On Bicomplex Pell and Pell-Lucas Numbers

Fügen Torunbalcı Aydın ${ }^{1 *}$

Abstract

In this paper, bicomplex Pell and bicomplex Pell-Lucas numbers are defined. Also, negabicomplex Pell and negabicomplex Pell-Lucas numbers are given. Some algebraic properties of bicomplex Pell and bicomplex Pell-Lucas numbers which are connected between bicomplex numbers and Pell and Pell-Lucas numbers are investigated. Furthermore, d'Ocagne's identity, Binet's formula, Cassini's identity and Catalan's identity for these numbers are given.

Keywords: Pell and Pell-Lucas numbers, Bicomplex number, Quaternion 2010 AMS: 11B37
${ }^{1}$ Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Mathematical Engineering, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
*Corresponding author: ftorunay@gmail.com ; faydin@yildiz.edu.tr
Received: 2 July 2018, Accepted: 2 October 2018, Available online: 24 December 2018

1. Introduction

Bicomplex numbers were introduced by Corrado Segre in 1892 [1]. G. Baley Price (1991), presented bicomplex numbers based on multi-complex spaces and functions in his book [2]. In recent years, fractal structures of these numbers have also been studied [3]. The set of bicomplex numbers can be expressed by the basis $\{1, i, j, i j\}$ as,

$$
\begin{equation*}
\mathbb{C}_{2}=\left\{q=q_{1}+i q_{2}+j q_{3}+i j q_{4} \mid q_{1}, q_{2}, q_{3}, q_{4} \in \mathbb{R}\right\} \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbb{C}_{2}=\left\{q=\left(q_{1}+i q_{2}\right)+j\left(q_{3}+i q_{4}\right) \mid q_{1}, q_{2}, q_{3}, q_{4} \in \mathbb{R}\right\} \tag{1.2}
\end{equation*}
$$

where i, j and $i j$ satisfy the conditions

$$
i^{2}=-1, j^{2}=-1, i j=j i
$$

Thus, any bicomplex number q is introduced as pairs of typical complex numbers with the additional structure of commutative multiplication (Table 1).

A set of bicomplex numbers \mathbb{C}_{2} is a real vector space with addition and scalar multiplication operations. The vector space \mathbb{C}_{2} equipped with bicomplex product is a real associative algebra. Also, the vector space together with the properties of multiplication and the product of the bicomplex numbers are a commutative algebra. Furthermore, three different conjugations can operate on bicomplex numbers [3], [4], [5] as follows:

Table 1. Multiplication scheme of bicomplex numbers

x	1	i	j	ij
1	1	i	j	ij
i	i	-1	ij	-j
j	j	ij	-1	-i
ij	ij	-j	-i	1

$$
\begin{array}{r}
q=q_{1}+i q_{2}+j q_{3}+i j q_{4}=\left(q_{1}+i q_{2}\right)+j\left(q_{3}+i q_{4}\right), q \in \mathbb{C}_{2} \\
q_{i}^{*}=q_{1}-i q_{2}+j q_{3}-i j q_{4}=\left(q_{1}-i q_{2}\right)+j\left(q_{3}-i q_{4}\right), \\
q_{j}^{*}=q_{1}+i q_{2}-j q_{3}-i j q_{4}=\left(q_{1}+i q_{2}\right)-j\left(q_{3}+i q_{4}\right), \\
q_{i j}^{*}=q_{1}-i q_{2}-j q_{3}+i j q_{4}=\left(q_{1}-i q_{2}\right)-j\left(q_{3}-i q_{4}\right) .
\end{array}
$$

and properties of conjugation

$$
\begin{aligned}
& \text { 1) }\left(q^{*}\right)^{*}=q \\
& \text { 2) }\left(q_{1} q_{2}\right)^{*}=q_{2}{ }^{*} q_{1}{ }^{*}, q_{1}, q_{2} \in \mathbb{C}_{2} \\
& \text { 3) }\left(q_{1}+q_{2}\right)^{*}=q_{1}{ }^{*}+q_{2}{ }^{*} \\
& \text { 4) }(\lambda q)^{*}=\lambda q^{*} \\
& \text { 5) }\left(\lambda q_{1} \pm \mu q_{2}\right)^{*}=\lambda q_{1}{ }^{*} \pm \mu q_{2}{ }^{*}, \lambda, \mu \in \mathbb{R}
\end{aligned}
$$

Therefore, the norm of the bicomplex numbers is defined as

$$
\begin{array}{r}
N_{q_{i}}=\left\|q \times q_{i}^{*}\right\|=\sqrt{\left|q_{1}^{2}+q_{2}^{2}-q_{3}^{2}-q_{4}^{2}+2 j\left(q_{1} q_{3}+q_{2} q_{4}\right)\right|}, \\
N_{q_{j}}=\left\|q \times q_{j}^{*}\right\|=\sqrt{\left|q_{1}^{2}-q_{2}^{2}+q_{3}^{2}-q_{4}^{2}+2 i\left(q_{1} q_{2}+q_{3} q_{4}\right)\right|}, \\
N_{q_{i j}}=\left\|q \times q_{i j}^{*}\right\|=\sqrt{\left|q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}+2 i j\left(q_{1} q_{4}-q_{2} q_{3}\right)\right|} .
\end{array}
$$

Pell numbers were invented by John Pell but, these numbers are named after Edouard Lucas. Pell and Pell-Lucas numbers have important parts in mathematics. They have fundamental importance in the fields of combinatorics and number theory [6],[7],[8],[9].

The sequence of Pell numbers

$$
1,2,5,12,29,70,169,408,985,2378, \ldots, P_{n}, \ldots
$$

is defined by the recurrence relation

$$
P_{n}=2 P_{n-1}+P_{n-2}, \quad(n \geq 2)
$$

with $P_{0}=0, P_{1}=1$.
The sequence of Pell - Lucas numbers

$$
2,6,14,34,82,198,478,1154,2786,6726, \ldots, Q_{n}, \ldots
$$

is defined by the recurrence relation

$$
Q_{n}=2 Q_{n-1}+Q_{n-2}, \quad(n \geq 2)
$$

with $Q_{0}=2, Q_{1}=1$.
Also, the sequence of modified Pell numbers

$$
1,3,7,17,41,99,329,577,1393,3363, \ldots, q_{n}, \ldots
$$

is defined by the recurrence relation

$$
q_{n}=2 q_{n-1}+q_{n-2}, \quad(n \geq 2)
$$

with $q_{0}=1, q_{1}=1$.
Furthermore, we can see the matrix representations of Pell and Pell-Lucas numbers in [1]-[3],[5], [8]. In 2018, Catarino defined bicomplex k-Pell quaternions in [10].

