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Abstract

By Markowitz geometry we mean the intersection theory of ellipsoids and affine subspaces
in a real finite-dimensional linear space. In the paper we give a meticulous and self-contained
treatment of this arch-classical subject, which lays a solid mathematical groundwork of
Markowitz mean-variance theory of efficient portfolios in economics.

1. Introduction and notation

1.1. Introduction

In this paper we solve the following extremal problem: Given a positive dimensional affine subspace C ⊂ Rn, a linear form π which is not
constant on C, and a positive definite quadratic form v on Rn, find all points x0 ∈C such that

π(x0) = max
x∈C,v(x)≤v(x0)

π(x) and v(x0) = min
x∈C,π(x)≥π(x0)

v(x). (1.1)

It turns out that the locus of solutions of (1.1) is a ray E in C whose endpoint x0 is the foot of the perpendicular ρ0 from the origin O of the
coordinate system to the affine space C (perpendicularity is with respect to the scalar product obtained from v via polarization). Let hr be the
hyperplane with equation π(x) = r, r ∈ R, and let ρr be the perpendicular from O to the affine subspace C∩hr. If π(x0) = r0, v(x0) = a0,
then E = {ρr | r ≥ r0}, ρ0 = ρr0 , and the levels r = π(x) and a = v(x) are quadratically related along E: a = cr2.
Let x = t(x1, . . . ,xn) be the generic vector in Rn, let M be a proper subset of the set [n] = {1, . . . ,n} of indices, and let C = ∩ j∈Mh( j), where
h( j) are linearly independent hyperplanes with equations

π
( j)(x) = τ j, τ j ∈ R, j ∈M. (1.2)

In case the hyperplane Π = {x | x1 + · · ·+ xn = 1} is one of h( j)’s, we may interpret x ∈C as an n-assets financial portfolio, subject to the
linear constraints (1.2). Next, under certain conditions, see 4.2, we may interpret π(x) as the expected return on the portfolio x and v(x) as its
risk. Finally, we may interpret the elements of E as efficient portfolios from Markowitz mean-variance theory in economics, considered
from purely geometrical point of view. The famous pioneering work [1] is written in this fashion and the condition for nonnegativity of the
variables (due to lack of short sales) distorts the picture there and forces the use of variants of simplex method in Markowitz’s monograph [2].
Thus, instead of the ray E of efficient portfolios, we have to examine a more sophisticated piecewise set EM of linear segments enclosed in
the compact trace ∆ of the unit simplex in Π on C. If x0 ∈ EM\E ∩∆, then

π(x0)< max
x∈C,v(x)≤v(x0)

π(x) or v(x0)> min
x∈C,π(x)≥π(x0)

v(x),

that is, the maximum π(x0) of the expected return decreases or the minimum v(x0) of the risk increases, which is our point of departure.
In section 1, Theorem 2.3, we show that the trace Qa∩C of an ellipsoid Qa with equation v(x) = a in Rn on the affine space C is again an
ellipsoid in case a≥ γM(τ), where γM(τ) is a positive definite quadratic form in the variables τ = (τ j) j∈M ∈ RM . The center of the ellipsoid
Qa∩C is the foot of the perpendicular ρ0 from O to C, and, moreover, we find its equation in terms of appropriate coordinates on C.
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The inequality a≥ γM(τ) determines an ”elliptic” cone γ̂M in R×RM , which is the base of the bundle ξ described in Theorem 2.11. By
dragging the ellipsoids a = γM(τ) ”upward” (a is increasing) we establish a real algebraic variety ΓM which is the frontier of γ̂M and branch
locus of ξ . The fibres of ξ over the points in the interior of γ̂M are ellipsoids which degenerate into their centers over ΓM . Using this
bundle, we obtain that the image (the shadow) of an ellipsoid in Rn via projection parallel to some subspace, is again an ellipsoid — see
Proposition 2.14.
In section 2 we prove some extremal properties of the tangential points of members of a family of eccentric ellipsoids and parallel hyperplanes
in Rn. These two sections stick together in section 3 where we prove that the ray E is the locus of all efficient Markowitz portfolios and give
interpretation of the geometrical results in terms of Markowitz mean-variance theory.

1.2. Notation

For any positive integer n we identify the members of the real linear space Rn with matrices of type n×1: x = t(x1, . . . ,xn), where the sign t

means the transpose of a matrix. We set O = t(0, . . . ,0) ∈ Rn and denote by (ei)
n
i=1 the standard basis in Rn. Say that M = { j1, . . . , jm},

j1 < · · · < jm, be a proper subset of the set of indices [n] = {1, . . . ,n}. Given a vector x = t(x1, . . . ,xn), we denote by x(M) the vector
t(x j1 , . . . ,x jm) ∈ RM . Moreover, indexed Greek letters τ(M), etc., mean vectors t(τ j1 , . . . ,τ jm), etc., from the linear space RM . In case K is
a proper subset of the set M and we fix all τ j, j ∈ K, and vary τ j, j ∈ L, where L = M \K, then, with some abuse of notation (the fixed
components are supposed to be known), we write τ(M) = τ(L,K).
Given a symmetric n×n matrix Q, by Q(M) we denote the principal m×m submatrix of Q, obtained by suppressing the rows and columns
with indices which are not in M.
For a positive definite quadratic form v(x) = txQx on Rn with matrix Q we denote Qa = {x ∈Rn | v(x) = a}, a≥ 0. The set Qa is an ellipsoid
with center O in Rn for all a > 0. In case n = 1 the ”ellipsoid” Qa consists of two (possibly coinciding) points. We extend this terminology
by defining the singleton {O} to be an ”ellipsoid” when a = 0 as well as in the case of zero-dimensional linear space.
For any a≥ 0 we denote Q≤a = {x ∈ Rn | v(x)≤ a} and Q<a = {x ∈ Rn | v(x)< a}. Note that Q≤a and Q<a are strictly convex sets.
We let π(x) = p1x1 + · · ·+ pnxn be a linear form and let us denote by hr the hyperplane in Rn, defined by the equation π(x) = r, r ∈ R. Let
hr(≤) denote the half-space {x ∈ Rn | π(x)≤ r}. The meaning of notation hr(≥), hr(<), and hr(>) is clear.
The standard scalar product (x,y) = txy in Rn produces the standard norm ‖x‖ with ‖x‖2 = (x,x). We set Sn−1 = {x ∈ Rn | ‖x‖= 1} (the
unit sphere).
The scalar product 〈x,y〉 = txQy in Rn produces the Q-norm ‖x‖Q with ‖x‖2

