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1. Introduction

In this work, we deal with the nonexistence of solutions following Kirchhoff-type equation:

u,,—M(HVuHZ)Au—i-a,Hau:|u|p71u, xeQ, t>0,
u(x,t) =0, x€dQ, >0, (1.
u(x,0) = up(x), u(x,0)=uj(x), xeQ

where Q is a bounded domain in R" with smooth boundary dQ, and M (s) = f8; + Bs”. The constants p > 1 real number, y > 0, B1, 3, > 0
and —1 < a < 1. Without loss of generality, we choose $; = 8, = 1 in (1.1) in this paper. The notation 8,”“ stands for the Caputo’s
fractional derivative of order 1+ o with respect to the time variable [1, 2]. It is defined as follows

all+aw([) _ {

I_a%w(t) for —-1<a<0
I“"‘%w(r) for O0<oa<1

where I8, B > 0 is fractional integral

pd 1 [ 1,
I dlw(t)_r(ﬁ)o/(t 0B (1)dr.

The fractional damping term plays a quenching role, which is weaker than strong damping and stronger than weak damping term [3]. The
problem (1.1) is a generalization of a model introduced by Kirchhoff [4].

Ono [5] considered equation (1.1) for & = 0. He proved that the solution blows up with negative initial energy. Later, Wu and Tsai [6]
proved the blow up of the solution with positive upper bounded initial energy.

In [7] Yang et al. studied the following equation

g —M (V) At (~8)%u+ £ (1) = ¢ (3).

They proved the attractors for 1/2 < a < 1.

There are many literatures on the nonexistence of solutions for the Kirchhoff-type equation.

This work is organized as follows. In Section 2, we give some notations and lemmas needed for our paper. In Section 3, we prove the
nonexistence of the solution for the problem (1.1) with negative initial energy. We use improved the method of [8].
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2. Preliminaries

In this part, we give some notations and material needed in our main result. Without loss of generality, we get only the case —1 < a < 0.
We define the energy with problem (1.1) is

1
2 1 +1
1Vl P — —— a2

1, o 1 ) 1
E(f)== —|v
()= 3 el + 3 IVl 4+ 5

Then,
t

1 _
E'(t)= T(a) /Q e / (=) " Vuc(v)drdx.
0
Now, we define modified energy functional as

Ee(t)=E (1) —¢ /Quutdx @1

where 0 < € < 1 is the constant which is specified later. Now a differentiation of E (¢) , with respect to time  gives

t
1 -
B0 = g /ﬂ w / (1 — 1)@ (2)dedx
0
78/ |ul\2dxf£/ |u|p+ldx+£/ |Vu|2dx+8/ \Vu|2(7+l)dx
Q Q
/ / —(@t )y (t)ddx. (2.2)
Also, we define the following functionals
H(t)=— (e ¥ E¢ (t) + uF (t)+d), 2.3)
t
F(t)= / /Q G(1—1)e ° uldxdt (2.4)
0

and

G(1) =P / e Brr (@t gg

where 0 = £ ;1 and f3, u,d are positive consants.

Lemma 2.1. Let p be sufcifiently large and E¢ (0) < 0. Then H' (t) > 0 and H (t) > 0.
Proof. By taking a derivative of (2.3) and (2.4), we get
H'(t) = cee O E (t) — e C¥'EL(t) — uF' (1), (2.5)
F' (1) = BOT (—at) e ¢ / 2 — / / (o) o=0eT,2 g a4 BE (7). 2.6)

Taking into account (2.6), (2.1) and (2.2) in (2.5), we obtain

H @) = 6768[(% +8—HBO‘F(—O¢))/ |us|* dx+ ge~ ¥ (%—1)/Q|Vu\2dx

+8e*“8’( (Y‘il )/ [Vu 20+ dx 4 ge~ 0% (1—%)/ |uPH dx
P Q

- —oer .
—SGSefast-/ uu,dx-i-ei/ u,/(t—’c)f(aﬂ)ur(r)d’cdx
Q I'(-a) Jo J

(m/ / —(@t )y (1)dTdx

+u / / —(@+l) p=0eT 2 gxdr — uBF (1). (2.7)
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Next, we estimate some terms in the right hand side of (2.7). For the sixth term on the right hand side of (2.7), using Young’s inequality, we

obtain

Writing — (ot +1) = — 231 —

Smilarly, we have

<

7(‘78[/ / —(a+1) (‘E)d‘L’dx

P 2

1

< 61676&/ u,zdx—i-—e*‘m/ /(t—r)f(aH)uf(T)dT dx.
Q 49 all

O‘T“ and thanks to the Cauchy-Schwarz inequality, we have
70'8t/ /[_ —(a+1) (T)d’fdx
< 518708’/u,2dx+ // —(ath) =0T, 2 gy,
Q

