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Abstract

This paper investigates the existence and Ulam stability of solutions for impulsive nonlinear
fractional implicit differential equations with finite delay via Katugampola fractional deriva-
tive in Caputo sense. Our results are based on some standard fixed point theorems. Some
examples are presented to illustrate the main results.

1. Introduction

The interest in the study of differential equations of fractional order lies in the fact that fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and processes. With this advantage, the fractional-order models
become more realistic and practical than the classical integer-order models, in which such effects are not taken into account. As a matter of
fact, fractional differential equations arise in many engineering and scientific disciplines such as physics, chemistry, biology, economics,
control theory, signal and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc., see [1]-[3].
For some recent development on the topic, see [4]-[10] and the references therein.
Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as important mathematical
tools for the better understanding of several real world problems in applied sciences. The theory of impulsive differential equations of integer
order has found extensive applications in realistic mathematical modeling of a wide variety of practical situations and has emerged as an
important area of investigation in recent years. For the general theory and applications of impulsive differential equations, we refer the
reader to the references [11]-[15]. On the other hand, the implicit differential equations with impulsive and delay have not been addressed so
extensively and many aspects of these problems are yet to be explored. For some recent work on impulsive differential equations of fractional
order, see [16]-[19] and the references therein. These days generalization of the derivatives of both Riemann-Liouville and Caputo types
are introduced and shown the effect of utilizing it in equations of mathematical physics or related to probability. This was done using the
definition of generalized fractional derivatives given by Katugampola [20]. The author initiated a new fractional integral, which generalizes
the Riemann-Liouville and the Hadamard integrals into a single form. Later, Katugampola [21] introduced a new fractional derivative,
which generalizes the two derivatives in question. Motivated by the papers [21]-[23], we apply Katugampola-Caputo derivative for implicit
fractional differential equations.
In this paper, we investigate the existence and Ulam stability of solutions for impulsive nonlinear fractional implicit differential equations
with delay via Katugampola fractional derivative given by,

ρ Dω
xm

u(x) = h(x,ux,
ρ Dω

xm
u(x)), for each x ∈ J := (xm,xm+1], m = 0,1, . . .k,,

∆u|xm = Im(ux−m ), m = 1, . . . ,k,
u(x) = ψ(x), x ∈ [−r,0], r > 0,

(1.1)
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where ρ Dω
xm

is the Katugampola fractional derivative in Caputo sense, 0 < ω ≤ 1, ρ ∈ R+, h : J×PC([−r,0],R)×R→ R is a given
function, Im : PC([−r,0],R)→ R, and ψ ∈PC([−r,0],R), 0 = x0 < x1 < · · · < xm < xm+1 = T . PC([−r,0],R) is a space of piecewice
functions defined on [−r,0] to be specified in Section 2.
For each function u defined on [−r,T ] and for any x ∈ J, we define by ux the element of PC([−r,0],R) defined by:

ux(θ) = u(x+θ), θ ∈ [−r,0],

ux(·) represents the history of the state from time x− r upto time x. Here ∆u|xm = u(x+m)−u(x−m), where u(x+m) = liml→0+ u(xm + l) and
u(x−m) = liml→0− u(xm + l) denotes the right and left limits of ux at x = xm, respectively.

2. Prerequisites

In this section, we introduce notations, definitions, lemmas and theorems that are needed for the proof of the main results.
Let T > 0, J= [0,T ] and C(J,R) be the Banach space of all continuous functions from J into R with the norm

‖u‖
∞
= sup{|u(x)| : x ∈ J}.

Let J0 = [x0,x1] and Jm = (xm,xm+1], where m = 1,2, . . .k.
Consider the set of functions

PC([−r,0],R) = {u : [−r,0]→ R : u ∈ C((tm, tm+1],R) ,m = 0,1, . . . ,k
′
, and there exist

u(t−m ) and u(t+m ), m = 1,2, . . . ,k with u(t−m ) = u(tm)}.

PC([−r,0],R) is a Banach space with the norm

‖u‖PC = sup
x∈[−r,0]

|u(x)| .

PC([−r,T ],R) is a Banach space with the norm

‖u‖PC1
= sup

x∈[−r,T ]
|u(x)| .

L
′
(J,R) is the space of Lebesgue-integrable functions u : J→ R with the norm

‖u‖1 =
∫ T

0
|u(s)|ds.

ACn(J) = {h : J→ R : h,h
′
, . . .h(n−1) ∈ C(J,R) and h(n−1) is absolutely continuous}.

In what follows ω > 0.

Definition 2.1. [9, 10] The fractional(arbitrary) order integral of the function h ∈ L
′
([0,T ],R+) of order ω ∈ R+ is defined by

Iω h(x) =
1

Γ(ω)

∫ x

0
(x− s)ω−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(ω) =
∫

∞

0 xω−1e−xdx, ω > 0.

Definition 2.2. [9, 10] For a function h ∈ ACn(J), the Caputo fractional order derivative of order ω of h is defined by

(cDω
0+h)(x) =

1
Γ(n−ω)

∫ x

0
(x− s)n−ω−1hn(s)ds,

where n = [ω]+1 and [ω] denotes the integer part of the real number ω .