Q = 〈x,x〉 = v(x) and the Q-distance distQ (x,y) = ‖x− y‖Q.
Thus, the ellipsoid Qa is a Q-sphere with Q-radius

√
a. Two vectors x and y are said to be Q-perpendicular, if 〈x,y〉= 0.

Throughout the rest of the paper we assume that n is a positive integer and m is a nonnegative integer with m < n. Moreover, we suppose that
if a proper subset M of the set [n] of indices is given as a list: M = { j1, . . . , jm}, then j1 < · · ·< jm.

2. Ellipsoids and affine subspaces

2.1. Intersections of quadric hypersurfaces and affine subspaces

Let M ⊂ [n] be a set of indices of size m, M = { j1, . . . , jm}, and let (h( j)) j∈M be a family of linearly independent affine hyperplanes in Rn.
The system of coordinates can be chosen in such a way that the hyperplane h( j) has equation x j = τ j, τ j ∈ R. We denote by h(τ(M)) the
intersection ∩ j∈Mh( j). The family {h(τ(M)) | τ(M) ∈ RM} consists of all (n−m)-dimensional affine spaces in Rn, which are orthogonal to
the m-dimensional vector subspace generated by the vectors e j, j ∈M.

Let Q = (qi j)
n
i, j=1 be a symmetric matrix. For any j ∈M we denote by ρ

(Q;Mc)
−, j the j-th column of the (n−m)×n matrix obtained from

Q by deleting the rows indexed by the elements of M. Thus, ρ
(Q;Mc)
−, j is a vector in Rn−m with components ρ

(Q;Mc)
i, j = qi j, i ∈Mc. Given a

vector τ(M) ∈ RM , τ(M) = t(τ j1 , . . . ,τ jm), we set ρ
(Q;Mc)

−,τ(M) = ∑
m
k=1 τ jk ρ

(Q;Mc)
−, jk . By

α(Q;M)(x) =
n

∑
j,k∈M

q jkx jxk

we denote the quadratic form which corresponds to the principal submatrix Q(M) of Q.
Let Mc = {i1, . . . , in−m}. In case the submatrix Q(Mc) is invertible, let

x(M
c) = t(c(Q;Mc)

i1 (τ(M)), . . . ,c(Q;Mc)
in−m

(τ(M)))

be the solution of the matrix equation

Q(Mc)x(M
c) =−ρ

(Q;Mc)

−,τ(M) . (2.1)

We set
c(Q;Mc)(τ(M)) = t(c(Q;Mc)

1 (τ(M)), . . . ,c(Q;Mc)
n (τ(M))),

where c(Q;Mc)
j (τ(M)) = τ j for j ∈M. In particular, c(Q;Mc)(τ(M)) ∈ h(τ(M)). In case L⊂M, L = {`1, . . . , `λ }, we set

c(Q;Mc)
L (τ(M)) = t(c(Q;Mc)

`1
(τ(M)), . . . ,c(Q;Mc)

`λ
(τ(M))).

Note that if M = /0, then c(Q;[n])(τ( /0)) = 0. We write c(Q;Mc)(τ(M)) = c(M
c)(τ), and, similarly, ρ

(Q;Mc)

−,τ(M) = ρ
(Mc)
−,τ , etc., when the context allows

that.
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Since the vector ρ
(Mc)
−,τ ∈ Rn−m depends linearly on τ(M), the map

ψM : RM → Rn, τ
(M) 7→ c(M

c)(τ(M)),

is an injective homomorphism of linear spaces. We set E f f (Q;Mc) = ψM
(
RM) and note that E f f (Q;Mc) is an m-dimensional subspace of Rn.

Below we use also the short notation E f f (M
c) = E f f (Q;Mc) when the matrix Q is given by default.

Lemma 2.1. Let K and M be proper subsets of the set of indices [n] with K ⊂M. Let Q(Kc) and Q(Mc) be invertible submatrices of Q. The
following two statements are equivalent:
(i) One has c(K

c)(τ) ∈ h(τ(M)).
(ii) One has c(K

c)(τ) = c(M
c)(τ).

Proof. We have h(τ(M))⊂ h(τ(K)) and let us assume K 6= M. It is enough to prove that (i) implies (ii). Let c(K
c)(τ) ∈ h(τ(M)). We remind

that the hyperplane h( j) has equation h( j) : x j = τ j for any j ∈M. In particular, for each j ∈ Kc \Mc = M \K we obtain c(K
c)

j (τ) = τ j.

Therefore c(K
c)(τ)Mc is a solution of the equation (2.1). The uniqueness of this solution implies c(K

c)(τ) = c(M
c)(τ).