Also, for Pell, Pell-Lucas and modified Pell numbers the following properties hold:[6],[7],[8],[9]

$$
\begin{aligned}
& P_{m} P_{n+1}+P_{m-1} P_{n}=P_{m+n}, \\
& P_{m} P_{n+1}-P_{m+1} P_{n}=(-1)^{n} P_{m-n}, \\
& P_{m} P_{n}-P_{m+r} P_{n-r}=(-1)^{n-r} P_{m+r-n} P_{r}, \\
& Q_{m} Q_{n}-Q_{m+r} Q_{n-r}=8(-1)^{n-r+1} P_{m+r-n} P_{r}, \\
& P_{n-1} P_{n+1}-P_{n}^{2}=(-1)^{n}, \\
& P_{n}^{2}+P_{n+1}^{2}=P_{2 n+1}, \\
& P_{n+1}^{2}-P_{n-1}^{2}=2 P_{2 n}, \\
& 2 P_{n+1} P_{n}-2 P_{n}^{2}=P_{2 n}, \\
& P_{n}^{2}+P_{n+3}^{2}=5 P_{2 n+3}, \\
& P_{2 n+1}+P_{2 n}=2 P_{n+1}^{2}-2 P_{n}^{2}-(-1)^{n}, \\
& P_{n}^{2}+P_{n-1} P_{n+1}=\frac{Q_{n}^{2}}{4}, \\
& P_{n+1}+P_{n-1}=Q_{n}, \\
& P_{n} Q_{n}=P_{2 n}, \\
& Q_{n}=2 q_{n}, \\
& P_{n+1}-P_{n}=q_{n}, \\
& P_{n+1}+P_{n}=q_{n+1},
\end{aligned}
$$

and for nega Pell and pell-Lucas numbers the following properties hold,

$$
\begin{aligned}
& P_{-n}=(-1)^{n+1} P_{n}, \\
& Q_{-n}=(-1)^{n} Q_{n} .
\end{aligned}
$$

In this paper, the bicomplex Pell and bicomplex Pell-Lucas numbers will be defined. The aim of this work is to present in a unified manner a variety of algebraic properties of both the bicomplex numbers as well as the bicomplex Pell and Pell-Lucas numbers and the negabicomplex Pell and Pell-Lucas numbers. In particular, using three types of conjugations, all the properties established for bicomplex numbers are also given for the bicomplex Pell and Pell-Lucas numbers. In addition, d'Ocagne's identity, Binet's formula, Cassini's identity and Catalan's identity for these numbers are given.

2. The bicomplex Pell and Pell-Lucas numbers

The bicomplex Pell and Pell-Lucas numbers $B P_{n}$ and $B P L_{n}$ are defined by the basis $\{1, i, j, i j\}$ as follows

$$
\begin{align*}
\mathbb{C}_{2}^{P}=\left\{B P_{n}=\right. & P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3} \mid P_{n}, \\
& n-\text { thPell number }, n=0,1, \ldots\} \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{C}_{2}^{P L}=\left\{B P L_{n}=\right. & Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3} \mid Q_{n}, \tag{2.2}\\
& n-\text { thPell }- \text { Lucas number }, n=0,1, \ldots\}
\end{align*}
$$

where i, j and $i j$ satisfy the conditions

$$
i^{2}=-1, j^{2}=-1, i j=j i
$$

The bicomplex Pell and bicomplex Pell-Lucas numbers starting from $n=0$, can be written respectively as;
$B P_{0}=0+1 i+2 j+5 i j, B P_{1}=1+2 i+5 j+12 i j, B P_{2}=2+5 i+12 j+29 i j, \ldots$
$B P L_{0}=2+2 i+6 j+14 i j, B P L_{1}=2+6 i+14 j+34 i j$,
$B P L_{2}=6+14 i+34 j+82 i j, \ldots$
Let $B P_{n}$ and $B P_{m}$ be two bicomplex Pell numbers such that

$$
B P_{n}=P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}
$$

and

$$
B P_{m}=P_{m}+i P_{m+1}+j P_{m+2}+i j P_{m+3} .
$$

Then, the addition and subtraction of these numbers are given by

$$
\begin{aligned}
B P_{n} \pm B P_{m}= & \left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
& \pm\left(P_{m}+i P_{m+1}+j P_{m+2}+i j P_{m+3}\right) \\
= & \left(P_{n} \pm P_{m}\right)+i\left(P_{n+1} \pm P_{m+1}\right)+j\left(P_{n+2} \pm P_{m+2}\right) \\
& +i j\left(P_{n+3} \pm P_{m+3}\right) .
\end{aligned}
$$

The multiplication of a bicomplex Pell number by the real scalar λ is defined as

$$
\lambda B P_{n}=\lambda P_{n}+i \lambda P_{n+1}+j \lambda P_{n+2}+i j \lambda P_{n+3}
$$

The multiplication of two bicomplex Pell numbers is defined by

$$
\begin{aligned}
B P_{n} \times B P_{m}= & \left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
= & \left(P_{m}+i P_{m+1}+j P_{m+2}+i j P_{m+3}\right) \\
= & \left(P_{n} P_{m}-P_{n+1} P_{m+1}-P_{n+2} P_{m+2}+P_{n+3} P_{m+3}\right) \\
& +i\left(P_{n} P_{m+1}+P_{n+1} P_{m}-P_{n+2} P_{m+3}-P_{n+3} P_{m+2}\right) \\
& +j\left(P_{n} P_{m+2}+P_{n+2} P_{m}-P_{n+1} P_{m+3}-P_{n+3} P_{m+1}\right) \\
& +i j\left(P_{n} P_{m+3}+P_{n+3} P_{m}+P_{n+1} P_{m+2}+P_{n+2} P_{m+1}\right) \\
= & B P_{m} \times B P_{n} .
\end{aligned}
$$