Definition 2.3. [22] The generalized left-sided fractional integral ρ Iω
0+h of order ω ∈ C(Re(ω)> 0) is defined by

(ρ Iω
0+h)(x) =

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1h(s)ds,

for x > 0, if the integral exists.

Definition 2.4. [22] The generalized fractional derivative, corresponding to the generalized fractional integral (2.1), is defined by

(ρ Dω
0+h(x) =

ρω−n+1

Γ(n−ω)

(
x1−ρ d

dx

)n ∫ x

0
(xρ − sρ )n−ω−1sρ−1h(s)ds, (2.1)

if the integral exists.

Lemma 2.5. Let ω ≥ 0 and n = [ω]+1. Then

ρ Iω
0+
(

ρ Dω
0+h(x)

)
= h(x)−

n−1

∑
m=0

hm(0)
m!

xm.
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Lemma 2.6. Let ω > 0, then the differential equation ρ Dω
0+h(x) = 0 has solutions

h(x) = b0 +b1

(
xρ

ρ

)
+b2

(
xρ

ρ

)2
+ · · ·+bn−1

(
xρ

ρ

)(n−1)
,

bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω]+1.

Lemma 2.7. Let ω > 0, then

ρ Iω
0+
(

ρ Dω
0+h(x)

)
= h(x)+b0 +b1

(
xρ

ρ

)
+b2

(
xρ

ρ

)2
+ · · ·+bn−1

(
xρ

ρ

)(n−1)
,

for some bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω]+1.

Lemma 2.8. [24] Let w : [0,T ]→ [0,+∞) be a real function and α(·) is a non-negative, locally integrable function on [0,T ] and there are
constants a > 0 and 0 < ω ≤ 1 such that

w(x)≤ α(x)+a
∫ x

0
(xρ − sρ )−ω s−ρ w(s)ds.

Then, there exists a constant K = K(ω) such that

w(x)≤ α(x)+Ka
∫ x

0
(xρ − sρ )−ω s−ρ

α(s)ds,

for every x ∈ [0,T ].

The following integral inequality of Gronwall type for piecewise continuous functions was introduced by Bainov and Hristova [25] which
can be used in the sequel.

Lemma 2.9. Let for x≥ x0 ≥ 0, the following inequality holds,

u(x)≤ a(x)+
∫ x

x0

g(x,s)u(s)ds+ ∑
x0<xm<x

βm(x)u(xm),

where βm(x) (m ∈ N) are non-decreasing functions for x≥ x0, a ∈PC([x0,∞),R+), a is non-decreasing and g(x,s) is a continuous non
negative function for x,s≥ x0 and non decreasing with respect to x for any fixed s≥ x0. Then, for x≥ x0, the following inequality is valid:

u(x)≤ a(x) ∏
x0<xm<x

(1+βm(x))exp
(∫ x

x0

g(x,s)ds
)
.

Now, we consider the concepts of Wang et al. and refer some new concepts about Ulam-Hyers stability and Ulam-Hyers-Rassias stability for
considered problem (1.1). See [24, 26, 27, 28, 29].
Let u ∈PC(J,R), ε > 0, φ > 0 and α ∈PC(J,R+) is non decreasing. We consider the set of inequalities{

|ρ Dω u(x)−h(x,ux,
ρ Dω u(x))| ≤ ε, x ∈ (xm,xm+1], m = 1, . . .k,∣∣∆u|xm − Im(ux−m )

∣∣≤ ε, m = 1, . . . ,k;
(2.2)

the set of inequalities {
|ρ Dω u(x)−h(x,ux,

ρ Dω u(x))| ≤ α(x), x ∈ (xm,xm+1], m = 1, . . .k,∣∣∆u|xm − Im(ux−m )
∣∣≤ φ , m = 1, . . . ,k;

(2.3)

and the set of inequalities {
|ρ Dω u(x)−h(x,ux,

ρ Dω u(x))| ≤ εα(x), x ∈ (xm,xm+1], m = 1, . . .k,∣∣∆u|xm − Im(ux−m )
∣∣≤ εφ , m = 1, . . . ,k.

(2.4)

Definition 2.10. The problem (1.1) is Ulam-Hyers stable, if there exists a real number ch,k > 0 such that for each ε > 0 and for each solution
u1 ∈PC(J,R) of the inequality (2.2), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,kε, x ∈ J.

Definition 2.11. The problem (1.1) is generalized Ulam-Hyers stable, if there exists θh,k ∈ C(R+,R+), θh,k(0) = 0 such that for each
solution u1 ∈PC(J,R) of the inequality (2.2), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ θh,k(ε), x ∈ J.

Definition 2.12. The problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ), if there exists ch,k,α > 0 such that for each ε > 0
and for each solution u1 ∈PC(J,R) of the inequality (2.4), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,k,α ε(α(x)+φ), x ∈ J.
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Definition 2.13. The problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (α,φ), if there exists ch,k,α > 0 such that for
each solution u1 ∈PC(J,R) of the inequality (2.3), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,k,α (α(x)+φ), x ∈ J.

