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1. Introduction and background

Theory of statistical convergence was firstly originated by Fast [1]. After Fridy [2] and Salat [3] statistical convergence became a notable
topic in summability theory. Lacunary statistical convergence was defined by using lacunary sequences in [4]. .#-convergence was fistly
considered by Kostyrko et al. [5]. Also, Das et al. [6] gave new definitions by using ideal, such as .#-statistical convergence, .#-lacunary
statistical convergence. Ulusu et al. [7] also studied asymptotically .#-Cesaro equivalence of sequences of sets.

Statistical convergence of order & (0 < o < 1) was introduced using the notion of natural density of order o where n is replaced by n® in
[8]. This new type convergence was different in many ways from statistical convergence. Lacunary statistical convergence of order « is
studied by Seng6l and M. Et [9], .7 -statistical and .#-lacunary statistical convergence of order « is studied by Das and Savas [10].

In probability theory, if for n > 0, a random variable X,, given on space S, a probability function P : X — R, then we say that X, X5,....X;,...
is a sequence of random variables and it is demonstrated by {X,},,cx-

It is important that if there exists ¢ € R for which P(]X —¢| < €) = 1, where € > 0 is sufficiently small, that is, it is means that values of X
lie in a very small neighbourhood of c.

New concepts have begun to be studied in probability theory by Das et al. [6], and others ([11]-[15]).

2. Main results
Definition 2.1. {X;},y is said to be I -statistically convergent of order o in probability to a random variable X if for any €, §, y > 0
1
{nEN: n—a\{kgn:P(\kaX| >g) >0} 27} S
PS(7)“
and demonstrated by X;, <—>> X.
Definition 2.2. {X,},cy is said to be .7 -lacunary statistically convergent of order « in probability to a random variable X if for any
£38,y>0
1
{reN: h—a|{keI,:P(|Xk—X| >¢€)> 6} zy} €,
r

()

.. PS
and it is demonstrated by X, X
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Definition 2.3. {X;}, y is said to be strongly .7 -lacunary convergent or PVy (.%)-convergent of order o in probability to a random
variable X if for every €, 6 > 0,

1
{reN:WkZIP(xkx|>s)>5} €7
rokel,

Vo ()"

P
and it is demonstrated by X;, — = X.

Definition 2.4. {X;}, .y is said to be strongly % -Cesaro summable of order o in probability to a random variable X if for every g, 6 > 0,

1 n
{nGN: n—ak;PﬂXk—X\ >¢€) >6} €,

yak
and it is demonstrated by X, ch ] X.
Theorem 2.5. If0 < a < < 1 then PS(.#)* C ps((])ﬁ.

Proof. From the assumption, we say that

1 1
S Hk<n:P(X~X| > ) 2 8} < o [{k<n:P(X~X| > &) > 8}

Hence,
{neN: Li{k<n:P(X—X| > &) > 8} > 7}
{neN: L [{k<n:P(Xi—X|>e)>6}|>71}
for y > 0. Therefore, we obtain PS (.#)* C PS(J)B. O

Theorem 2.6. Ifliminf, g, > 1, then

PCi[.7]* PV (5)“
Xy — X=X —= X

k& 1 ¢

Proof. If liminf, g, > 1, there exists ¥ > 0 such that g, > 1+ 7 for all r > 1. Since h, = k, — k,_1, we have h—’a < (%) and
a

k(X

o
il B <1) . Let € > 0 and we define set by
e = \y
1 &
S= k,EN:k—aZ’lP(|Xk7X\2£)<6 .

r k=

Therefore, S € F (7).
| | ky lkrfl
L P(N-X|>6) = kX P(X—X|>8)~fk £ P(X~X|>¢)

kY k& ey R
= LY P(X—X|>e) = P —X| > e)
hr T k=1 r r—1 k=1

o o
(3 ()
4 oy

1+7\¢ 1\%,,
for each k. € S. Choose ) = T 6 — 5/ 6’. Therefore,

IN

1
{reN:hakZ;P(Xk—X|Z8)<T]}€9(])-
r kel

Ve (S)“

P
Hence, we getX;, —  X. O

Theorem 2.7. If {X;} is strongly .9 -Cesaro summable of order  then, it is .7 -statistical convergent of order & in probability to a random
variable X.
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o

PC,\|I
Proof. Let X L ) X, and € > 0 given. Then

n n
e LPX-x[>¢) > 7 L PXe—X|=z¢)
P([Xe—X|ze)

v
o

Hk<n:P(X—X| =€) > 8}

and so

1
P(|Xc—X| 2 €) 2 -5 [{k<n:P(IX, ~X| > £) 2 §}].

So for a given 7 > 0,

{neN: Li{k<n:P(X,—X|>¢)>8}>1}

7{n€N ): (|Xk—X\2£)26.r}ef.

PS(7)*
Therefore, X (%) X. O
Theorem 2.8. Let a bounded {X;} is .7 -statistical convergent of order o to X. Hence, it is strongly .9 -Cesaro summable of order o to X.