The conjugation of the bicomplex Pell numbers is defined in three different ways as follows

$$
\begin{align*}
& \left(B P_{n}\right)_{i}^{*}=P_{n}-i P_{n+1}+j P_{n+2}-i j P_{n+3}, \tag{2.3}\\
& \left(B P_{n}\right)_{j}^{*}=P_{n}+i P_{n+1}-j P_{n+2}-i j P_{n+3}, \tag{2.4}
\end{align*}
$$

$$
\begin{equation*}
\left(B P_{n}\right)_{i j}^{*}=P_{n}-i P_{n+1}-j P_{n+2}+i j P_{n+3} . \tag{2.5}
\end{equation*}
$$

Theorem 2.1. Let $B P_{n}$ and $B P_{m}$ be two bicomplex Pell numbers. In this case, we can give the following relations between the conjugates of these numbers:

$$
\begin{aligned}
& \left(B P_{n} \times B P_{m}\right)_{i}^{*}=\left(B P_{m}\right)_{i}^{*} \times\left(B P_{n}\right)_{i}^{*}=\left(B P_{n}\right)_{i}^{*} \times\left(B P_{m}\right)_{i}^{*} \\
& \left(B P_{n} \times B P_{m}\right)_{j}^{*}=\left(B P_{m}\right)_{j}^{*} \times\left(B P_{n}\right)_{j}^{*}=\left(B P_{n}\right)_{j}^{*} \times\left(B P_{m}\right)_{j}^{*} \\
& \left(B P_{n} \times B P_{m}\right)_{i j}^{*}=\left(B P_{m}\right)_{i j}^{*} \times\left(B P_{n}\right)_{i j}^{*}=\left(B P_{n}\right)_{i j}^{*} \times\left(B P_{m}\right)_{i j}^{*}
\end{aligned}
$$

Proof. It can be proved easily by using (2.3)-(2.5).
In the following theorem, some properties related to the conjugations of the bicomplex Pell numbers are given.
Theorem 2.2. Let $\left(B P_{n}\right)_{i}^{*},\left(B P_{n}\right)_{j}^{*}$ and $\left(B P_{n}\right)_{i j}^{*}$ be three kinds of conjugation of the bicomplex Pell numbers. The following relations hold:

$$
\begin{equation*}
B P_{n} \times\left(B P_{n}\right)_{i}^{*}=2\left(-Q_{2 n+3}+j P_{2 n+3}\right), \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
B P_{n} \times\left(B P_{n}\right)_{j}^{*}= & \left(P_{n}^{2}-P_{n+1}^{2}+P_{n+2}^{2}-P_{n+3}^{2}\right) \tag{2.7}\\
& +4 i\left(P_{2 n+3}+P_{n} P_{n+1}\right),
\end{align*}
$$

$$
\begin{equation*}
B P_{n} \times\left(B P_{n}\right)_{i j}^{*}=6 P_{2 n+3}+4 i j(-1)^{n+1} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
B P_{n} \times\left(B P_{n}\right)_{i}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{i}^{*}=-2\left(8 P_{2 n+2}+j Q_{2 n+2}\right), \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
B P_{n} \times\left(B P_{n}\right)_{j}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{j}^{*}=12\left(-P_{2 n+2}+i P_{2 n+2}\right) \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
B P_{n} \times\left(B P_{n}\right)_{i j}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{i j}^{*}=6 Q_{2 n+2} \tag{2.11}
\end{equation*}
$$

Proof. (2.6): Using (2.1) and (2.3) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{i}^{*}= & \left(P_{n}^{2}+P_{n+1}^{2}-P_{n+2}^{2}-P_{n+3}^{2}\right) \\
& \quad+2 j\left(P_{n} P_{n+2}+P_{n+1} P_{n+3}\right) \\
= & P_{2 n+1}-P_{2 n+5}+2 j P_{2 n+3} \\
= & 2\left(-Q_{2 n+3}+j P_{2 n+3}\right)
\end{aligned}
$$

(2.7): Using (2.1) and (2.4) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{j}^{*}= & \left(P_{n}^{2}-P_{n+1}^{2}+P_{n+2}^{2}-P_{n+3}^{2}\right) \\
& +2 i\left(P_{n} P_{n+1}+P_{n+2} P_{n+3}\right) \\
= & \left(P_{n}^{2}-P_{n+1}^{2}+P_{n+2}^{2}-P_{n+3}^{2}\right) \\
& +4 i\left(P_{2 n+3}+P_{n} P_{n+1}\right) .
\end{aligned}
$$

(2.8): Using (2.1) and (2.5) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{i j}^{*}= & \left(P_{n}^{2}+P_{n+1}^{2}+P_{n+2}^{2}+P_{n+3}^{2}\right) \\
& \quad+2 i j\left(P_{n} P_{n+3}-P_{n+1} P_{n+2}\right) \\
= & \left(P_{2 n+1}+P_{2 n+5}\right)+4 i j(-1)^{n+1} \\
= & 6 P_{2 n+3}+4 i j(-1)^{n+1} .
\end{aligned}
$$

(2.9): Using (2.6) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{i}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{i}^{*} & = \\
& -2\left[\left(Q_{2 n+3}+Q_{2 n+1}\right)\right. \\
& =-j\left(8\left(P_{2 n+3}+P_{2 n+1}\right)\right] \\
& -2\left(8 P_{2 n+2}-j Q_{2 n+2}\right)
\end{aligned}
$$

(2.10): Using (2.7) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{j}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{j}^{*}= & \left(P_{n-1}^{2}-P_{n+3}^{2}\right) \\
& +4 i\left(P_{n} Q_{n}+Q_{2 n+2}\right) \\
= & -12 P_{2 n+2}+4 i\left(3 P_{2 n+2}\right) \\
= & -12\left(P_{2 n+2}-i P_{2 n+2}\right) .
\end{aligned}
$$

(2.11): Using (2.8) we get,

$$
\begin{aligned}
B P_{n} \times\left(B P_{n}\right)_{i j}^{*}+B P_{n-1} \times\left(B P_{n-1}\right)_{i j}^{*}= & 6\left(P_{2 n+3}+P_{2 n+1}\right) \\
& +4 i j\left[(-1)^{n+1}+(-1)^{n}\right] \\
= & 6 Q_{2 n+2}
\end{aligned}
$$