Remark 2.14. From the above definitions, we

(i) De f inition 2.10⇒ De f inition 2.11;
(ii) De f inition 2.12⇒ De f inition 2.13;

(iii) De f inition 2.12 for α(x) = φ = 1⇒ Definition 2.10.

Remark 2.15. A function u ∈ PC(J,R) is a solution of the inequality (2.4) if and only if there is σ ∈ PC(J,R) and a sequence σm,
m = 1,2, . . .k(which depends on u) such that

(i) |σ(x)| ≤ εα(x), x ∈ (xm,xm+1], m = 1,2, . . .k and |σm| ≤ εφ , m = 1,2, . . .k;
(ii) ρ Dω u(x) = h(x,ux,

ρ Dω u(x))+σ(x), x ∈ (xm,xm+1], m = 1,2, . . .k;
(iii) ∆u|xm = Im(ux−m )+σm, m = 1,2, . . .k.

Similarly, we can get remarks for inequalities (2.2) and (2.3).

Theorem 2.16. [8] (Ascoli-Arzela’s Theorem) Let E ⊂ C(J,R), E is relatively compact(i.e,Ē is compact), if:

(1) E is uniformly bounded, that is there exists N > 0 such that |h(x)|< N, for every h ∈ E and x ∈ J.
(2) E is equicontinuous, that is for every ε > 0, there exists δ > 0 such that for each x1,x2 ∈ J, |x1− x2| ≤ δ implies |h(x1)−h(x2)| ≤ ε ,

for every h ∈ E.

Theorem 2.17. [30] (Banach’s fixed point theorem) Let C be a non empty closed subset of a Banach space X , then any contraction
mapping T of C into itself has a unique fixed point.

Theorem 2.18. [30] (Schaefer’s fixed point theorem) Let X be a Banach space, and M : X →X a completely continuous operator. If the
set

S = {u ∈X : u = µMu, for some µ ∈ (0,1)}

is bounded, then M has atleast one fixed points.

3. Existence of solutions

Definition 3.1. A function u ∈PC([−r,T ],R) whose ω-derivative exists on Jm is said to be a solution of (1.1), if u satisfies the equation
ρ Dω

xm
u(x) = h(x,ux,

ρ Dω
xm

u(x)),

on Jm, and satisfies the conditions ∆u|x=xm = Im(ux−m ), m = 1, . . . ,k and u(x) = ψ(x), x ∈ [−r,0].

The following lemma is required to prove the existence of solutions to (1.1).

Lemma 3.2. Let 0 < ω ≤ 1 and let σ : J→ R be continuous. A function u is a solution of the fractional integral equation

u(x) =



ψ(0)+ ρ1−ω

Γ(ω)

∫ x
0 (xρ − sρ )ω−1sρ−1 σ(s)ds, if x ∈ [0,x1],

ψ(0)+∑
m
i=1 Ii(ux−i

)

+ ρ1−ω

Γ(ω) ∑
m
i=1
∫ xi

xi−1
(xρ

i − sρ )
ω−1

sρ−1 σ(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm
(xρ − sρ )ω−1sρ−1 σ(s)ds, if x ∈ (xm,xm+1],

ψ(x), x ∈ [−r,0],

(3.1)

where m = 1,2, . . .k, if and only if u is a solution of the following fractional problem
ρ Dω u(x) = σ(x), x ∈ Jm,

∆u|x=xm = Im(ux−m ), m = 1,2, . . .k,
u(x) = ψ(x), x ∈ [−r,0].

(3.2)

Proof. Assume u satisfies (3.2). If x ∈ [0,x1], then ρ Dω u(x) = σ(x). From Lemma 2.7, we get

u(x) = ψ(0)+ ρ Iω
σ(x) = ψ(0)+

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1

σ(s)ds.

If x ∈ (x1,x2], then from Lemma 2.7,

u(x) = u(x+1 )+
ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1sρ−1
σ(s)ds

= ∆u|x=x1 +u(x−1 )+
ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1sρ−1
σ(s)ds

= ψ(0)+ I1(ux−1
)+

ρ1−ω

Γ(ω)

∫ x

0
(xρ

1 − sρ )
ω−1

sρ−1
σ(s)ds+

ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1sρ−1
σ(s)ds.
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If x ∈ (x2,x3], then Lemma 2.7 implies,

u(x) = u(x+2 )+
ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1sρ−1
σ(s)ds

= ∆u|x=x2 +u(x−2 )+
ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1sρ−1
σ(s)ds

= I2(ux−2
)

+

[
ψ(0)+ I1(ux−1

)+
ρ1−ω

Γ(ω)

∫ x1

0
(xρ

1 − sρ )
ω−1

sρ−1
σ(s)ds+

ρ1−ω

Γ(ω)

∫ x2

x1

(xρ

2 − sρ )
ω−1

sρ−1
σ(s)ds

]
+

ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1sρ−1
σ(s)ds.

= ψ(0)+
[
I1(ux−1

)+ I2(ux−2
)
]

+

[
ρ1−ω

Γ(ω)

∫ x1

0
(xρ

1 − sρ )
ω−1

sρ−1
σ(s)ds+

ρ1−ω

Γ(ω)

∫ x2

x1

(xρ

2 − sρ )
ω−1

sρ−1
σ(s)ds

]
+

ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1sρ−1
σ(s)ds.