Corollary 2.2. One has

E f f (K
c)∩h

(
τ
(M)
)
⊂ E f f (Mc) .

Now, let us fix all components of τ(M) ∈ RM , except r = τ` for some ` ∈ M, so τ(M) = τ({`},M\{`})(r). When we vary r ∈ R, then
τ({`},M\{`})(r) describes a straight line in RM and hence c(M

c)(τ({`},M\{`})(r)) describes a straight line in Rn which we denote by E f f (Q;Mc)
` .

Its ray {c(Mc)(τ({`},M\{`})(r)) | r ≥ b}, b ∈ R, is denoted by E f f (Q;Mc)
`b+ .

Let us set
γ
(Q)
M (τ) = α(Q;M)(τ)−α(Q;Mc)(c

(Q;Mc)
i1 (τ), . . . ,c(Q;Mc)

in−m
(τ)).

Since α(Q; /0)(x) = 0 and c(Q;[n])
1 (τ) = · · ·= c(Q;[n])

n (τ) = 0, we obtain γ
(Q)
/0 (τ) = 0. We write γ

(Q)
M (τ) = γM(τ) when the matrix Q is known

from the context.
It follows from Lemma A.2, (i), that γM(τ) is a quadratic form in τ(M).
Let us move the origin of the coordinate system by the substitution x = z(τ(M))+ c(M

c)(τ(M)). Then the restrictions of the components of
both x(M

c) and z(M
c)(τ(M)) on h(τ(M)) are coordinate functions in this (n−m)-dimensional affine space.

Let v(x) = txQx be the quadratic form produced by the symmetric nonzero n×n-matrix Q. Thus, Qa : v(x) = a is a quadric in Rn for generic
a ∈ R and the real variety qa,τ(M) = Qa∩h(τ(M)) is defined in h(τ(M)) by the equation

tx(M
c)Q(Mc)x(M

c)+2t
ρ
(Mc)
−,τ x(M

c)+αM(τ)−a = 0. (2.2)

Let us set

v(M
c)(z(τ(M))) = tz(M

c)(τ(M))Q(Mc)z(M
c)(τ(M)). (2.3)

In case the principal submatrix Q(Mc) is invertible, Lemma A.3 implies that v(x) = v(M
c)(z(τ(M)))+ γM(τ(M)) on h(M), and in terms of

z-coordinates the equation (2.2) has the form

v(M
c)(z(τ(M))) = a− γM(τ(M)). (2.4)

2.2. Intersections of ellipsoids and affine subspaces

Let v(x) = txQx be a positive definite quadratic form produced by the symmetric (positive definite) n× n-matrix Q. This being so,
Qa : v(x) = a is an ellipsoid in Rn for a > 0, Q0 = {0}, and Qa = /0 for a < 0. In particular, Q(Mc) is a principal, hence positive definite,
submatrice of Q. Thus, the quadratic form (2.3) is positive definite.
In accord with (2.2) and (2.4), we establish parts (ii), (iii), and (iv) of the next theorem. Part (i) is proved in Lemma A.2, (ii).

Theorem 2.3. Let the quadratic form v(x) = txQx be positive definite.
(i) If M 6= /0, then the quadratic form γM(τ) is positive definite.
(ii) If a > γM(τ), then qa,τ(M) is an ellipsoid in the (n−m)-dimensional vector space h(τ(M)) with center c(M

c)(τ) and Q(Mc)-radius√
a− γM(τ).

(iii) If a = γM(τ), then qa,τ(M) = {c(M
c)(τ)}.

(iv) If a < γM(τ), then the set qa,τ(M) is empty.

Remark 2.4. We remind that ellipsoid in an one-dimensional affine subspace is a set consisting of two points and its center is the midpoint.

Remark 2.5. In accord with Lemma 3.2, the affine subspace h(τ(M)) is tangential to the ellipsoid Qa, a = γM(τ), at the point x = c(M
c)(τ).

Remark 2.6. In view of the previous remark, Lemma 2.1 has transparent geometrical meaning: If the subspace h(τ(M)) of h(τ(K)) passes
through the point x = c(K

c)(τ), then h(τ(M)) is also tangential to Qa at x.

We obtain immediately the following corollary:
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Corollary 2.7. (i) For any x ∈ h(τ(M)) one has v(x)≥ γM(τ) and an equality holds if and only if x = c(M
c)(τ).

(ii) The point c(M
c)(τ) ∈ h(τ(M)) is the foot of Q-perpendicular from the origin O to the affine subspace h(τ(M)) and one has

distQ
(

O,h
(

τ
(M)
))

= c(M
c)(τ)Q =

√
γM(τ).

Corollary 2.8. Let K and L be disjoint subsets of M with K∪L = M. One has
(i) If a= γM(τ(M)), then the trace qa,τ(K) of the ellipsoid Qa on the affine space h(τ(K)) is nonempty and the affine subspace h(τ(M))⊂ h(τ(K))

is tangential to the ellipsoid qa,τ(K) at the point c(Q;Mc)(τ(M)).

(ii) c(Q;Mc)(τ(M)) = c(Q;Kc)(τ(K))+ c(Q(Kc);Mc)(τ(L)− c(Q;Kc)
L (τ(K)))

and

(iii) γ
(Q)
M (τ(M)) = γ

(Q)
K (τ(K))+ γ

(Q(Kc))
L (τ(L)− c(Q;Kc)

L (τ(K))).

