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Abstract
The regular, real-valued solutions of the second-order elliptic partial differential equation

∂ 2F
∂x2 +

∂ 2F
∂y2 +

2α +1
x

∂F
∂y

+
2β +1

y
∂F
∂x

= 0,α,β >
−1
2

are known as generalized bi-axially symmetric potentials (GBSP’s). McCoy [1] has showed that the rate at which
approximation error E

p
2n

2n (F ;D),(p≥ 2,D is parabolic-convex set) tends to zero depends on the order of GBSP F
and obtained a formula for finite order. If GBSP F is an entire function of infinite order then above formula fails to
give satisfactory information about the rate of decrease of E

p
2n

2n (F ;D). The purpose of the present work is to refine
above result by using the concept of index-q. Also, the formula corresponding to q-order does not always hold for
lower q-order. Therefore we have proved a result for lower q-order also, which have not been studied so far.
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1. Introduction
The linear second order elliptic partial differential equation is given in the form

∂ 2F
∂x2 +

∂ 2F
∂y2 +

2α +1
x

∂F
∂y

+
2β +1

y
∂F
∂x

= 0,α,β >
−1
2

, (1.1)

which are in x and y cf. Gilbert [2]. A polynomial of degree n which is even in x and y is said to be a GBSP polynomial of
degree n if it satisfies (1.1). A GBSP F that is regular about origin can be expanded as

F(x,y) =
∞

∑
n=0

anR(α,β )
n (x,y),

where

R(α,β )
n (x,y) = (x2 + y2)nP(α,β )

n ((x2− y2)/(x2 + y2))/P(α,β )
n (1),n = 0,1,2, . . .
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and P(α,β )
n (t) are Jacobi polynomials. Various authors such as Srivastava [3], McCoy [4], Kumar and Basu [5], Kumar and

Bishnoi [6], Harfaoui [7], Kumar [8], Kadiri and Harfaoui [9], Kasana and Kumar [10]-[12] and Kapoor and Nautiyal [13]
studied the growth and Lp-approximation of regular real-valued solutions of certain elliptic partial differential equations but our
results are different from these authors.

There are so many applications of the solutions of (1.1) in several areas of mathematical physics, for example, its solutions
arise in the Maxwell system for the modelling of electric or magnetic n-poles, potential scattering, in quasi-stationary (time
independent)diffusion processes and as the initial data for parabolic partial differential equations.

Let D be a certain open set that is symmetric about the origin with Jordan boundary. We define the p-norm on D as:

‖.‖p = (
1
A

∫ ∫
D
|.|pdxdy)

1
p , p ∈ [1,∞),‖.‖∞ = sup

D
|.|,‖1‖p = 1.

The space Lp(D) of real-valued GBSP given by (1.2) is regular and even on D with finite p-norm and the space lp(D) of
associated functions

f (z) =
∞

∑
n=0

anzn, (1.2)

where

R(α,β )
n (z,0) = z2n,n = 0,1,2, . . .

is analytic on D with finite p-norm. McCoy [1] developed a pair of integral transforms that are one to one maps between the
space Lp(D) of real-valued GBSP F and the space lp(D) of associated f as:

F(x,y) = Kα,β ( f ) =
∫

π

0

∫ 1

0
f (τ)kα,β (t,s)dtds,

τ
2 = τ

2(x,y, t,s) = x2− y2t2 +2ixyt coss,

f (z) = K−1
α,β (F) =

∫ +1

−1
F(r,ξ ,r(1−ξ

2)
1
2 jα,β (zr−1,ξ )dξ ,

where

kα,β (t,s) = να,β (1− t2)α−β−1t2β+1(sins)2α

and

jα,β (τ,ξ ) = ηα,β
(1− τ)

(1+ τ)α+β+2 ×F [
α +β +2

2
;

α +β +3
2

;β +1;
2τ(1+ξ )

(1+ τ)2 ].