Therefore, the norm of the bicomplex Pell number $B P_{n}$ is defined in three different ways as follows

$$
N_{B P_{n i}}=\left\|B P_{n} \times B P_{n i}^{*}\right\|=\sqrt{2\left|-Q_{2 n+3}+j P_{2 n+3}\right|},
$$

$$
\begin{align*}
& N_{B P_{n j}}=\left\|B P_{n} \times B P_{n j}^{*}\right\| \\
&=\sqrt{\left|\left(P_{n}^{2}-P_{n+1}^{2}+P_{n+2}^{2}-P_{n+3}^{2}\right)+4 i\left(P_{2 n+3}+P_{n} P_{n+1}\right)\right|} \tag{2.12}\\
& \tag{2.13}\\
& N_{B P_{n i j}}=\left\|B P_{n} \times B P_{n i j}^{*}\right\|=\sqrt{\left|6 Q_{2 n+3}+4 i j(-1)^{n+1}\right|} .
\end{align*}
$$

Theorem 2.3. Let $B P_{n}$ and $B P L_{n}$ be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively.The following relations hold:

$$
\begin{align*}
B P_{m} B P_{n}+ & B P_{m+1} B P_{n+1}= \tag{2.14}\\
& 4\left(Q_{m+n+4}-i Q_{m+n+4}\right. \\
& \left.-j P_{m+n+4}+i j P_{m+n+4}\right), \tag{2.15}\\
\left(B P_{n}\right)^{2}= & 4 P_{2 n+3}-4 i P_{2 n+3}+2 j\left(P_{2 n+1}-6 P_{n+1}^{2}\right) \\
& +2 i j\left(6 P_{n} P_{n+1}+2 P_{2 n+1}\right),
\end{align*}
$$

Proof. (2.14): By the equation (2.1) we get,

$$
\begin{aligned}
& B P_{m} B P_{n}+B P_{m+1} B P_{n+1}=\left(P_{m+n+1}-P_{m+n+3}-P_{m+n+5}\right. \\
&\left.+P_{m+n+7}\right) \\
&+2 i\left(P_{m+n+2}-P_{m+n+6}\right) \\
&+2 j\left(P_{m+n+3}-P_{m+n+5}\right) \\
&+2 i j\left(2 P_{m+n+4}\right) \\
&=4\left(Q_{m+n+4}-i Q_{m+n+4}-j P_{m+n+4}\right. \\
&\left.+i j P_{m+n+4}\right) .
\end{aligned}
$$

(2.15): By the equation (2.1) we get,

$$
\begin{aligned}
\left(B P_{n}\right)^{2}= & \left(P_{n}^{2}-P_{n+1}^{2}-P_{n+2}^{2}+P_{n+3}^{2}\right)+2 i\left(P_{n} P_{n+1}-P_{n+2} P_{n+3}\right) \\
& \quad+2 j\left(P_{n} P_{n+2}-P_{n+1} P_{n+3}\right)+2 i j\left(P_{n} P_{n+3}+P_{n+1} P_{n+2}\right) \\
= & 4 P_{2 n+3}-4 i P_{2 n+3}+2 j\left(P_{2 n+1}-6 P_{n+1}^{2}\right) \\
& +2 i j\left(6 P_{n} P_{n+1}+2 P_{2 n+1}\right) .
\end{aligned}
$$

(2.16): By the equations (2.1) and (2.14) we get,

$$
\begin{aligned}
\left(B P_{n}\right)^{2}+\left(B P_{n+1}\right)^{2}= & \left(P_{n}^{2}-P_{n+2}^{2}+P_{n+4}^{2}-P_{n+2}^{2}\right) \\
& +2 i\left(P_{2 n+2}-P_{2 n+6}\right)+2 j\left(P_{2 n+3}-P_{2 n+5}\right) \\
& \quad+2 i j\left(2 P_{2 n+4}\right) \\
= & 4\left(Q_{2 n+4}-i Q_{2 n+4}-j P_{2 n+4}+i j P_{2 n+4}\right)
\end{aligned}
$$

(2.17) By the equations (2.1) and (2.14) we get,

$$
\begin{aligned}
\left(B P_{n+1}\right)^{2}-\left(B P_{n-1}\right)^{2}= & \left(P_{n+1}^{2}-P_{n-1}^{2}+P_{n}^{2}-P_{n+2}^{2}\right) \\
& +2 i\left[2\left(P_{2 n+1}-P_{2 n+5}\right)\right] \\
& +2 j\left(P_{2 n+3}-5 P_{2 n+3}\right) \\
& +2 i j\left[4\left(q_{2 n+2}+P_{2 n+2}\right)\right] \\
= & 2\left(P_{2 n}-P_{2 n+2}\right)+2 i\left(-4 Q_{2 n+3}\right) \\
& +2 j\left(-4 P_{2 n+3}\right)+2 i j\left(4 P_{2 n+3}\right) \\
= & -4\left(P_{2 n+1}+2 i Q_{2 n+3}+2 j P_{2 n+3}\right. \\
& \left.+2 i j P_{2 n+3}\right)
\end{aligned}
$$

(2.18): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n}-i B P_{n+1}-j B P_{n+2}-i j B P_{n+3}= & \left(P_{n}+P_{n+2}+P_{n+4}-P_{n+6}\right) \\
& +2 i\left(P_{n+5}\right)+2 j\left(P_{n+4}\right) \\
& -2 i j\left(P_{n+3}\right) \\
= & -\left(4 P_{n+1}+P_{n}\right)+2 i P_{n+5} \\
& +2 j P_{n+4}-2 i j P_{n+3} .
\end{aligned}
$$

(2.19): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n}-i B P_{n+1}-j B P_{n+2}-i j B P_{n+3}= & \left(P_{n}+P_{n+2}+P_{n+4}-P_{n+6}\right) \\
& +2 i\left(P_{n+5}\right)+2 j\left(P_{n+4}\right) \\
& -2 i j\left(P_{n+3}\right) \\
= & -\left(4 P_{n+1}+P_{n}\right)+2 i P_{n+5} \\
& +2 j P_{n+4}-2 i j P_{n+3} .
\end{aligned}
$$