Proof. Both assertions hold when one of the sets M, K, or L, is empty.
(i) The equalities

qa,τ(M) = qa,τ(K) ∩h(τ(L)) = qa,τ(K) ∩h(τ(M)) = Qa∩h(τ(M))

and Theorem 2.3, (ii) – (iv), yield that under the condition a = γM(τ(M)) we have

qa,τ(K) ∩h(τ(M)) = {c(Q;Mc)(τ(M))}. (2.5)

In particular, a ≥ γK(τ
(K)) and in this case qa,τ(K) is an ellipsoid in the vector space h(τ(K)) endowed with coordinate functions

(z(K
c)

s (τ(K)))s∈Kc . The point {c(Q;Kc)(τ(K))} is both the origin of the coordinates and the center of the ellipsoid qa,τ(K) which has equation

tz(K
c)(τ(K))Q(Kc)z(K

c)(τ(K)) = a− γK(τ
(K)).

Therefore we have
qa,τ(K) = Q(Kc)

a−γK(τ(K))
.

Because of (2.5), the trace h(τ(M)) of h(τ(L)) on h(τ(K)) is tangential to qa,τ(K) at the point c(Q;Mc)(τ(M)) (Note that in case qa,τ(K) =

{c(Q;Mc)(τ(M))}we have c(Q;Mc)(τ(M)) = c(Q;Kc)(τ(K)) and h(τ(M)) is also tangential to qa,τ(K) at the point c(Q;Mc)(τ(M)) — see Remark 3.1).

(ii) The affine subspace h(τ(M)) is defined in h(τ(K)) by the equations z(K
c)

s (τ(K)) = τs− c(Q;Kc)
s (τ(K)), s ∈ L (we have L ⊂ Kc). Hence

the difference c(Q;Mc)(τ(M))− c(Q;Kc)(τ(K)) of points in the affine subspace h(τ(K)) ⊂ Rn coincides with the vector c(Q(Kc);Mc)(τ(L)−

c(Q;Kc)
L (τ(K))) and we have obtained part (ii). The equalities a− γK(τ

(K)) = γ
(Q(Kc))
L (τ(L)− c(Q;Kc)

L (τ(K))) and a = γM(τ(M) yield assertion
(iii).

Remark 2.9. Since the vector c(Q(Kc))(τ(K)) is Q-perpendicular to the affine subspace h(τ(K)) and since the vector c(Q(Kc);Mc)(τ(L)−
c(Q;Kc)

L (τ(K))) lies in this subspace, part (ii) of the above corollary is Pythagorean theorem.

Remark 2.10. It follows from Theorem of three perpendiculars that the vector c(Q(Kc);Mc)(τ(L)− c(Q;Kc)
L (τ(K))) is Q-perpendicular to the

affine subspace h(τ(M)).

2.3. A bundle

Let us consider the (m+ 1)-dimensional space R×RM with generic vector t(a,τ(M)), endowed with standard topology and let γ̂M =
{t(a,τ(M)) ∈ R×RM | a ≥ γM(τ)}. The set γ̂M is the closed region in R×RM , which consists of all points above the graph ΓM of the
quadratic function a = γM(τ) when M 6= /0 and γ̂ /0 = [0,∞)×{0}. In all cases pra(γ̂M) = [0,∞). The set ΓM is an algebraic variety (hence a
closed set) in R×RM and the difference γ̃M = γ̂M\ΓM is an open set, both being nonempty.
Let γM(τ) = tτ(M)Rτ(M), where R is a symmetric M×M-matrix. In accord with Theorem 2.3, (i), in case M 6= /0, the matrix R is positive
definite. If M = /0, then R is the empty matrix. Given a≥ 0, we set Ra = {τ(M) ∈RM | γM(τ(M)) = a} and note that Ra is an ellipsoid in RM .
Any level set Γa,M = {t(a,τ(M)) ∈ R×RM | a = γM(τ)}, a > 0, is isomorphic to the ellipsoid Ra in RM , and Γ0,M = {(0,0)}. Given a≥ 0,

let us denote E f f (a;Mc) =
{

x ∈ Rn | x = c(M
c)(τ), t

(
a,τ(M)

)
∈ Γa,M

}
. We define a morphism of real algebraic varieties by the rule

ϕM : Rn→ R×RM , x 7→t
(

v(x),x(M)
)
.

Theorem 2.3 yields ϕM(Rn)= γ̂M , we set ΦM =ϕ
−1
M (γ̂M), and denote the restriction of ϕM on ΦM by the same letter. Since ϕ

−1
M (t(a,τ(M)))=

qa,τ(M) , we establish the following:

Theorem 2.11. Let ξ = (ΦM ,ϕM , γ̂M) be the bundle defined by the map ϕM .
(i) The restriction ξ|γ̃M

is a fibration with fibres ϕ
−1
M (t(a,τ(M))) = qa,τ(M) , t(a,τ(M))∈ γ̃M , which are ellipsoids in Rn−m with centers c(M

c)(τ).

(ii) The restriction ξ|ΓM
is an isomorphism of real algebraic m-dimensional varieties with inverse isomorphism ΓM → E f f (M

c), t(a,τ(M)) 7→
c(M

c)(τ), which maps any level set Γa,M onto E f f (a;Mc).

Corollary 2.12. The set E f f (a;Mc) is a real algebraic subvariety of Qa, which is isomorphic via ξ | ΓM to the ellipsoid Γa,M .