S(I)“
Proof. Assume that {X; } is bounded and X; P X Since {X;} is bounded, we get P (|X; —X| > €) < M for all k. For € > 0, we have

n

n n
,%ak)ZlP(IXk—XIZS) w X P(X—X[>¢)

S

IN

aeM |{k <n:P(|X—X| > ¢) > 5}|
1
+n7na5

Then for any y > 0,
{nen £ Pix-x12 627

C{neN: e {k<n:P(X—X|>¢)>8}|>F}es

g
Therefore Xk [ ]

Theorem 2.9. For 0 = {k,},
O 1 %3 7Y ¥ then {x0 ™Y X, and
(ii) PVg (.#)% is proper subset of PSg (.#)%.

)

Proof. (i) Lete, 8 > 0and {X;} X. Then, we can write
L  PX—X|zeg)
kel,

P(X~X|>¢)>6

s;\~

PVe(f
,%2 P(X,—X|>¢) >
€

IV
e

Hkel: P(X—X| > €)= 8},
Therefore

1
6ha Y P( \Xk—X|>£)>h— Hkel :P(|X, —X|>¢) > 38}
rokel,

which implies that for any y > 0,

{reN:hia\{kelrzp(\xk—mze)zé}l27}

g{r Nige ¥ (XkXIES)zéy}eﬂ-
kel,
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PSo(5)"
Hence we get X } e& ) X.

(if) Let {X;} be defined by
{-1,1} , with probability 1, if  is the first [\/h%] integers in the interval .,

Xe=< {0,1} , withprobability P(X,=0)= (1-1) and P(X, =1)=1,
if n is other than the first
[\/h& integers in the interval I,.

Let0 < &< 1and é < 1. Then, we obtain

1 , ifnis the first [\ /h%| integers in the interval /.,
P(|X—0] > €)=
% if n is other than the first [1 /h?| integers in the interval I,.

Now

1
W|{kelr:P(\Xk—0\ >e) 28} < g

and for any y > 0 we get

h¢ ho

r

{reN:1|{kel,:P(Xk—0>e)>6}|>y}C{reN: [v/7e] >7/}.

Since the set

is finite and so belongs to .7, therefore, we obtain
1

{rEN: h—a\{kelr:P(|Xk—O| >¢€)> 6} 2}/} es
r

PSe(S)*
which means that Xj, e(ﬁ ) 0. Also,

[vAz] ([VhE] +1)
5 :

1 1
thZP“Xk_O‘ZS):W'

r kel
then
{reN;hlzp(xk—oze)zi} - {reN:i[‘/}E([h\/hﬂH)Z%}
" kel, "
= {mm+1m+2,.}e.F(S5)
)
for some m € N. Hence, X, Pssﬁ(«»> 0. O

Theorem 2.10. .7 -statistical convergence in probability of order « implies . -lacunary statistical convergence in probability of order «
liminf,q, > 1.

Proof. By assumption liminf, g, > 1, then there exists a ¢ > 0 such that g, > 1+ o for sufficiently large r, that is,

o
@> c :>L<L 1+0
kr — 1+0 h% = k% o

7

S(S)*
If {X; } P (%> X, then for € > 0 and for r > 0, we have

1 1 (1+0\*
W\{kelriP(IXk—XIZS)Z(S}IS@ — ) Hksk:P(Xe—X[2€) > 8}
Then for any y > 0, we get

{reN:h%l{kelr:P(\Xk—Xlzs)}zs\zv}

1

Q{rEN:kg

{k <k P(Xe—X|>€)} >8] > %} €.
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Theorem 2.11. .7 -lacunary statistical convergence in probability of order o implies .7 -statistical convergence in probability of order «,

h%
W )F =B<>=

r—1
0<a<1,ifsup, Y,
i=0

] o
Proof. Suppose that {X } Pse(ﬁ ) X, and for €, 8, 71, ¥» > 0 define the sets

1

C:{rEN:hQ‘

ket P(X-X 2 €) 2 8} <1 |
and
T:{neN:nia|{kgn:P(|xk—x|zs)za}\qz}.
From our assumption we get C € .% (.%). Further observe that
Kj:%erIj:Puxk—m2s>26}!<%
forall j € C. Let n € N be such that k,_| < n <k, for some r € C. Hence, we obtain
S Hk<n:P(X-X] > €)> )

1
< o K<k P(X—X| 2 €) 2 8]

r—1

1
= e kel P(Xe—X| > €) > 8}

r—1

1
+W‘{k€]21P(|Xk—X|ZS)25}‘
1
r—1
k¥ o1
= g ke P(X—X| > &) > 5]
r—1 "1
ky—k)% 1
+(2a71)7a|{k€121P(|Xk*X‘25)25”
krfl h2
(kr—kr)* 1
+...+’ICT’IW|{kel,:P(|xk_x\28)25”
k{ ky —kp)* k—k_)*
:kailKH(]{ail)Kﬁ,..jL(rkairl)Kr
r—1 r—1 r—1

r—1 h(ﬁ[
< {supjecKj} sup, ‘Zo (kr’ Nk
i=

<mB.
Choosing y» = % and by U{n:k,_; <n <k, reC} CT where C € .% () Then the set T belongs to .% (.#) and this completes the
proof. O
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