Let us consider the set D which is parabolic-convex, that is,

(x+ iy)2 ∈ D⇔{(ξ ,η) : 4x2(x2−η
2)≤ ξ ≤ x2− y2} D

or equivalently,

(x+ iy)2 ∈ D⇔{(ξ ,η) : ξ + iη = τ
2(x,y, t,s),0≤ t ≤ 1,0≤ s≤ π} D.

For example:D = ∆ : x2 + y2 < 1orD = {(ξ ,η) : |ξ |< 1, |η |< (1+ξ 2)
1
2 }.

Now we define optimal approximation errors as :

E p
2n = E p

2n(F ;D) = min{‖F−H‖p : H ∈ P2n},

ep
2n = ep

2n( f ;D) = min{‖ f −h‖p : h ∈ p2n},n = 0,1,2, . . . ,

where P2n = {Kα,β (h) : h ∈ p2n}, and p2n = {∑n
k=0 akz2k : ak(real),0≤ k ≤ n}.
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McCoy [1, p.465] proved that

lim
n→∞

E
p

2n
2n (F ;D) = 0 (1.3)

if and only if, F is the restriction of an entire GBSP (analytic) function to D. McCoy [14] showed that a GBSP F is the
restriction of an entire GBSP (analytic) function to D if and only if the Kα,β associate f is the restriction of an entire (analytic)
function to D. And when the growth of an entire GBSP function with associate f is measured by order ρ = ρ(F) and type
T = T (F) which are defined as in analytic function theory by

ρ = limsup
r→∞

log logMr(F)

logr
,T = limsup

r→∞

logMr(F)

rρ
,

where

Mr(F) = sup{|F(x,y)| : x2 + y2 < r2},

then ρ(F) = ρ( f ) and T (F) = T ( f ).

For an entire F , (1.3) does not give any clue as to the rate at which E
p

2n
2n (F ;D) tends to zero. McCoy [1, p.467] has showed

that this rate depends on the order of GBSP F. Moreover, he proved that

limsup
n→∞

2n logn
log[ 1

E p
2n(F)

]
= ρ(F) (1.4)

where ρ(F) is the nonnegative real number if and only if, F is the restriction of an entire GBSP (analytic) function to D of order
ρ .

However, if GBSP F is an entire function of infinite order, then (1.4) fails to give satisfactory information about the rate of

decrease of E
p

2n
2n (F ;D). The purpose of the present work is to refine the result of McCoy [1, p.467] by using the concept of

index of an entire function introduced by Sato [15, p.412] to the function of infinite order.
Thus, if

ρ(q) = limsup
r→∞

log[q] Mr(F)

logr
,q≥ 2

where log[0] Mr(F) = Mr(F) and log[q] Mr(F) = log(log[q−1] Mr(F)), then GBSP F is said to be of index-q if ρ(q− 1) = ∞

while ρ(q)< ∞. If GBSP F is of index-q we shall call ρ(q) the q-order of F. Analogous to lower order, the concept of lower
q-order can be introduced. Thus GBSP F, that is an entire function of index-q, is said to be lower q-order λ (q) if

λ (q) = liminf
r→∞

log[q] Mr(F)

logr
,q≥ 2.

2. Auxiliary results
In this section we shall prove some lemmas which will be useful in the sequel.

Lemma 2.1. Let f (z) = ∑
∞
n=0 anzn be an entire function of index-q(≥ 2) and lower q-order λ (q) and let ν(r) denote the rank

of the maximum term µ(r) for |z|= r,i.e. µ(r) = maxn≥0{|an|rn} and ν(r) = max{n : µ(r) = |an|rn}.
Then

λ (q) = liminf
r→∞

log[q−1]
ν(r)

logr
= liminf

r→∞

log[q] µ(r)
logr

.

Proof. The proof follows on the lines of Whittaker [16, Thm. 1] for q = 2, so we omit the proof.

Lemma 2.2. Let f (z) = ∑
∞
n=0 anzn be an entire function of index-q(≥ 2) and lower q-order λ (q) and let {nk} denote the range

of the step function ν(r), then

λ (q) = liminf
r→∞

log[q−1] nk

logξ (nk+1)

where the ξ (nk) denote the jump points of ν(r).
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Proof. For q = 2, the proof is due to Gray and Shah [17, Lemma 1].