Taking into account Remark 2.5, we obtain immediately the following:

Corollary 2.13. The family {h(τ(M)) | τ(M) ∈ Γa,M} consists of all (n−m)-dimensional affine spaces in Rn, which are both orthogonal to
the m-dimensional vector subspace generated by the vectors e j, j ∈M, and tangential to the ellipsoid Qa.
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2.4. A shadow

Let us denote by ζM the restriction of the second projection pr2 : R×RM →RM on γ̂M . The composition φM = ζM ◦ϕM is the restriction on
ΦM of the projection of Rn parallel to the subspace W defined by x(M) = 0: φM : Rn→W⊥, φM(x) = x(M), and, moreover, φ

−1
M (τ(M)) =

h(τ(M)). Since the set E f f (a;Mc) ⊂ Qa is mapped via φM onto the ellipsoid Ra in RM and since the internal points of Qa are mapped onto
the internal points of Ra, we can formulate the result from Corollary 2.13 as solution of a shadow problem:

Proposition 2.14. All (n−m)-dimensional affine spaces in Rn with common direction vector subspace W, which are also tangential to an
ellipsoid Qa in Rn, intersect the orthogonal complement W⊥ at the points of an ellipsoid Ra in W⊥ ' RM . All affine spaces in Rn which
have nonempty intersection with the interior of Qa and are parallel to W intersect W⊥ at the internal points of Ra.

3. Ellipsoids and hyperplanes

3.1. Ellipsoids and their tangent spaces

Let v(x) = txQx be a positive definite quadratic form. The equation of the tangent space θx0 of the ellipsoid Qa : v(x) = a, a > 0, at the point
x0 ∈ Qa is

θx0(x) = a,

where θx0(x) =
tx0Qx. For all x ∈ Qa we have x 6= 0 and since the matrix Q has rank n, we obtain Qx0 6= 0. In particular, θx0 is a hyperplane

and Qa is a smooth hypersurface in Rn.

Remark 3.1. The tangent space of the ”ellipsoid” Q0 = {O} at its only point x0 = O is Rn. In particular, any linear subspace of Rn is
tangential to Q0.

Let a > 0 and let us fix a point x0 ∈ Qa. For any vector u ∈ Sn−1 we denote for short by Lu the line {z ∈ Rn | z = x0 + tu, t ∈ R}.

Lemma 3.2. One has

Lu∩Q≤a = {x0 + tu | 0≤ t ≤−2
θx0(u)
v(u)

}, Lu∩Qa = {x0,x0−2
θx0(u)
v(u)

u}.

Proof. The inequality v(x0 + tu)≤ a is equivalent to 2θx0(u)t + v(u)t2 ≤ 0 and the equality holds if and only if t = 0 or t =−2
θx0 (u)
v(u) .

Lemma 3.3. Let x0 ∈ Qa.
(i) One has Q≤a ⊂ θx0(≤).
(ii) One has Q≤a∩θx0 = Qa∩θx0 = {x0}.
(iii) One has Q≤a\{x0} ⊂ θx0(<).

Proof. (i) Let y ∈ Q≤a, y 6= x0, and let y ∈ Lu. In accord with Lemma 3.2, y = x0 + tu where 0 ≤ t ≤ −2
θx0 (u)
v(u) . We have θx0(y) =

θx0(x0)+ tθx0(u) = a+ tθx0(u)≤ a−2
(θx0 (u))

2

v(u) ≤ a.

(ii) Let us suppose that there exists a point y, y 6= x0, with y ∈Q≤a∩θx0 and let u = 1
‖y−x0‖ (y−x0). Then θx0(u) = 0, y ∈ Lu, and Lemma 3.2

implies Lu∩Q≤a = {x0}— a contradiction with y ∈ Lu∩Q≤a. Now, because of the inclusions {x0} ⊂ Qa∩θx0 ⊂ Q≤a∩θx0 = {x0}, part
(ii) is proved.
Parts (i) and (ii) yield part (iii).

We remind that hr is a hyperplane in Rn, defined by the equation π(x) = r, where π(x) is a non-zero linear form, and qa,r = Qa∩hr.

Lemma 3.4. Let x0 ∈ qa,r.
(i) If Qa ⊂ hr(≤), then hr = θx0 .
(ii) If Q<a0 ⊂ hr0(<), then Qa ⊂ hr(≤).

Proof. (i) When y varies through Qa\{x0}, then u = 1
‖y−x0‖ (y− x0) varies bijectively through Sn−1 ∩θx0(<). On the other hand, since

Qa ⊂ hr(≤), then y ∈ Qa\{x0} yields π(y)≤ r, that is, π(x0−2
θx0 (u)
v(u) u)≤ r, and hence θx0(u)π(u)≥ 0 for all u ∈ Sn−1∩θx0(<). The last

inequality also holds for all u ∈ Sn−1∩θx0(>) because θx0(−u)π(−u)≥ 0. Thus, we have θx0(u)π(u)≥ 0 for all u ∈ Sn−1, therefore for all
vectors u ∈ Rn. If the linear forms θx0 and π are not proportional, then after an appropriate change of the coordinates, θx0 and π can serve as
coordinate functions in Rn — a contradiction.
(ii) Let y ∈ Qa and let us set yn = (1− 1

n )y for any positive integer n. Then yn ∈ Q<a0 and limn→∞ yn = y. Since Q<a0 ⊂ hr0(<), we obtain
hr0(yn)< r0, hence hr0(y)≤ r0.
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3.2. Some extremal properties

Let hr : π(x) = r be a hyperplane in Rn, π(x) = p1x1 + · · ·+ pnxn, and let us set p = t(p1, . . . , pn). We denote qa,r = Qa∩hr.

Lemma 3.5. Let x0 ∈ Rn\{0}, a > 0, and r > 0. The following four statements are equivalent:
(i) One has x0 ∈ qa,r and Qx0 ∈ Rp.
(ii) One has rQx0 = ap and a = r2(tpQ−1 p)−1.
(iii) One has x0 ∈ qa,r and θx0 = hr.
(iv) One has qa,r = {x0}.