Theorem 2.4. (d'Ocagne's identity). For $n, m \geq 0$ d'Ocagne's identity for bicomplex Pell numbers $B P_{n}$ and $B P_{m}$ is given by

$$
\begin{equation*}
B P_{m} B P_{n+1}-B P_{m+1} B P_{n}=12(-1)^{n} P_{m-n}(j+i j) \tag{2.20}
\end{equation*}
$$

Proof. (2.20): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{m} B P_{n+1}-B P_{m+1} B P_{n}=\quad & (-1)^{n} P_{m-n}(0) \\
& +i(-1)^{n}\left(P_{m-n-1}(0)\right. \\
& +2 j(-1)^{n}\left(P_{m-n-2}+P_{m-n+2}\right) \\
& +i j(-1)^{n}\left[\left(-P_{m-n-3}+P_{m-n+3}\right.\right. \\
& \left.\left.+P_{m-n-1}-P_{m-n+1}\right)\right] \\
= & 2 j(-1)^{n}\left(6 P_{m-n}\right) \\
= & +i j(-1)^{n} 6\left(P_{m-n-1}-P_{m-n+1}\right) \\
= & 12(-1)^{n} P_{m-n}(j++i j) .
\end{aligned}
$$

Theorem 2.5. Let $B P_{n}$ and $B P L_{n}$ be the bicomplex Pell number and the bicomplex Pell-Lucas numbers respectively. The following relations are satisfied

$$
\begin{equation*}
B P_{n+1}+B P_{n-1}=B P L_{n} \tag{2.21}
\end{equation*}
$$

$B P_{n+1}-B P_{n-1}=2 B P_{n}$,
$B P_{n+2}+B P_{n-2}=6 B P_{n}$.
$B P_{n+2}-B P_{n-2}=2 B P L_{n}$,
$B P_{n+1}+B P_{n}=\frac{1}{2} B P L_{n+1}$,
$B P_{n+1}-B P_{n}=\frac{1}{2} B P L_{n}$,
$B P L_{n+1}+B P L_{n-1}=4 B P_{n}$,
$B P L_{n+1}-B P L_{n-1}=2 B P L_{n}$,
$B P L_{n+2}+B P L_{n-2}=6 B P L_{n}$,
$B P L_{n+2}-B P L_{n-2}=8 B P_{n}$,
$B P L_{n+1}+B P L_{n}=4 B P_{n+1}$,
$B P L_{n+1}-B P L_{n}=4 B P_{n}$.

Proof. (2.21):By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+1}+B P_{n-1}= & \left(P_{n+1}+P_{n-1}\right)+i\left(P_{n+2}+P_{n}\right) \\
& +j\left(P_{n+3}+P_{n+1}\right)+i j\left(P_{n+4}+P_{n+2}\right) \\
= & \left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
= & B P L_{n},
\end{aligned}
$$

(2.22): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+1}-B P_{n-1}= & \left(P_{n+1}-P_{n-1}\right)+i\left(P_{n+2}-P_{n}\right) \\
& +j\left(P_{n+3}-P_{n+1}\right)+i j\left(P_{n+4}-P_{n+2}\right) \\
= & 2\left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
= & 2 B P_{n} .
\end{aligned}
$$

(2.23): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+2}+B P_{n-2}= & \left(P_{n+2}+P_{n-2}\right)+i\left(P_{n+3}+P_{n-1}\right) \\
& +j\left(P_{n+4}+P_{n}\right)+i j\left(P_{n+5}+P_{n+1}\right) \\
= & 6\left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
= & 6 B P_{n} .
\end{aligned}
$$

(2.24): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+2}-B P_{n-2}= & \left(P_{n+2}-P_{n-2}\right)+i\left(P_{n+3}-P_{n-1}\right) \\
& +j\left(P_{n+4}-P_{n}\right)+i j\left(P_{n+5}-P_{n+1}\right) \\
= & 2\left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
= & 2 B P L_{n} .
\end{aligned}
$$

(2.25): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+1}+B P_{n}= & \left(P_{n+1}+P_{n}\right)+i\left(P_{n+2}+P_{n+1}\right) \\
& +j\left(P_{n+3}+P_{n+2}\right)+i j\left(P_{n+4}+P_{n+3}\right) \\
= & \left(q_{n+1}+i q_{n+2}+j q_{n+3}+i j q_{n+4}\right) \\
= & \frac{1}{2}\left(Q_{n+1}+i Q_{n+2}+j Q_{n+3}+i j Q_{n+4}\right) \\
= & \frac{1}{2} B P L_{n+1}
\end{aligned}
$$

where the property (1.17) of the modified Pell number is used.
(2.26): By the equation (2.1) we get,

$$
\begin{aligned}
B P_{n+1}-B P_{n}= & \left(P_{n+1}-P_{n}\right)+i\left(P_{n+2}-P_{n+1}\right) \\
& +j\left(P_{n+3}-P_{n+2}\right)+i j\left(P_{n+4}-P_{n+3}\right) \\
= & \left(q_{n}+i q_{n+1}+j q_{n+2}+i j q_{n+3}\right) \\
= & \frac{1}{2}\left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
= & \frac{1}{2} B P L_{n}
\end{aligned}
$$

where the property (1.17) of the modified Pell number is used.
(2.27): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+1}+B P L_{n-1}= & \left(Q_{n+1}+Q_{n-1}\right)+i\left(Q_{n+2}+Q_{n}\right) \\
& +j\left(Q_{n+3}+Q_{n+1}\right)+i j\left(Q_{n+4}+Q_{n+2}\right) \\
= & 4\left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
= & 4 B P_{n} .
\end{aligned}
$$

(2.28): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+1}-B P L_{n-1}= & \left(Q_{n+1}-Q_{n-1}\right)+i\left(Q_{n+2}-Q_{n}\right) \\
& +j\left(Q_{n+3}-Q_{n+1}\right)+i j\left(Q_{n+4}-Q_{n+2}\right) \\
= & 2\left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
= & 2 B P L_{n}
\end{aligned}
$$

(2.29): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+2}+B P L_{n-2}= & \left(Q_{n+2}+Q_{n-2}\right)+i\left(Q_{n+3}+Q_{n-1}\right) \\
& +j\left(Q_{n+4}+Q_{n}\right)+i j\left(Q_{n+5}+Q_{n+1}\right) \\
= & 6\left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
= & 6 B P L_{n} .
\end{aligned}
$$