1
efcgl./gu/(t—T)f(aﬂ)uf(f)d’rdx
0

t

] O-El
52e_°£’~/9\’4\2dx+ Ee_(m/g /(171:) @)=y (t)dt | dx.
0

Using Sobolev-Poincare’s inequality, we arrive at

Now, we estimate the fifth term in the right side of (2.7), thanks to the Young’s and Sobolev-Poincare’s inequalities, we have

70'et/ / —(a+1) (’L’)d”L'dx

< @efoetcpl/ |Vu|? dx

+ (o€ "‘1“ // ~(@t) =0T, 2 4oy,

IN

/uu,dx 53/ |uf? der /|u,\ dx
Q

53Cp2/ |Vu|? dx+ /|u,\2dx

IN

By (2.7), (2.8), (2.9) and (2.10), we have

H' (1)

>

2

—cer [ OF _ ar(_n_ €9 1 2
e (2 e BT (-a) - S F(fa))/gm,\ dx

—cet [ O 62Cp, / 2
——1- — \%
+ee (2 1-68Cp,e0 F(—(x)) Q| u|”dx
+8€—0‘8t( c 71>/ |Vu|2(7+1)dx+€e—0'8t<17i)/ ‘u‘m-ldx
2(y+1 p+1/)Ja
)

+(“_(451 "462 )// —(@ ) =0T 2 g uBF (7).

(2.8)

(2.9)

(2.10)
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Subtracting and adding C| H (¢) on the right hand side of above inequality, we get

2
, _cet [ OF _pary oy E0 o1 Q_Cl / )
H'(t) > CH(t)+e (—2 +e—upr(—a) —453 F(—a)+ 2 a5, 'Qu,dx
52CP1

et 2

F( )+ C]&Cpq)/ |Vu‘ dx
— &€+ )(/ ‘ 7+]

2(y+1) 7/+1

(257
o fffm)/ i a
+<,u (453 )// (@) 06T, 2 g

Tu(Cr—=B)F (1) +Cid.

o
+ee” % <— — 5Cp, €0 —

70'Et

We choose C| = pTHS, o=06= w, & = % and B = 1, we obtain
1 1
H () > %eﬂ( 1) +e O (%8(1 fs)f/,tl"(fa)>/ W2dx
Q

£C, o OF! (P—3+8(P+1—Cp(20+4))>/ |Vu|2dx
3
Q

4

+Se_68t( fy‘:ll) _1)/ |Vu\2(y+1)dx

1 oa—1
_._(‘u_(P+ )(S +8)// —(o+1) Gsru%d’rdx

20+11

+u (pTHsfl)F(t)an;—lsd.

We choose

p—3
2[2(p+2)Cp—(p+1)] |

£< g =min{1,

p—3
Where C), > (p +2) it appears that the third coefficient is nonnegative. Observe if that C, < 4 ve p > 1 4C , than B2, (1)) >1
and this condition reduces to € < 1. We can take 1 so that the second coefficient is nonnegative and the forth coefficient is greater than

%. Also, if p is sufficiently large PTHS — 1 is positive. Consequently, we get

pa+lgl—ar
1 p+l1 P—3 e 2
H @) > 5 eH (1) + g € \Au\ dx
P+1 —(a+1) ,—0eT, 2
T oarglar(—a) / / 2dtdx. 2.11)
If we select E¢ (0) < —d, then H (0) > 0. This completes the proof. O

3. Nonexistence of global solutions

In this part, we obtain the nonexistence of global solutions of the problem (1.1).