Continuing this process, we get the solution u(x) for x ∈ (xm,xm+1] , where m = 1,2, . . .k. Hence,

u(x) = ψ(0)+
m

∑
i=1

Ii(ux−i
)+

ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )
ω−1

sρ−1
σ(s)ds+

ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1
σ(s)ds.

Conversely, let us assume that u satisfies the equation (3.1). If x ∈ [0,x1], then u(0) = ψ(0) and using the concept that ρ Dω is the left inverse
of ρ Iω , we get ρ Dω u(x) = σ(x), for each x ∈ [0,x1]. If x ∈ (xm,xm+1], m = 1,2, . . .k and using the fact that ρ Dω L = 0, where L is a constant,
we get

ρ Dω u(x) = σ(x), for each x ∈ (xm,xm+1].

Also, we can show that ∆u|x=xm = Im(ux−m ), m = 1,2, . . .k.

Now we state and prove the existence results for the problem (1.1), based on Banach’s fixed point theorem.

Theorem 3.3. Assume that

(A1) h : J×PC([−r,0],R)×R→ R is continuous.
(A2) There exist constants c1 > 0 and 0 < c2 < 1 such that

|h(x,z1,z2)−h(x, z̄1, z̄2)| ≤ c1‖z1− z̄1‖PC+ c2 |z2− z̄2| ,

for any z1, z̄1 ∈PC([−r,0],R), z2, z̄2 ∈ R and x ∈ J.
(A3) There exists a constant c3 > 0 such that

|Im(z1)− Im(z̄1)| ≤ c3‖z1− z̄1‖PC,

for each z1, z̄1 ∈PC([−r,0],R) and m = 1,2, . . .k.

If

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)
< 1, (3.3)

then there exists a unique solution for the problem (1.1) on J.

Proof. Transform the problem (1.1) into a fixed point problem. Consider the operator
M : PC([−r,T ],R)→PC([−r,T ],R) defined by

Mu(x) =



ψ(0)+∑0<xm<x Im(ux−i
)

+ ρ1−ω

Γ(ω) ∑0<xm<x
∫ xm

xm−1
(xρ

m− sρ )
ω−1

sρ−1 g(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm
(xρ − sρ )ω−1sρ−1 g(s)ds, x ∈ [0,T ],

ψ(x), x ∈ [−r,0],

(3.4)

where g ∈ C(J,R) be such that

g(x) = h(x,ux,g(x)).

Clearly, the fixed points of operator M are solutions of the problem (1.1). Let y,z ∈PC([−r,T ],R). If x ∈ [−r,0], then

|M(y)(x)−M(z)(x)|= 0.
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For x ∈ J, we get

|M(y)(x)−M(z)(x)| ≤ ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )

ω−1
sρ−1 |g1(s)−g2(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |g1(s)−g2(s)|ds+ ∑
0<xm<x

∣∣Im(yx−m )− Im(zx−m )
∣∣ ,

where g1,g2 ∈ C(J,R) be such that

g1(x) = h(x,yx,g1(x)),

and

g2(x) = h(x,zx,g2(x)).

By (A2), we get

|g1(x)−g2(x)|= |h(x,yx,g1(x))−h(x,zx,g2(x))| ≤ c1‖yx− zx‖PC+ c2 |g1(x)−g2(x)| .

This implies,

|g1(x)−g2(x)| ≤
c1

1− c2
‖yx− zx‖PC.

Therefore, for each x ∈ J,

|M(y)(x)−M(z)(x)| ≤ c1ρ1−ω

(1− c2)Γ(ω)

k

∑
m=1

∫ xm

xm−1

(xρ
m− sρ )

ω−1
sρ−1 ‖ys− zs‖PCds

+
c1ρ1−ω

(1− c2)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 ‖ys− zs‖PCds+
k

∑
m=1

c3
∥∥yx−m − zx−m

∥∥
PC

.

≤
[

kc3 +
kc1T ρω

(1− c2)ρω Γ(ω +1)
+

c1T ρω

(1− c2)ρω Γ(ω +1)

]
‖y− z‖PC1

.

Thus,

‖M(y)−M(z)‖PC1
≤
[

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)

]
‖y− z‖PC1

.

By (3.3), the operator M is a contraction. Therefore, by the Banach’s contraction principle, M has a unique fixed point which is a unique
solution of the problem (1.1).

Now, Schaefer’s fixed point theorem is used to prove the second result.

Theorem 3.4. Assume that (A1),(A2) and

(A4) There exist p1, p2, p3 ∈ C(J,R+) with p∗3 = supx∈J p3(x)< 1 such that

|h(x,y,z)| ≤ p1(x)+ p2(x)‖y‖PC + p3(x) |z| ,

where x ∈ J, y ∈PC([−r,0],R) and z ∈ R.
(A5) The functions Im : PC([−r,0],R)→ R are continuous and there exist constants M∗1 ,M

∗
2 > 0 with kM∗1 < 1 such that

|Im(y)| ≤M∗1 ‖y‖PC+M∗2 ,

for each y ∈PC([−r,0],R), m = 1,2, . . .k. Then the problem (1.1) has at least one solution.