Proof. (i) =⇒ (ii) Let Qx0 = bp, b ∈ R. We have

a = v(x0) =
t x0Qx0 =

tx0(bp) = btpx0 = bπ(x0) = br,

therefore rQx0 = ap. On the other hand, we obtain

a = tx0Qx0 =
a
r

tpQ−1 a
r

p =
a2

r2
tpQ−1 p,

hence a = r2(tpQ−1 p)−1.
(ii) =⇒ (i) We have Qx0 ∈ Rp, and, moreover, tx0 = a

r
tpQ−1. π(x0) =

tpx0 = tx0 p = a
r

tpQ−1 p = a
r

r2

a = r, hence x0 ∈ hr. Finally,
v(x0) =

tx0Qx0 =
a
r

tpQ−1Qx0 =
a
r

tpx = a
r π(x0) = a, therefore x0 ∈ Qa.

The equivalence of parts (i) and (iii) is straightforward. Part (iii) and Lemma 3.3, (ii), imply part (iv).
(iv) =⇒ (iii) Let L = {x0 + tz | t ∈ R}, z 6= 0, be a line in hr , that is, π(z) = 0. The roots of the quadratic equation v(x0 + tz) = a correspond
to the intersection points of the line L and the ellipsoid Qa. Taking into account that v(x0 + tz) = v(x0)+2θx0(z)t + v(z)t2, we obtain the
equivalent equation 2θx0(z)t + v(z)t2 = 0. Since qa,r = {x0}, this quadratic equation has a double root t = 0, that is, θx0(z) = 0. Thus, we
obtain L⊂ θx0 and therefore θx0 = hr.

Corollary 3.6. Under conditions (i) – (iv) one has θx0(x) =
a
r π(x).

Remark 3.7. If x0 = 0, then parts (i), (ii), and (iv) of Lemma 3.5 hold for a = r = 0.

Let us set cp = (tpQ−1 p)−1, E(Q)
p = {(a,r) | a = cpr2,r ≥ 0}, x(a,r) = a

r Q−1 p for any (a,r) ∈ E(Q)
p with r > 0, x(0,0) = 0, and

E f (Q)
p = {x ∈ Rn | x = x(a,r), (a,r) ∈ E(Q)

p }.

Thus, the set e f (Q)
p consists of all vectors x ∈ Rn which satisfy the four equivalent conditions from Lemma 3.5. Note that 0 ∈ e f (Q)

p and if

x(a,r) ∈ e f (Q)
p , then {x(a,r)}= qa,r. In other words, Lemma 3.5 implies

Corollary 3.8. One has

e f (Q)
p = ∪r≥0,a=cpr2 qa,r.

In case M is a singleton, Theorem 2.3 yields the following two corollaries:

Corollary 3.9. Let x,x0 ∈ e f (Q)
p , x = x(a,r), x0 = x(a0,r0).

(i) If a = a0, then qa,r0 = {x0}.
(ii) If a > a0, then qa,r0 is an ellipsoid in the hyperplane hr0 .
(iii) If a < a0, then qa,r0 = /0.

Corollary 3.10. Let x,x0 ∈ e f (Q)
p , x = x(a,r), x0 = x(a0,r0).

(i) If r = r0, then qa0,r = {x0}.
(ii) If r < r0, then qa0,r is an ellipsoid in the hyperplane hr0 .
(iii) If r > r0, then qa0,r = /0.

Corollaries 3.9 and (3.10) imply the following two equivalent propositions:

Proposition 3.11. Let x,x0 ∈ e f (Q)
p , x = x(a,r), x0 = x(a0,r0). One has

r0 = max
qa0 ,r 6= /0

r and a0 = min
qa,r0 6= /0

a.

Proposition 3.12. Given x0 ∈ e f (Q)
p , one has

π(x0) = max
x∈e f (Q)

p ,v(x)≤v(x0)

π(x) and v(x0) = min
x∈e f (Q)

p ,π(x)≥π(x0)

v(x).

It turns out that we can trow out the constraint condition x ∈ e f (Q)
p from Proposition 3.12. We have the following theorem (compare, for

example, with [3, Section 2]).
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Theorem 3.13. Let x0 ∈ qa0,r0 and r0 ≥ 0. The following six statements are equivalent:

(i) One has x0 ∈ e f (Q)
p .

(ii) One has
π(x0) = max

v(x)≤a0

π(x) and v(x0) = min
π(x)≥r0

v(x).

(iii) One has

π(x0) = max
v(x)≤a0

π(x). (3.1)

(iv) One has
π(x0) = max

v(x)=a0

π(x).

(v) One has
v(x0) = min

π(x)≥r0

v(x).

(vi) One has
v(x0) = min

π(x)=r0

v(x).

Proof. Below we prove only these implications which are not straightforward.
If r0 = 0 and x0 = x(a0,0) ∈ e f (Q)

p , then a0 = 0, x0 = 0, and the equivalences hold. Now, let r0 > 0. In particular, we have x0 6= 0.
(i) =⇒ (ii) According to Lemma 3.5, (iii), and Corollary 3.6 we have x0 ∈ qa0,r0 and θx0(x) =

a0
r0

π(x). Let us suppose v(x)≤ a0 for x ∈ Rn.
Then Lemma 3.3, (i), imply π(x) ≤ r0. Now, let π (x) ≥ r0, that is, θx0(x) ≥ a0 for some x ∈ Rn. In this case Lemma 3.3, (iii), yields
v(x)≥ a0.
(iii) =⇒ (i) Let x0 satisfies condition (3.1). Lemma 3.4, (i), imply θx0 = hr0 . Now Lemma 3.5, (iii), finishes the proof.
(v) =⇒ (i). Since Q<a0 ⊂ hr0(<), Lemma 3.4 yields θx0 = hr0 . In accord with Lemma 3.5, (iii), part (i) holds.