(2.30): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+2}-B P L_{n-2}= & \left(Q_{n+2}-Q_{n-2}\right)+i\left(Q_{n+3}-Q_{n-1}\right) \\
& +j\left(Q_{n+4}-Q_{n}\right)+i j\left(Q_{n+5}-Q_{n+1}\right) \\
= & 8\left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
= & 8 B P_{n} .
\end{aligned}
$$

(2.31): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+1}+B P L_{n}= & \left(Q_{n+1}+Q_{n}\right)+i\left(Q_{n+2}+Q_{n+1}\right) \\
& +j\left(Q_{n+3}+Q_{n+2}\right)+i j\left(Q_{n+4}+Q_{n+3}\right) \\
= & 4 P_{n+1}+i P_{n+2}+j P_{n+3}+i j P_{n+4} \\
= & 4 B P_{n+1} .
\end{aligned}
$$

(2.32): By the equation (2.2) we get,

$$
\begin{aligned}
B P L_{n+1}-B P L_{n}= & \left(Q_{n+1}-Q_{n}\right)+i\left(Q_{n+2}-Q_{n+1}\right) \\
& +j\left(Q_{n+3}-Q_{n+2}\right)+i j\left(Q_{n+4}-Q_{n+3}\right) \\
= & 4 P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3} \\
= & 4 B P_{n} .
\end{aligned}
$$

Theorem 2.6. If $B P_{n}$ and $B P L_{n}$ are bicomplex Pell and bicomplex Pell-Lucas numbers, respectively. For $n \geq 0$, the identities of negabicomplex Pell and negabicomplex Pell-Lucas numbers are

$$
\begin{equation*}
B P_{-n}=(-1)^{n+1} B P_{n}+(-1)^{n} Q_{n}(i+2 j+5 i j) \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
B P L_{-n}=(-1)^{n} B P L_{n}+8(-1)^{n+1} P_{n}(i+2 j+5 i j) . \tag{2.34}
\end{equation*}
$$

Proof. (2.33): Using the identity of negapell numbers $P_{-n}=(-1)^{n+1} P_{n}$ we get

$$
\begin{aligned}
B P_{-n}= & P_{-n}+i P_{-n+1}+j P_{-n+2}+i j P_{-n+3} \\
= & P_{-n}+i P_{-(n-1)}+j P_{-(n-2)}+i j P_{-(n-3)} \\
= & (-1)^{n+1} P_{n}+i(-1)^{n} P_{n-1}+j(-1)^{n-1} P_{n-2} \\
= & \quad+i j(-1)^{n-2} P_{n-3} \\
& (-1)^{n+1}\left(P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right) \\
& \quad-i(-1)^{n+1} P_{n+1}-j(-1)^{n+1} P_{n+2}-i j(-1)^{n+1} P_{n+3} \\
& \quad+i(-1)^{n} P_{n-1}+j(-1)^{n+1} P_{n-2}+i j(-1)^{n} P_{n-3} \\
= & (-1)^{n+1} B P_{n}+(-1)^{n}\left(P_{n+1}+P_{n-1}\right) i \\
= & \quad(-1)^{n+1} B P_{n}+(-1)^{n} Q_{n+2}\left(P_{n-2}\right) j+(-1)^{n}\left(P_{n+3}+P_{n-3}\right) i j \\
= & (-5 i j)
\end{aligned}
$$

(2.34): Using the identity of negapell-Lucas numbers $Q_{-n}=(-1)^{n} Q_{n}$ we get

$$
\begin{aligned}
& B P L_{-n}=Q_{-n}+i Q_{-n+1}+j Q_{-n+2}+i j Q_{-n+3} \\
& =Q_{-n}+i Q_{-(n-1)}+j Q_{-(n-2)}+i j Q_{-(n-3)} \\
& =(-1)^{n} Q_{n}+i(-1)^{n-1} Q_{n-1}+j(-1)^{n-2} Q_{n-2} \\
& +i j(-1)^{n-3} Q_{n-3} \\
& =(-1)^{n+1}\left(Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right) \\
& -i(-1)^{n} Q_{n+1}-j(-1)^{n} Q_{n+2} \\
& -i j(-1)^{n} Q_{n+3} \\
& +i(-1)^{n-1} Q_{n-1}+j(-1)^{n} Q_{n-2} \\
& +i j(-1)^{n-1} Q_{n-3} \\
& =(-1)^{n+1} B P L_{n}+(-1)^{n+1}\left(Q_{n+1}+Q_{n-1}\right) i \\
& +(-1)^{n+1}\left(Q_{n+2}-Q_{n-2}\right) j \\
& +(-1)^{n+1}\left(Q_{n+3}+Q_{n-3}\right) i j \\
& =(-1)^{n} B P L_{n}+8(-1)^{n+1} P_{n}(i+2 j+5 i j)
\end{aligned}
$$

Theorem 2.7. Binet's Formula. Let $B P_{n}$ and $B P L_{n}$ be the bicomplex Pell and bicomplex Pell-Lucas numbers respectively. For $n \geq 1$, Binet's formula for these numbers are as follows:

$$
\begin{equation*}
B P_{n}=\frac{1}{\alpha-\beta}\left(\hat{\alpha} \alpha^{n}-\hat{\beta} \beta^{n}\right) \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
B P L_{n}=\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n} \tag{2.36}
\end{equation*}
$$

where $\hat{\alpha}=1+i \alpha+j \alpha^{2}+i j \alpha^{3}, \quad \alpha=1+\sqrt{2}$ and $\hat{\beta}=1+i \beta+j \beta^{2}+i j \beta^{3}, \quad \beta=1-\sqrt{2}$.
Proof. (2.35):

$$
\begin{aligned}
B P_{n} & =P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3} \\
& =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}+i \frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}+j \frac{\alpha^{n+2}-\beta^{n+2}}{\alpha-\beta}+i j \frac{\alpha^{n+3}-\beta^{n+3}}{\alpha-\beta} \\
& =\frac{\alpha^{n}\left(1+i \alpha+j \alpha^{2}+i j \alpha^{3}\right)-\beta^{n}\left(1+i \beta+j \beta^{2}+i j \beta^{3}\right)}{\alpha-\beta} \\
& =\frac{\hat{\alpha} \alpha^{n}-\hat{\beta} \beta^{n}}{\alpha-\beta}
\end{aligned}
$$

and (2.36):

$$
\begin{aligned}
B P L_{n} & =Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3} \\
& =\alpha^{n}+\beta^{n}+i\left(\alpha^{n+1}+\beta^{n+1}\right)+j\left(\alpha^{n+2}+\beta^{n+2}\right)+i j\left(\alpha^{n+3}+\beta^{n+3}\right) \\
& =\alpha^{n}\left(1+i \alpha+j \alpha^{2}+i j \alpha^{3}\right)+\beta^{n}\left(1+i \beta+j \beta^{2}+i j \beta^{3}\right) \\
& =\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n} .
\end{aligned}
$$

Binet's formula of the bicomplex Pell number is the same as Binet's formula of the Pell number [7].