Proof. Let the operator M defined in (3.4). Now we shall prove that M has atleast one fixed point by using Schaefer’s fixed point theorem.
The proof contains four steps.
Step 1: N is continuous.
Let {yn} be a sequence such that yn→ y in PC([−r,T ],R). If x ∈ [−r,0], then

|M(yn)(x)−M(y)(x)|= 0.

For x ∈ J, we have

|M(yn)(x)−M(y)(x)| ≤ ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )

ω−1
sρ−1 |gn(s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |gn(s)−g(s)|ds+ ∑
0<xm<x

∣∣Im(ynx−m )− Im(yx−m )
∣∣ , (3.5)

where gn,g ∈ C(J,R) such that

gn(x) = h(x,ynx,gn(x)),
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g(x) = h(x,yx,g(x)).

By (A2), we have

|gn(x)−g(x)| = |h(x,ynx,gn(x))−h(x,yx,g(x))|
≤ c1 ‖ynx− yx‖PC+ c2 |gn(x)−g(x)| .

Then,

|gn(x)−g(x)| ≤
(

c1

1− c2

)
‖ynx− yx‖PC .

Since yn→ y, then we get gn(x)→ g(x) as n→ ∞ for each x ∈ J. And let Ω > 0 be such that, for each x ∈ J, we have |gn(x)| ≤ Ω and
|g(x)| ≤Ω. Then, we have

(xρ − sρ )ω−1 |gn(s)−g(s)| ≤ (xρ − sρ )ω−1[|gn(s)|+ |g(s)|]
≤ 2Ω(xρ − sρ )ω−1,

and

(xρ
m− sρ )ω−1 |gn(s)−g(s)| ≤ (xρ

m− sρ )ω−1[|gn(s)|+ |g(s)|]
≤ 2Ω(xρ

m− sρ )ω−1.

For each x ∈ J, the functions s→ 2Ω(xρ − sρ )ω−1 and s→ 2Ω(xρ
m− sρ )ω−1 are integrable on [0,x], then by the Lebesgue Dominated

Convergence Theorem and (3.5) implies that

|M(yn)(x)−M(y)(x)| → 0, as n→ ∞.

and hence,

‖M(yn)−M(y)‖PC1
→ 0, as n→ ∞,

Consequently, M is continuous.

Step 2: M maps bounded sets into bounded sets in PC([−r,T ],R). To prove this, it is enough to show that for any Ω∗ > 0, there exists a
positive constant k̃ such that for each y ∈ BΩ∗ = {y ∈PC([−r,T ],R) : ‖y‖PC1

≤Ω∗}, we have ‖M(y)‖PC1
≤ k̃. We have for each x ∈ J,

M(y)(x) = ψ(0)+
ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )

ω−1
sρ−1 g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 g(s)ds+ ∑
0<xm<x

Im(yx−m ), (3.6)

where g ∈ C(J,R) be such that

g(x) = h(x,yx,g(x)).

By (A4), for each x ∈ J, we get

|g(x)| = |h(x,yx,g(x))|
≤ p1(x)+ p2(x)‖yx‖PC+ p3(x) |g(x)|
≤ p1(x)+ p2(x)‖y‖PC1

+ p3(x) |g(x)|
≤ p1(x)+ p2(x)Ω∗+ p3(x) |g(x)|
≤ p∗1 + p∗2Ω

∗+ p∗3 |g(x)| ,

where p∗1 = supx∈J p1(x) and p∗2 = supx∈J p2(x). Then,

|g(x)| ≤
p∗1 + p∗2Ω∗

1− p∗3
:= N.

Thus (3.6) implies

|M(y)(x)| ≤ |ψ(0)|+ kNT ρω

ρω Γ(ω +1)
+

NT ρω

ρω Γ(ω +1)
+ k
(

M∗1
∥∥yx−m

∥∥
PC

+M∗2
)

≤ |ψ(0)|+ (k+1)NT ρω

ρω Γ(ω +1)
+ k
(

M∗1‖y‖PC1
+M∗2

)
≤ |ψ(0)|+ (k+1)NT ρω

ρω Γ(ω +1)
+ k (M∗1 Ω

∗+M∗2 ) := R̃.

And if x ∈ [−r,0], then

|M(y)(x)| ≤ ‖ψ‖PC ,
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thus

‖M(y)‖PC1
≤max{R̃,‖ψ‖PC} := k̃.

Step 3: M maps bounded sets into equicontinuous sets of PC([−r,T ],R).
Let t1, t2 ∈ (0,T ], t1 < t2, BΩ∗ be a bounded set of PC([−r,T ],R) as in Step 2, and let y ∈ BΩ∗ . Then

|M(y)(t2)−M(y)(t1)| ≤
ρ1−ω

Γ(ω)

∫ t1

0

∣∣∣(tρ

2 − sρ )ω−1− (tρ

1 − sρ )ω−1
∣∣∣ ∣∣∣sρ−1

∣∣∣ |g(s)|ds

+
ρ1−ω

Γ(ω)

∫ t2

t1

∣∣∣(tρ

2 − sρ )ω−1
∣∣∣ ∣∣∣sρ−1

∣∣∣ |g(s)|ds

+ ∑
0<xm<t2−t1

∣∣Im(yx−m )
∣∣

≤ N
ρω Γ(ω +1)

