Since F is equicontinuous, for given r0 ∈ (0,1) and t0 > 0, there exist r2 ∈ (0,1) and t2 > 0
such that Mµ,ν(x−y, t2)>L∗ (NS(r2),r2) implies Mµ,ν( fn(x)− fn(y),

t0
3 )>L∗ (NS(r0),r0) for all fn ∈ F . Since fn(x) converges

to f (x), for given r0 ∈ (0,1) and t0 > 0, there exists n1 ∈ N such that Mµ,ν( fn(y)− f (x), t0
3 ) >L∗ (NS(r0),r0) for all n ≥ n1.

Also since fn(y) converges to f (y), for given r0 ∈ (0,1) and t0 > 0, there exists n2 ∈ N such that Mµ,ν( fn(y)− f (y), t0
3 )>L∗

(NS(r0),r0) for all n≥ n2. Now for all n≥max{n1,n2}, we have

Mµ,ν( f (x)− f (y), t0) ≥ L∗ℑ
2(Mµ,ν( f (x)− fn(x),

t0
3
),

Mµ,ν( fn(x)− fn(y),
t0
3
),Mµ,ν( fn(y)− f (y),

t0
3
))

≥ L∗ℑ
2((NS(r0),r0),(NS(r0),r0),(NS(r0),r0))

> L∗(NS(s0),s0).

Hence f is continuous.

Theorem 2.21 (Ascoli-Arzela theorem). Let X be a compact L-fuzzy invariant metric space and Y be a complete L-fuzzy
invariant metric space. Let F be an equicontinuous family of functions from X to Y . If { fn} is a sequence in F such that
{ fn(x) : n ∈ N} is a compact subset of Y for each x∈ X, then there exists a continuous function f from X to Y and a subsequence
{gn} of { fn} such that gn converges uniformly to f on X.
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Proof. Since X is compact L-fuzzy invariant metric space, by Theorem 2.17, X is separable. Let D = {xi : i = 1,2, ...} be a
countable dense subset of X . By hypothesis, for each i, { fn(xi) : n ∈ N} is compact subset of Y . Since every L-fuzzy invariant
metric space is first countable space, every compact subset of Y is sequentially compact. Thus by standard argument, we have a
subsequence {gn} of { fn} such that {gn(xi)} converges for each i = 1,2, ... By Lemma 2.20, there exists a continuous function
f from X to Y such that gn(x) converges to f (x) for all x∈ X . Now we claim that gn converges to f on X . Let s∈ (0,1) and t > 0
be given. Then we can find r ∈ (0,1) such that ℑ2((NS(r),r),(NS(r),r),(NS(r),r))>L∗ (NS(s),s). Since F is equicontinuous,
there exist r1 ∈ (0,1) and t1 > 0 such that Mµ,ν(x− y, t1) >L∗ (NS(r1),r1) implies Mµ,ν(gn(x)− gn(y), t

3 ) >L∗ (NS(r),r) for
all n. Since X is compact, by Theorem 2.15, f is uniformly continuous. Hence for given r ∈ (0,1) and t > 0, there exists
r2 ∈ (0,1) and t2 > 0 such that Mµ,ν(x−y, t2)>L∗ (NS(r2),r2) implies Mµ,ν( f (x)− f (y), t

3 )>L∗ (NS(r),r) for all x,y ∈ X . Let
r0 = min{r1,r2} and t0 = min{t1, t2}. Since X is compact and D is dense in X , X = ∪k

i=1B(xi,r0, t0) for some finite k. Thus for
each x ∈ X , there exists i,1≤ i≤ k, such that Mµ,ν(x− xi, t0)>L∗ (NS(r0),r0). But since r0 = min{r1,r2} and t0 = min{t1, t2},
we have, by the equicontinuity of F , Mµ,ν(gn(x)−gn(xi),

t
3 ) >L∗ (NS(r),r) and also we have, by the uniform continuity of

f , Mµ,ν( f (x)− f (xi),
t
3 ) >L∗ (NS(r),r). Since gn(x j) converges to f (x j), r ∈ (0,1) and t > 0, there exists n0 ∈ N such that

Mµ,ν(gn(x j)− f (x j),
t
3 )>L∗ (NS(r),r) for all j = 1,2, ...,n. Now, for each x ∈ X , we have

Mµ,ν(gn(x)− f (x), t) ≥ L∗ℑ
2(Mµ,ν(gn(x)−gn(xi),

t
3
),

Mµ,ν(gn(xi)− f (xi),
t
3
),Mµ,ν( f (xi)− f (x),

t
3
))

≥ L∗ℑ
2((NS(r),r),(NS(r),r),(NS(r),r))

> L∗(NS(s),s).

Hence gn converges uniformly to f on X .

3. Conclusion
The aim of this paper is to introduce L-fuzzy invariant metric space, and to generalize Uniform continuity theorem and
Ascoli-Arzela theorem for this space. Aside from their numerous applications to Partial Differential Equations such as existence
theorems in differential and integral equations, and Lorentzian Geometry such as guaranteing convergence to isometry using
Lorentzian analogues, these results can be also used as a tool in obtaining Functional Analysis results such as compactness for
duals of compact operators, conformal mapping and extremal problems in complex variable theory.
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