Theorem 2.8. Cassini's Identity Let $B P_{n}$ and $B P L_{n}$ be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively. For $n \geq 1$, Cassini's identities for $B P_{n}$ and $B P L_{n}$ are as follows:

$$
\begin{equation*}
B P_{n-1} B P_{n+1}-B P_{n}^{2}=12(-1)^{n}(j+i j) \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
B P L_{n-1} B P L_{n+1}-B P L_{n}^{2}=8.12(-1)^{n+1}(j+i j) . \tag{2.38}
\end{equation*}
$$

Proof. (2.37): Using (2.1) we get

$$
\begin{aligned}
B P_{n-1} B P_{n+1}-\left(B P_{n}\right)^{2}= & \left(P_{n-1}+i P_{n}+j P_{n+1}+i j P_{n+2}\right) \\
& \left(P_{n+1}+i P_{n+2}+j P_{n+3}+i j P_{n+4}\right) \\
& -\left[P_{n}+i P_{n+1}+j P_{n+2}+i j P_{n+3}\right]^{2} \\
= & {\left[\left(P_{n-1} P_{n+1}-P_{n}^{2}\right)\right.} \\
& -\left(P_{n} P_{n+2}+P_{n+1}^{2}\right) \\
& -\left(P_{n+1} P_{n+3}-P_{n+2}^{2}\right) \\
& \left.+\left(P_{n+2} P_{n+4}-P_{n+3}^{2}\right)\right] \\
& +i\left[\left(P_{n+2} P_{n-1}-P_{n+1} P_{n}\right)\right. \\
& \left.-\left(P_{n+4} P_{n+1}-P_{n+3} P_{n+2}\right)\right] \\
& +j\left[\left(P_{n+1} P_{n+1}-P_{n} P_{n+2}\right)\right. \\
& -\left(P_{n+2} P_{n+2}-P_{n+1} P_{n+3}\right) \\
& +\left(P_{n+3} P_{n-1}-P_{n+2} P_{n}\right) \\
& \left.-\left(P_{n+4} P_{n}-P_{n+3} P_{n+1}\right)\right] \\
& +i j\left(P_{n+4} P_{n-1}-P_{n+3} P_{n}\right) \\
= & 12(-1)^{n}(j+i j) .
\end{aligned}
$$

(2.38): Using (2.2) we get

$$
\begin{aligned}
B P L_{n-1} B P L_{n+1}-\left(B P L_{n}\right)^{2}= & \left(Q_{n-1}+i Q_{n}+j Q_{n+1}+i j Q_{n+2}\right) \\
& \left(Q_{n+1}+i Q_{n+2}+j Q_{n+3}+i j Q_{n+4}\right) \\
= & -\left[Q_{n}+i Q_{n+1}+j Q_{n+2}+i j Q_{n+3}\right]^{2} \\
= & {\left[\left(Q_{n-1} Q_{n+1}-Q_{n}^{2}\right)\right.} \\
& +\left(Q_{n+1}^{2}-Q_{n+2} Q_{n}\right) \\
& +\left(Q_{n+2}^{2}-Q_{n+3} Q_{n+1}\right) \\
& \left.+\left(Q_{n+4} Q_{n+2}-Q_{n+3}^{2}\right)\right] \\
& +i\left[\left(Q_{n+2} Q_{n-1}-Q_{n+1} Q_{n}\right)\right. \\
& \left.+\left(Q_{n+3} Q_{n+2}-Q_{n+4} Q_{n+1}\right)\right] \\
& +j\left[\left(Q_{n+1} Q_{n+1}-Q_{n} Q_{n+2}\right)\right. \\
& +\left(Q_{n+1} Q_{n+3}-\left(Q_{n+2} Q_{n+2}\right)\right. \\
& +\left(Q_{n+3} Q_{n-1}-Q_{n+2} Q_{n}\right) \\
& +\left(Q_{n+3}\left(Q_{n+1}-Q_{n+4} Q_{n}\right)\right] \\
& +i j\left(Q_{n+4} Q_{n-1}-Q_{n+3} Q_{n}\right) \\
= & 8.12(-1)^{n+1}(j+i j) .
\end{aligned}
$$

where the identities of the Pell and Pell-Lucas numbers $P_{m} P_{n+1}-P_{m+1} P_{n}=(-1)^{n} P_{m-n}$ and $Q_{m} Q_{n+1}-Q_{m+1} Q_{n}=$ $8(-1)^{n+1} P_{m-n}$ are used.

Theorem 2.9. Catalan's Identity. Let $B P_{n}$ and $B P L_{n}$ be the bicomplex Pell and bicomplex Pell-Lucas numbers, respectively. For $n \geq 1$, Catalan's identities for $B P_{n}$ and $B P L_{n}$ are as follows

$$
\begin{equation*}
\left(B P_{n}\right)^{2}-B P_{n+r} B P_{n-r}=12(-1)^{n-r} P_{r}^{2}(j+i j), \tag{2.39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B P L_{n}\right)^{2}-B P L_{n+r} B P L_{n-r}=8.12(-1)^{n-r} P_{r}^{2}(j+i j) . \tag{2.40}
\end{equation*}
$$

respectively.