[2(tρ

2 − tρ

1 )
ω +(tρω

2 − tρω

1 )]

+ (tρ

2 − tρ

1 )
(

M∗1
∥∥yx−m

∥∥
PC

+M∗2
)

≤ N
ρω Γ(ω +1)

[2(tρ

2 − tρ

1 )
ω +(tρω

2 − tρω

1 )]

+ (tρ

2 − tρ

1 )
(

M∗1 ‖y‖PC1
+M∗2

)
≤ N

ρω Γ(ω +1)
[2(tρ

2 − tρ

1 )
ω +(tρω

2 − tρω

1 )]

+ (tρ

2 − tρ

1 )(M
∗
1 Ω
∗+M∗2 ) .

As t2→ t1, the right hand side of the above inequality tends to zero. From Step 1 to 3 together with the Ascoli-Arzela theorem, we can
conclude that M : PC([−r,T ],R)→PC([−r,T ],R) is completely continuous.
Step 4: A priori bounds. Now, we shall show that the set

G = {y ∈PC([−r,T ],R) : y = µM(y), for some 0 < µ < 1},

is bounded. Let y ∈ G, then y = µM(y), for some 0 < µ < 1. Thus, for each x ∈ J, we get

y(x) = µψ(0)+
µρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g(s)ds

+
µρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds+µ ∑
0<xm<x

Im(yx−m ).

And by (A4), for each x ∈ J , we get,

|g(x)| = |h(x,yx,g(x))|
≤ p1(x)+ p2(x)‖yx‖PC+ p3(x) |g(x)|
≤ p∗1 + p∗2 ‖yx‖PC+ p∗3 |g(x)| .

Thus,

|g(x)| ≤ 1
1− p∗3

(
p∗1 + p∗2 ‖yx‖PC

)
.

This implies, by (3.7) and (A5), that for each x ∈ J, we have

|y(x)| ≤ |ψ(0)|+ ρ1−ω

(1− p∗3)Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1(p∗1 + p∗2 ‖ys‖PC)ds

+
ρ1−ω

(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2 ‖ys‖PC)ds

+ k
(

M∗1
∥∥yx−m

∥∥
PC

+M∗2
)
.

Now, we consider the function q defined by

q(x) = sup{|q(s)| :−r ≤ s≤ x}, 0≤ x≤ T,

then there exists x∗ ∈ [−r,T ] such that q(x) = |y(x∗)|. If x∗ ∈ [0,T ], then by the previous inequality, we have for x ∈ J,

q(x) ≤ |ψ(0)|+ ρ1−ω

(1− p∗3)Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+
ρ1−ω

(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+ k (M∗1 q(x)+M∗2 ) .
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Thus,

q(x) ≤
|ψ(0)|+ kM∗2

1− kM∗1
+

ρ1−ω

(1− kM∗1 )(1− p∗3)Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+
ρ1−ω

(1− kM∗1 )(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

≤
|ψ(0)|+ kM∗2

1− kM∗1
+

(k+1)p∗1T ρω

(1− kM∗1 )(1− p∗3)ρ
ω Γ(ω +1)

+
(k+1)p∗2

(1− kM∗1 )(1− p∗3)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1q(s)ds.

Applying Lemma 2.8, we get

q(x)≤
[
|ψ(0)|+ kM∗2

1− kM∗1
+

(k+1)p∗1T ρω

(1− kM∗1 )(1− p∗3)ρ
ω Γ(ω +1)

]
×
[

1+
λ (k+1)p∗2T ρω

(1− kM∗1 )(1− p∗3)ρ
ω Γ(ω +1)

]
:= Ã,

where λ = λ (ω) a constant. If x∗ ∈ [−r,0], then q(x) = ‖ψ‖PC, thus for any x ∈ [−r,T ], ‖y‖PC1
≤ q(x), we get

‖y‖PC1
≤max{‖ψ‖PC , Ã},

which implies the set G is bounded. From Schaefer’s fixed point theorem, we conclude that M has atleast one fixed point which is a solution
of the problem (1.1).

4. Ulam-Hyers-Rassias stability

Now, we present the following Ulam-Hyers-Rassias stable result.

Theorem 4.1. Assume that (A1)-(A3), (3.3) and

(A6) There exists a nondecreasing function α ∈PC(J,R+) and there exists µα > 0 such that for any x ∈ J:

ρ Iω
α(x)≤ µα α(x),

are satisfied, then the problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ).

Proof. Let v ∈PC([−r,T ],R) be a solution of the inequality (2.4). Denote by u the unique solution of the problem
ρ Dω

xm
u(x) = h(x,ux,

ρ Dω
xm

u(x)), for each x ∈ (xm,xm+1], m = 1, . . .k;
∆u|x=xm = Im(ux−m ), m = 1, . . . ,k;
u(x) = v(x) = ψ(x), x ∈ [−r,0],

using Lemma 3.2, we obtain for each x ∈ (xm,xm+1],

u(x) = ψ(0)+
m

∑
i=1

Ii(ux−i
)+

ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds, x ∈ (xm,xm+1],

where g ∈ C(J,R) be such that

g(x) = h(x,ux,g(x)).