Theorem 3.1. Suppose that —1 < o0 <0,

E(0) <0and /Quluodx >0.
Then the solution of (1.1) blows up in finite time.
Proof. We define an auxiliary function

W) =H"7(1)+ (pefcm./ uupdx
Q

where y = 2(’; ;11) and @ is a positive constant to be specified later. Our aim is to show that ¥ (r) satisfies the following differential inequality:

W (1) <K (1).
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By differentiating P (¢) with respect to ¢ and using (1.1), we obtain

(&) = (1-yHY@OH (t)f(p()'eefcsl./guutder(pe*w. (/Qutzder/Quu”dx)

= (l—y)H_Y(t)H/(t)—(pcee_ogl./guu,dx

t
+@e o8 /|u|p+ldx+/ |Aul* dx — ! /M/(I—T)f(aﬂ)”f(f)dfdx
Q o I(-a)Ja"J

+@e ¢ /Q u,zdx.

By using the inequalities (2.10) and (2.9) with the constant &4, 85 > 0, we get

V() = (1—-y)H Y@)H (t)— poede /|u|2dx+goe oet / |u[PT dx
—oé&t
—%/ utzdx-i-(pe*(m./ u,zdx—b— (pefcm./ |Au)? dx
4 o

(OH—l Ger%dex.

,<P55€768'/ 2

By (2.11), we have

v = (a-pao- 25 )
(P(p—i_]isl;(_ )SZH(I)
—oet (P=3)I(-a) » 85 ul? dx
+@e (1—1—7865 € (6854+ M—a ))C,,)/\A 2d

€
+@e % (17%>/ utzder(pe_“’./ |u[PT ! dx.
1) Jo Q

If we take 85 = LI'(—a)H (1), we get

2
O (R L e 0L
e o (”%82 (0€84+LHY (1) )/ |Aul? dx

_Hpefo'et (1_%)/ ulzdx+(p670-€t./ |M|p+ldx.
4 Q Q

If we substitute and add H (¢) to the right side of the equation, we arrive at
v > (1-r-2)rromn
0 > (1-y-2) a7 wH @

+ (7"’ (”ILI)SZH—V(t)H) H (1)

_ 4
+pe o {<P+ @3)+W82 —¢(ecd+LH' (1))Cp

-, <£56C* )} / \Auf? dx

—oet _(P(p+1) & / 2
+e ((p BT +2 15 uydx

1 *O‘St
om0t ((P,p+1>./g‘u|p+ldx 1) /\Vu| D dx 4 uF (1) +d. 3.1)

2L(1 Y)

Wetakel—y——>0and£<s = , we have

2
WH—Y(” > 0.

4(p+3)
(p+1)(p+5)°

o(p+le ¢
S € VA
¢ 88, 466 20,

Also, wetake(pfpﬁ,54:56:%and8<£3: we have
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The fifth coefficient is nonnegative as soon as € and C, is chosen small enough, we have

(P=H 100 5

1
o+ 3L ¢ (ecbs+LHY (1))Cp —Cp (856C*+§) >0
and
pt3  (p=3)(p+3)HT(1) ,
p+1 8L(p+1)
1 p+3/( p+1 y
2C,, (p+1 (8 > +2LH (t))+8C*+1)
> 0
Therefore (3.1) takes the form
1 p+2 : 1
(1) >H( 7/251 —/ P ax. 32
0210+ [ a2 [t as (2)
By the defination ¥ (¢) , we deduce that
Yir (1) <277 |H(t)+ @™ (/ uu;dx) ]
Q

By the Cauchy-Schwarz and Holder’s inequalities, we arrive at

Wiy (1) <277 {H (1) +@T7b (/Q |u,|2dx+/Q Juaf P! dx)] . (3.3)

If we take £ is large enough

That is k has to be chosen so that

Combining (3.2) and (3.3), we have
W (1) < AP (1). (3.4)
From (3.2) it is clear that ¥’ (t) > 0 . Therefore, by the definition of ¥ (¢) and the hypotheses on the initial data, we get
Y(r) >¥(0) > ¢/;zu1u0dx >0.
Thus W () > 0. Integrating (3.4) over (0,7) , we get

T (1)

(A%

— 3.35)

Therefore (3.5) shows that W (r) blows up in finite time

This completes the proof. O

Remark 3.2. The larger ¥ (0) is the quicker the blow up takes place.
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