Lemma 2.3. Let f (z)=∑
∞
k=0 akznk be an entire function of index-q(≥ 2) and lower q-order λ (q) such that ϕ(k)= | ak

ak+1
|

1
(nk+1−nk)

forms an increasing function of k for k > ko; then

λ (q) = liminf
k→∞

(nk+1−nk) log[q−1] nk

log | ak
ak+1
|

.

Proof. For q = 2, the proof is due to Juneja and Kapoor [18]. So we omit the proof.

Lemma 2.4. Let {nk} be an increasing sequence of positive integers and let {an} be a sequence of complex numbers such that
|ank |< 1 for k > ko; then for q≥ 2

liminf
k→∞

nk log[q−1] nk

log |ank |−1 ≥ liminf
k→∞

(nk−nk−1) log[q−1] nk−1

log | ank−1
ank
|

.

Proof. The proof follows on the lines of Juneja [21, Lemma 2] for q = 2, so we omit the proof.

3. Main results
Theorem 3.1. For fixed p≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index-q(≥ 2).
Then F is of q-order ρ(q) if and only if

ρ(q) = limsup
n→∞

2n logn
log[ 1

E p
2n(F)

]
. (3.1)

Proof. The proof follows on the lines of [1, Thm. 2(i)], so we omit the details.

However, the result corresponding to (3.1) does not always hold for the lower q-order. The following theorem is corre-
sponding to (3.1) for the lower q-order of a GBSP F.

Theorem 3.2. For fixed p≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index q(≥ 2).
Then F is of lower q-order λ (q) if and only if

λ (q) = max
{nk}

liminf
k→∞

2nk log[q−1] nk−1

− logE p
2nk

(F)
,

where maximum is taken over all increasing sequence {nk} of natural numbers.

Proof. Let F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index-q(≥ 2) and lower q-order λ (q).
Following Bernstein’s [19, p.176] and A.Giroux [20, p.52], it follows that for

ep
2n( f )≤ e∞

2n( f )≤ 2B(r)
r2n(r−1)

(3.2)

for any r > 1, where B(r) = maxz∈ℑr | f (z)| and ℑr with r > 1 denotes the closed interior of the ellipse with foci ±1, with
half-major axis (r2 + 1)/2r and half-minor axis (r2− 1)/2r. The closed disks D1(r) and D2(r) bound the ellipse ℑr in the
sense that

D1(r) = {z : |z| ≤ r2−1
2r
} ℑr  D2(r) = {z : |z| ≤ r2 +1

2r
}.

From above it follows that

M(
r2−1

2r
)≤ B(r)≤M(

r2 +1
2r

)for all r > 1. (3.3)

Consequently, (3.2) and (3.3) give for any sequence {nk} of positive integers that

M(
r2 +1

2r
)≥ ep

2nk
( f )r2nk (3.4)
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for any r > 3 and k = 1,2, . . . . Now using the optimal approximates [1, eq.12]

E
p

2n
2n (F)≤ w

1
2np e

p
2n
2n ( f ),w = w(α,β , p : D)

in (3.4) we obtain

M(
r2 +1

2r
)≥ w

−1
p E p

2nk
r2nk . (3.5)

Now let

liminf
k→∞

2nk log[q−1] nk−1

− logE p
2nk

(F)
= η

∗({2nk})≡ η
∗. (3.6)

Since GBSP F is an entire function, (3.6) gives 0≤ η∗ ≤ ∞. First, let 0 < η∗ < ∞, then for

E p
2nk

(F)> [log[q−1] nk−1]
− 2nk

(η∗−ε)

for k > ko = ko(ε). Let rk = e(log[q−2] nk−1)
1

(η∗−ε) for k = 1,2,3, . . . . If rk ≤ r ≤ rk+1,k > ko then (3.5) gives

logM(
r2 +1

2r
) ≥

{
logE p

2nk
(F)+2nk logr− 1

p
logw

}
≥ logE p

2nk
(F)+2nk logrk−

1
p

logw

> 2nk

= 2exp[q−2](
rk+1

e
)(η
∗−ε).