Since v is a solution of the inequality (2.4) and by Remark 2.15, we get{
ρ Dω

xm
v(x) = h(x,vx,

ρ Dω
xm

v(x))+σ(x), x ∈ (xm,xm+1], m = 1, . . .k;
∆v|x=xm = Im(vx−m )+σm, m = 1, . . . ,k.

(4.1)

Clearly the solution of (4.1) is given by,

v(x) = ψ(0)+
m

∑
i=1

Ii(vx−i
)+

m

∑
i=1

σi

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1 f (s)ds+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1
σ(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 f (s)ds+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1
σ(s)ds, x ∈ (xm,xm+1],
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where f ∈ C(J,R) be such that f (x) = h(x,vx, f (x)). Hence for each x ∈ (xm,xm+1], we get,

|v(x)−u(x)| ≤
m

∑
i=1
|σi|+

m

∑
i=1

∣∣∣Ii(vx−i
)− Ii(ux−i

)
∣∣∣

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1 |σ(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |σ(s)|ds.

Thus,

|v(x)−u(x)| ≤ kεφ +(k+1)εµα α(x)+
m

∑
i=1

c3

∥∥∥vx−i
−ux−i

∥∥∥
PC

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 | f (s)−g(s)|ds.

By (A2), we get

| f (x)−g(x)| = |h(x,vx, f (x))−h(x,ux,g(x))|
≤ c1 ‖vx−ux‖PC+ c2 | f (x)−g(x)| .

Then,

| f (x)−g(x)| ≤ c1

1− c2
‖vx−ux‖PC .

Therefore, for each x ∈ J,

|v(x)−u(x)| ≤ kεφ +(k+1)εµα α(x)+
m

∑
i=1

c3

∥∥∥vx−i
−ux−i

∥∥∥
PC

+
c1ρ1−ω

(1− c2)Γ(ω)

m

∑
i=1

∫ xi

xi−1

(xρ

i − sρ )ω−1sρ−1 ‖vs−us‖PC ds

+
c1ρ1−ω

(1− c2)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 ‖vs−us‖PC ds.

Thus,

|v(x)−u(x)| ≤ ε(φ +α(x))(k+(k+1)µα )+ ∑
0<xi<x

c3

∥∥∥vx−i
−ux−i

∥∥∥
PC

+
c1(k+1)ρ1−ω

(1− c2)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1 ‖vs−us‖PC ds. (4.2)

Now, we consider the function q1 defined by

q1(x) = sup{|v(s)−u(s)| :−r ≤ s≤ x}, 0≤ x≤ T,

then, there exists x∗ ∈ [−r,T ] such that q1(x) = |v(x∗)−u(x∗)|. If x∗ ∈ [−r,0], then q1(x) = 0. If x∗ ∈ [0,T ], then by the equation (4.2), we
get

q1(x) ≤ ε(φ +α(x))(k+(k+1)µα )+ ∑
0<xi<x

c3q1(x−i )

+
c1(k+1)ρ1−ω

(1− c2)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1q1(s)ds.

Applying Lemma 2.9, we have,

q1(x) ≤ ε(φ +α(x))(k+(k+1)µα )×

[
∏

0<xi<x
(1+ c3)exp

(∫ x

0

c1(k+1)ρ1−ω

(1− c2)Γ(ω)
(xρ − sρ )ω−1sρ−1ds

)]
≤ lα ε(φ +α(x)),
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where

lα = (k+(k+1)µα )×

[
k

∏
i=1

(1+ c3)exp
(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]

= (k+(k+1)µα )

[
(1+ c3)exp

(
c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]k
.

Thus, the problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ). Hence the proof is complete.

Now, we present the following Ulam-Hyers stable result.

Theorem 4.2. Assume that (A1)-(A3) and (3.3) are satisfied, then the problem (1.1) is Ulam-Hyers stable.

Proof. Let v ∈PC([−r,T ],R) be a solution of (2.2). Denote by u the unique solution of the problem.
ρ Dω

xm
u(x) = h(x,ux,

ρ Dω
xm

u(x)), x ∈ (xm,xm+1], m = 1, . . .k;
∆u|x=xm = Im(ux−m ), m = 1, . . . ,k;
u(x) = v(x) = ψ(x), x ∈ [−r,0].

From the proof of the Theorem 4.1, we get

q1(x) ≤ ∑
0<xi<x

c3q1(x−i )+ kε +
ε(k+1)T ρω

ρω Γ(ω +1)
+

c1(k+1)ρ1−ω

(1− c2)Γ(ω +1)

∫ x

0
(xρ − sρ )ω−1sρ−1q1(s)ds.

Applying Lemma 2.9, we have

q1(x) ≤ ε

(
kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)
×

[
∏

0<xi<x
(1+ c3)exp

(∫ x

0

c1(k+1)ρ1−ω (xρ − sρ )ω−1

(1− c2)Γ(ω)
sρ−1ds

)]
≤ lα ε,

where,

lα =

(
kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)[ k

∏
i=1

(1+ c3)exp
(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]

=

(
kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)[
(1+ c3)exp

(
c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]k
,

which completes the proof of the theorem.