4. Markowitz geometry

In this section we unite the results from the previous two sections and give complete characterization of the tangent points of a family of
concentric ellipsoids and a family of parallel hyperplanes in an affine subspace of Rn.

4.1. The equality

Let M 6= /0, ` ∈ M, and let us set L = {`}, K = M \ L. Let us fix all components of τ(K) ∈ RK : τ(K) = µ(K), and set h(K) = h(µ(K)),
ρ(K) = c(Q;Kc)(µ(K)), γ(K) = γK(µ

(K)). We denote r = τ`, ρ = ρ
(K)
` , r′ = r−ρ , so τ(M) = τ(L,K)(r). Finally, we set a = γM(τ(L,K)(r)).

We remind that after the translation z = x−ρ(K) of the coordinate system, (zs)s∈Kc , where zs = z(K
c)

s , is a system of coordinate functions on
the affine subspace h(K) with origin ρ(K). In this case h(τ(M)) = h(τ(L,K)(r)) is a hyperplane in h(K) with equation z` = r′. In particular,
the corresponding `-th coordinate vector p ∈ RKc

(the `-th component of p is 1 and all other components are zeroes) is a normal vector of
h(τ(L,K)(r)) in h(K). We set π(x) = x`, π(Kc)(z) = z`, and note that the linear form π(Kc)(z) is the restriction on h(K) of the linear form π(x),
written in terms of z. It follows from Corollary 2.8, (i), that the trace qa,µ(K) of the ellipsoid Qa on affine space h(K) is nonempty and the

hyperplane h(τ(L,K)(r)) is tangential to the ellipsoid qa,µ(K) at the point c(Q;Mc)(τ(L,K)(r)).

In order to stick together notation from sections 2 and 3 in this case, we set a′ = a−γ(K), h(τ(L,K)(r)) = hr′ , qa′,r′ = qa,µ(K) ∩hr′ = Q(Kc)
a′ ∩hr′ .

Theorem 4.1. (i) If r′ ≥ 0, then

x(a′,r′) = c(Q;Mc)(τ(L,K)(r)) (4.1)

and x(0,0) = ρ(K).
(ii) One has

e f f (Q;Mc)
`ρ+ = e f (

Q(Kc))
p .

Proof. (i) The affine space h(τ(L,K)(r)) is a hyperplane in h(K), which is tangential to the ellipsoid qa,µ(K) at the point c(Q;Mc)(τ(L,K)(r)). In

particular, Q(Kc)
a′ ∩hr′ = {c(Q;Mc)(τ(L,K)(r))} and Lemma 3.5, (ii), yields a′ = cpr′2 for cp = (tpQ−1 p)−1. Therefore, when r′ ≥ 0, we have

(a′,r′) ∈ E(Q)
p and the equality (4.1) holds. In addition, if r′ = 0, then a′ = 0, γM(τ(L,K)(r)) = γ(K), and Corollary 2.8, (ii), (iii), implies

γ
(Q(Kc))
L (τ(L)− c(Q;Kc)

L (µ(K))) = 0, hence

c(Q(Kc);Mc)((τ(L)− c(Q;Kc)
L (µ(K)))) = 0.

In other words,
c(Q;Mc)(τ(L,K)(ρ)) = c(Q;Kc)(µ(K)).

This shows that x(0,0) = c(Q;Kc)(µ(K)) = ρ(K) and the equality (4.1) proves part (i) which, in turn, yields part (ii).
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Theorem 4.2. Let x0 = c(Q;Mc)(τ(L,K)(r0)) ∈ e f f (Q;Mc)
`ρ+ . One has r0 = π(x0) and if a0 = v(x0), then

π(x0) = max
x∈h(K),v(x)≤a0

π(x) and v(x0) = min
x∈h(K),π(x)≥r0

v(x). (4.2)

Proof. According to Theorem 4.1, we have r′0 = r0−ρ ≥ 0, hence x0 = x(a0,r0) ∈ e f (
Q(Kc))

p . Let x0 = z0 +ρ(K). Theorem 3.13, (i), (ii),
implies

π
(Kc)(z0) = max

z∈h(K),v(Kc)(z)≤a′0
π
(Kc)(z)

and
v(K

c)(z0) = min
z∈h(K),π(Kc)(z)≥r′0

v(K
c)(z).

Since π(Kc)(x) = π(z)+ρ , v(x) = v(K
c)(z)+ γ(K) on h(K), and since r′0 = r0−ρ , a′0 = a0− γ(K), we establish the extremal property (4.2).