So

log[q] M(
r2 +1

2r
) > (η∗− ε) logrk+1− (η∗− ε)

≥ (η∗− ε) logr− (η∗− ε)

or

λ (q) = liminf
r→∞

log[q] Mr(F)

logr
≥ η

∗

which obviously holds for every increasing sequence {nk} of positive integers, we have

λ (q)≥max
{nk}

η
∗({2nk}) = η

∗∗. (3.7)

Now for each n≥ 0 there exists a unique h ∈ p2n such that

‖ f − p2n‖p = ep
2n( f ),n = 0,1, . . . .

Further, since ‖p2n+1− p2n‖p is bounded above by 2ep
2n( f ), we have by [20, p.42];

|p2n+1− p2n| ≤ 2ep
2n( f )r2n+1 (3.8)

for all z ∈ ℑr for any r > 1. Thus we can write

f (z) = p0(z)+
∞

∑
i=0

(p2i+1(z)− p2i(z))

and this series converges uniformly in any bounded domain of the complex plane. So, (3.8) gives

| f (z)| ≤ |p0(z)|+2
∞

∑
i=0

ep
2i( f )r2i+1
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for any z ∈ ℑr and from the definition of B(r)

B(r)≤ Ao +2
∞

∑
i=0

ep
2i( f )r2i+1.

So (3.3) gives

M(
r2−1

2r
)≤ Ao +2

∞

∑
i=0

ep
2i( f )r2i+1. (3.9)

Using the optimal approximate [1, eq.(13)]

e
p

2n
2n ( f )≤ δ

1
2np E

p
2n

2n (F),δ = δ (α,β , p : D)

in (3.9) we get

M(
r2−1

2r
)≤ Ao +2

∞

∑
i=0

δ
1
p E p

2i(F)r2i+1. (3.10)

Obviously, the function g(z) = ∑
∞
n=0 E p

2n(F)δ
1
p z2n+1 is an entire function. Let {nk} denote the range of ν(r) for this function.

Consider the function g̃(z) = ∑
∞
k=0 E p

2nk
(F)δ

1
p z2nk+1. It is easily seen that g̃(z) is also an entire function and that g(z) and g̃(z)

have the same maximum term for every z. It follows that both have same lower q-order. If we denote this by λo(q) then since
g̃(z) satisfies the hypothesis of Lemma 2.3, we have

λ0(q) = liminf
k→∞

2(nk−nk−1) log[q−1] nk−1

log(
E p

2nk−1
(F)

E p
2nk

(F)
)

≤ liminf
k→∞

2nk log[q−1] nk−1

− logE p
2nk(F)

≤maxliminf
k→∞

2nk log[q−1] nk−1

− logE p
2nk(F)

= η
∗∗

. (3.11)

Thus (3.10) and (3.11) give

M(
r2−1

2r
)≤ Ao +2g(r)

≤ O(1)+2exp[q−1](rη∗∗+ε)

for a sequence r1,r2, . . .→ ∞. Hence, it gives that

λ (q)≤ η
∗∗

which shows that the lower q-order of GBSP F does not exceed η∗∗. Thus, if GBSP F is of lower q-order λ (q), then (3.7)
shows that η∗∗ < λ (q). If η∗∗ < λ (q), then the above arguments show that GBSP F would be of lower q-order less than η∗∗, a
contradiction. Thus, we must have η∗∗ = λ (q).

The following theorem depicts the influence of λ (q) on the rate of decrease of E p
2n(F).

Theorem 3.3. For fixed p≥ 2, let the F ∈ Lp(D) be the restriction of an entire GBSP (analytic) function to D of index q. Then,
F is of lower q-order λ (q) if and only if

λ (q) = max{nk} liminfk→∞

2(nk−nk−1) log[q−1] nk−1

log(
E p

2nk−1
(F)

E p
2nk

(F)
)

,

where maximum is taken over all increasing sequences {nk} of natural numbers.

Proof. In view of Lemma 2.3 and Lemma 2.4 with above arguments the proof is immediate.
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