Moreover, if we set γ(ε) = lα ε; γ(0) = 0, then the problem (1.1) is generalized Ulam-Hyers stable.

5. Examples

Example 5.1. Consider the following Katugampola-type impulsive problem,
ρ D

1
2
xm u(x) = e−x

(22+ex)

[
ux

1+ux
−

ρ D
1
2
xm u(x)

1+ρ D
1
2
xm u(x)

]
, for each x ∈ J0∪J1,

∆u|x= 1
2
=

u( 1
2
−
)

20+u( 1
2
−
)
,

u(x) = ψ(x), x ∈ [−r,0], r > 0,

(5.1)

where ψ ∈PC([−r,0],R), J0 = [0, 1
2 ], J1 = ( 1

2 ,1], x0 = 0, and x1 =
1
2 .

Let

h(x,u1,u2) =
e−x

(22+ ex)

[
u1

1+u1
− u2

1+u2

]
,

x ∈ [0,1], u1 ∈PC([−r,0],R) and u2 ∈ R. Clearly, the function h is jointly continuous.
Let u1, ū1 ∈PC([−r,0],R), u2, ū2 ∈ R and x ∈ [0,1]:

|h(x,u1,u2)−h(x, ū1, ū2)| ≤
e−x

22+ ex

(
‖u1− ū1‖PC+ |u2− ū2|

)
≤ 1

23

(
‖u1− ū1‖PC+ |u2− ū2|

)
.

Hence the condition (A2) is satisfied with c1 = c2 =
1
23 . And let,

I1(u1) =
u1

20+u1
, u1 ∈PC([−r,0],R)
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Let u1,u2 ∈PC([−r,0],R), then we have,

|I1(u1)− I2(u2)| =

∣∣∣∣ u1

20+u1
− u2

20+u2

∣∣∣∣
≤ 1

20
‖u1−u2‖PC .

Let us assume k = 1,T = 1,ρ = 1,ω = 1
2 ,c1 = c2 =

1
23 ,c3 =

1
20 , Substitute these values in the inequality (3.3), we get

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)
= 0.2551 < 1,

It follows from Theorem 3.3, we get that the problem (5.1) has a unique solution on J. Now, we consider for any x ∈ [0,1], α(x) = x,
φ = 1,ρ = 1. Since

ρ Iω
α(x) =

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1ds

=
2
π

∫ x

0
(xρ − sρ )

−1
2 ds

≤ 2x√
π
,

then the condition (A6) is satisfied with µα = 2√
π

. Therefore, we get that the problem (5.1) is Ulam-Hyers-Rassias stable with respect to
(α,φ).

Example 5.2. Consider the following Katugampola-type impulsive problem,

ρ D
1
2
xm u(x) =

2+|ux|+
∣∣∣∣ρ D

1
2
xm u(x)

∣∣∣∣
110ex+3

(
1+|ux|+

∣∣∣∣ρ D
1
2
xm u(x)

∣∣∣∣) , for each x ∈ J0∪J1,

∆u|x= 1
3
=

∣∣∣u( 1
3
−
)
∣∣∣

8+
∣∣∣u( 1

3
−
)
∣∣∣ ,

u(x) = ψ(x), x ∈ [−r,0], r > 0,

(5.2)

where ψ ∈PC([−r,0],R), J0 = [0, 1
3 ], J1 = ( 1

3 ,1], x0 = 0, and x1 =
1
3 .

Let

h(x,u1,u2) =
2+ |u1|+ |u2|

110ex+3(1+ |u1|+ |u2|)
, x ∈ [0,1], u1 ∈PC([−r,0],R) and u2 ∈ R.

Clearly, the function h is jointly continuous. For any u1, ū1 ∈PC([−r,0],R), u2, ū2 ∈ R and x ∈ [0,1]:

|h(x,u1,u2)−h(x, ū1, ū2)| ≤
1

110e3

(
‖u1− ū1‖PC+ |u2− ū2|

)
.

Hence the condition (A2) is satisfied with c1 = c2 =
1

110e3 . We have, for each x ∈ [0,1],

|h(x,u1,u2)| ≤
1

110ex+3

(
2+‖u1‖PC+ |u2|

)
.

Thus, the condition (A4) is satisfied with p1(x) = 1
55ex+3 and p2(x) = p3(x) = 1

110ex+3 . Let

I1(u1) =
|u1|

8+ |u1|
, u1 ∈PC([−r,0],R).

We have, for each u1 ∈PC([−r,0],R),

|I1(u1)| ≤
1
8
‖u1‖PC+1.

Thus, the condition (A5) is satisfied with M∗1 = 1
8 and M∗2 = 1. It follows from Theorem 3.4 that the problem (5.2) has at least one solution

on J.

6. Conclusion

In this article, with the help of standard fixed point theorem of Schaefer’s and Banach contraction type, we successfully developed existence
of solutions of Katugampola-Caputo type implicit fractional differential equations with impulses. The obtained conditions ensure that the
existence of at least one solution to the proposed problem. Further different kinds of Ulam-Hyers and Ulam-Hyers-Rassias stability have
been investigated.
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