4.2. The interpretation

Let k, m, and n be integers with n≥ 2, 0≤ k < n−1, m = k+1, and let M = {n− k,n− k+1, . . . ,n}, K = {n− k+1, . . . ,n}, L = {n− k}.
Let h( j) : π( j)(y) = τ j, j ∈M, be linearly independent affine hyperplanes in Rn. We fix h(n) : y1 + · · ·+ yn = 1, so τn = 1, and denote this
hyperplane by Π. Since π( j)(y) are linearly independent linear forms, we can change the coordinates in Rn: y = Ax, in such a way that the
hyperplane h( j) has equation x j = τ j, j ∈M, and, moreover, xi = yi, i ∈ [n]\M.
We fix τ(K): τ(K) = µ(K) (µn = 1), and interpret h(n) = Π as the hyperplane consisting of all financial portfolios with n assets (here ys is
the relative amount of money invested in the s-th asset, s = 1, . . . ,n). The affine subspace h(n−k+1)∩ . . .∩h(n−1) (which is equal to Rn if
m = 2) represents several additional linear constrain conditions and its trace on Π is the affine space C = h(K) = h(n−k+1)∩h(n−1)∩ . . .∩Π

of linear constrain conditions on Π.
We denote `= n− k, π(`)(y) = π(y) and let r = τ` be variable. When the coefficient in front of ys in the linear form π(y) is the expected
return on s-th asset, s = 1, . . . ,n, the trace of the hyperplane h = h(`), h : π(y) = r, on Π may be interpreted as the set of all financial portfolios
with expected return r. Moreover, the trace of the hyperplane h on C may be interpreted as the set of all financial portfolios with expected
return r, that obey the above linear constrain conditions on Π.
On the other hand, if v(x) = txQx, where tA−1QA−1 is the n×n covariance matrix produced by the expected returns of the individual assets,
we may interpret v(x) as the risk of the portfolio x. Theorem 4.2 yields that the ray E = e f f (Q;Mc)

ellρ+ with endpoint ρ(K) is the locus of all
Markowitz efficient portfolios which satisfy the linear constraint conditions C. It turns out that the value v(ρ(K)) is the absolute minimum of
the risk and in terms of x-coordinates the `-th component of ρ(K) is the absolute minimum of the corresponding expected return r under the
given constrains.
In order to relate this approach to the classical one, we have to study the intersection E∩∆, where ∆ is the trace of the unit simplex in Π on C,
because the members of E ∩∆ are the efficient portfolios that have no short sales. Moreover, the properties of this intersection characterize
the financial market.

A. Appendix

In this appendix we use freely notation introduced in the main body of the paper.

A.1. Three lemmas

The partition Mc∪M = [n] of the set of indices [n] produces the following partitioned matrices: Any vector x = t(x1, . . . ,xn) ∈ Rn can be
visualized as x = t(x(M

c),x(M)) and any n×n-matrix Q can be visualized as(
Q(Mc) Q(Mc×M)

Q(M×Mc) Q(M)

)
.

Lemma A.1. Let Q be a symmetric n×n-matrix and let v(x) = txQx be the corresponding quadratic form. One has

v(x) = tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Proof. We have

v(x) = txQx = (tx(M
c), tx(M))

(
Q(Mc) Q(Mc×M)

tQ(Mc×M) Q(M)

)
t(x(M

c),x(M)) =

tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Below we assume that Q(Mc) is an invertible matrix.
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Lemma A.2. Let
c(M

c)
Mc (x(M)) =−(Q(Mc))−1Q(Mc×M)x(M), c(M

c)(x(M)) = t(c(M
c)

Mc (x(M)),x(M)),

and let γM(x(M)) =−tc(M
c)

Mc (x(M))Q(Mc)c(M
c)

Mc (x(M))+ tx(M)Q(M)x(M).

(i) γM(x(M)) is a quadratic form in x(M),

γM(x(M)) = tx(M)[Q(M)− tQ(Mc×M)(Q(Mc))−1Q(Mc×M)]x(M),

and one has γM(x(M)) = v(c(M
c)(x(M))).

(ii) If v(x) is a positive definite quadratic form in x, then γM(x(M)) is a positive definite quadratic form in x(M).

Proof. (i) We begin by noting that since

tc(M
c)

Mc (x(M))Q(Mc)c(M
c)

Mc (x(M)) = tx(M)tQ(Mc×M)(Q(Mc))−1QMc×Mx(M),

we obtain the above expression for γM(x(M)). On the other hand, Lemma A.1 implies

v(c(M
c)(x(M))) =

tc(M
c)

Mc (x(M))Q(Mc)c(M
c)

Mc (x(M))+2tc(M
c)

Mc (x(M))Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Taking into account that Q(Mc×M)x(M) =−Q(Mc)c(M
c)

Mc (x(M)), we establish the identity.
(ii) In is enough to note that c(M

c)(x(M)) = 0 if and only if x(M) = 0.

Now, let us translate the system of coordinates by the rule

z(τ(M)) = x− c(M
c)(τ(M)).

Lemma A.3. If x(M) = τ(M), then
v(x) = tz(M

c)Q(Mc)z(M
c)+ γM(τ(M)).

Proof. In accord with Lemma A.1, we have

v(x) = tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)

τ
(M)+ t

τ
(M)Q(M)

τ
(M) =

tx(M
c)Q(Mc)x(M

c)−2tx(M
c)Q(Mc)c(M

c)
Mc (τ(M))+ t

τ
(M)Q(M)

τ
(M) =

t(z(M
c)+ c(M

c)
Mc (τ(M)))Q(Mc)(z(M

c)+ c(M
c)

Mc (τ(M)))

−2t(z(M
c)+ c(M

c)
Mc (τ(M)))Q(Mc)c(M

c)
Mc (τ(M))+ t

τ
(M)Q(M)

τ
(M) =

tz(M
c)Q(Mc)z(M

c)+ tc(M
c)

Mc Q(Mc)c(M
c)

Mc +2tz(M
c)Q(Mc)c(M

c)
Mc −

2tz(M
c)Q(Mc)c(M

c)
Mc −2tc(M

c)
Mc Q(Mc)c(M

c)
Mc + t

τ
(M)Q(M)

τ
(M) =

tz(M
c)Q(Mc)z(M

c)+ γM(τ(M)).
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