Proof. (2.39): Using (2.1) we get

$$
\begin{aligned}
B P_{n}^{2}-B P_{n+r} B P_{n-r}= & {\left[\left(P_{n}^{2}-P_{n+r} P_{n-r}\right)\right.} \\
& -\left(P_{n+1}^{2}-P_{n+r+1} P_{n-r+1}\right) \\
& -\left(P_{n+2}^{2}-P_{n+r+2} P_{n-r+2}\right) \\
& \left.+\left(P_{n+3}^{2}-P_{n+r+3} P_{n-r+3}\right)\right] \\
+ & i\left[\left(P_{n} P_{n+1}-P_{n+r} P_{n-r+1}\right)\right. \\
& -\left(P_{n+2} P_{n+3}-P_{n+r+2} P_{n-r+3}\right) \\
& +\left(P_{n+1} P_{n}-P_{n+r+1} P_{n-r}\right) \\
& \left.\quad-\left(P_{n+3} P_{n+2}-P_{n+r+3} P_{n-r+2}\right)\right] \\
+ & j\left[\left(P_{n} P_{n+2}-P_{n+r} P_{n-r+2}\right)\right. \\
& \quad\left(P_{n+1} P_{n+3}-P_{n+r+1} P_{n-r+3}\right) \\
& +\left(P_{n+2} P_{n}-P_{n+r+2} P_{n-r}\right) \\
& \left.\quad\left(P_{n+3} P_{n+1}-P_{n+r+3} P_{n-r+1}\right)\right] \\
& +i j\left[\left(P_{n} P_{n+3}-P_{n+r} P_{n-r+3}\right)\right. \\
& +\left(P_{n+1} P_{n+2}-P_{n+r+1} P_{n-r+2}\right) \\
& +\left(P_{n+3} P_{n}-P_{n+r+3} P_{n-r}\right) \\
& \left.+\left(P_{n+2} P_{n+1}-P_{n+r+2} P_{n-r+1}\right)\right] \\
= & (-1)^{n-r} P_{r}^{2}(0+0 i+12 j+12 i j) \\
= & 12(-1)^{n-r} P_{r}^{2}(j+i j) .
\end{aligned}
$$

(2.40): Using (2.2) we get

$$
\begin{aligned}
\left(B P L_{n}\right)^{2}-B P L_{n+r} B P L_{n-r}= & {\left[\left(Q_{n}^{2}-Q_{n+r} Q_{n-r}\right)\right.} \\
& -\left(Q_{n+1}^{2}-Q_{n+r+1} Q_{n-r+1}\right) \\
& -\left(Q_{n+2}^{2}-Q_{n+r+2} Q_{n-r+2}\right) \\
& \left.+\left(Q_{n+3}^{2}-Q_{n+r+3} Q_{n-r+3}\right)\right] \\
+ & i\left[\left(Q_{n} Q_{n+1}-Q_{n+r} Q_{n-r+1}\right)\right. \\
& -\left(Q_{n+2} Q_{n+3}-Q_{n+r+2} Q_{n-r+3}\right) \\
& +\left(Q_{n+1} Q_{n}-Q_{n+r+1} Q_{n-r}\right) \\
& \left.-\left(Q_{n+3} Q_{n+2}-Q_{n+r+3} Q_{n-r+2}\right)\right] \\
+ & j\left[\left(Q_{n} Q_{n+2}-Q_{n+r} Q_{n-r+2}\right)\right. \\
& -\left(Q_{n+1} Q_{n+3}-Q_{n+r+1} Q_{n-r+3}\right) \\
& +\left(Q_{n+2} Q_{n}-Q_{n+r+2} Q_{n-r}\right) \\
& \left.-\left(Q_{n+3} Q_{n+1}-Q_{n+r+3} Q_{n-r+1}\right)\right] \\
+ & i j\left[\left(Q_{n} Q_{n+3}-Q_{n+r} Q_{n-r+3}\right)\right. \\
& +\left(Q_{n+1} Q_{n+2}-Q_{n+r+1} Q_{n-r+2}\right) \\
& +\left(Q_{n+3} Q_{n}-Q_{n+r+3} Q_{n-r}\right) \\
& \left.+\left(Q_{n+2} Q_{n+1}-Q_{n+r+2} Q_{n-r+1}\right)\right] \\
= & 8(-1)^{n-r} P_{r}^{2}(0+0 i+12 j+12 i j) \\
= & 8.12(-1)^{n-r} P_{r}^{2}(j+i j) .
\end{aligned}
$$

where the identities of the Pell and Pell-Lucas numbers are used as follows,

$$
\begin{aligned}
P_{m} P_{n}-P_{m+r} P_{n-r} & =(-1)^{n-r} P_{m+r-n} P_{r}, \\
P_{n} P_{n}-P_{n-r} P_{n+r} & =(-1)^{n-r} P_{r}^{2}, \\
Q_{m} Q_{n}-Q_{m+r} Q_{n-r} & =(-1)^{n-r+1} P_{m+r-n} P_{r}, \\
Q_{n} Q_{n}-Q_{n-r} Q_{n+r} & =(-1)^{n-r+1} P_{r}^{2} .
\end{aligned}
$$

3. Conclusion

In this study, a number of new algebraic results on bicomplex Pell and bicomplex Pell-Lucas numbers are derived. Also, negabicomplex Pell and negabicomplex Pell-Lucas numbers are given. Furthermore, d'Ocagne's identity, Binet's formula, Cassini's identity and Catalan's identity for these numbers are generated.

References

${ }^{[1]}$ C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413-467, doi:10.1007/bf01443559.
${ }^{[2]}$ G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc. New York, 1991.
${ }^{[3]}$ D. Rochon, A Generalized mandelbrot set for bicomplex numbers, Fractals, 8 (2000), 355-368.
${ }^{[4]}$ S. Ö . Karakus, K. F. Aksoyak, Generalized bicomplex numbers and lie groups, Adv. Appl. Clifford Algebr., 25 (2015), 943-963.
[5] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Ann. Univ. Oradea Fasc. Mat., 11 (2004), 71-110.
[6] M. Bicknell, A primer of the Pell sequence and related sequences, Fibonacci Quart., 13 (1975), 345-349.
${ }^{[7]}$ A. F. Horadam, Pell identities, Fibonacci Quart., 9 (1971), 245-252.
${ }^{[8]}$ R. Melham, Sums Involving Fibonacci and Pell numbers, Port. Math., 56 (1999), 309-317.
${ }^{[9]}$ Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42(3) (2013), 211-222.
${ }^{[10]}$ P. Catarino, Bicomplex k-Pell quaternions, Comput. Methods Funct. Theory, (2018), doi: org/10.1007/s40315-018-0251-5.

