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ON TWO TIMES DIFFERENTIABLE PREINVEX AND
PREQUASIINVEX FUNCTIONS

IMDAT ISCAN, MAHIR KADAKAL, AND HURIYE KADAKAL

ABSTRACT. The main goal of this paper is to establish a new identity for
functions defined on an open invex subset of real numbers. By using this
identity, the Holder integral inequality and power mean integral inequality, we
introduce some new type integral inequalities for functions whose powers of
second derivatives in absolute values are preinvex and prequasiinvex.

1. PRELIMINARIES

A function f: I CR — R is called convex if the inequality

fltu+ (1 =t)o) <if (u)+ (1 =1)f (v)

holds for all uw,v € I and t € [0,1]. If the above inequality reverses, then the
function f is said to be concave on interval I # (). This definition is well known in
the literature.

Suppose that f : I € R — R is a convex function on the interval I of real
numbers and aq,as € I with a; < as. The celebrated inequality

f<a1+a2) < 1 /azf(x)dl’§ f(ay) + f(a2)
a2 — a1 Jg,

2 2

is well-known in the literature as the inequality of Hermite-Hadamard for convex
functions [I8]. We can estimate the mean value of a continuous convex or con-
cave function by means of the classical Hermite-Hadamard inequality. Hadamard’s
inequality for convex or concave functions has recently took too much attention
and a remarkable variety of refinements and generalizations have been found (see
[4,[8, 10 12, [18]). A usage of Hermite-Hadamard inequality may result in obtaining
one of the most useful inequalities in mathematical analysis [5].
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Definition 1.1. A function f : I C R — R is said to be quasi-convex if the
inequality

ftu+(1—t)v) <max{f(uv),f(v)}
holds for all u,v € I and t € [0, 1].

We recall that any convex function is a quasi-convex function. Furthermore,
there exist quasi-convex functions which are not convex [6].

Definition 1.2 ([20]). Let K be a non-empty subset in R” and n: K x K — R".
Let v € K, then the set K is said to be invex at v with respect to 1 (-, ), if
v+itn(u,v) € K, Vo,u € K and t € [0,1].

K is said to be an invex set with respect to 7 (-, -) if K is invex at each v € K. The
invex set K is also called n-connected set.

It is true that every convex set is also an invex set with respect to 7 (u,v) = u—wv,
but the converse is not necessarily true, see [I4] [21] and the references therein. For
the sake of simplicity, we always assume that K = [v,v + tn (u, v)], unless otherwise
specified [1].

Definition 1.3 ([20]). A function f: K — R on an invex set K C R is said to be
preinvex with respect to n (-, ), if

flu+tnv,u)) < (1 —2t)f(u)+tf(v), Vu,v € K, t €[0,1].

It is to be noted that every convex function is preinvex with respect to the map
7 (u,v) = v — u but the converse is not true see for instance.

Definition 1.4 ([2]). A function f: K — R on an invex set K C R is said to be
prequasiinvex with respect to 7 (-, ), if
fu+tn(v,u)) <max{f(u), f(v)}, Yu,v € K, t €[0,1].

We know that every quasi-convex function is a prequasiinvex with respect to the
mapping n(v,u) = v — u but the converse does not hold, see for example [2].

Definition 1.5 ([14]). Let S C R be an open invex subset with respect to the
mapping 7 (+,+) : S x .S — R. We say that the function satisfies the Condition C if,
for any z,y € S and any ¢ € [0, 1],

1y y +tn(x,y) = —tn(z,y) (1.1)
n(zy+in(z,y) = (1 =1)n(z,y). (1.2)

Remark 1.6. Note that, from the Condition C, we have
n(y+ten (@), y+tn(z,y) = (b2 — 1) n(z,y) (1.3)

for any x,y € S and any 1,2 € [0, 1].
Really: Let u =y + ton (z,y) .
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(i) For t5 € [0, 1),

n(y+ten (z,y),y +tain (2, y) = n(u,u+ (¢ —t2) 0 (z,y)) (1.4)
and from
n(z,u) = n(z,y+tan(z,y))

= (1—-t2)n(z,y).

From here we get
n (z, u)
L—ty

n(z,y) =
Using (1.4)) and Condition C
n(y+tan(z,y),y + tan(z,y))

n(u,u+ (t1 —t2)n(z,y))
7 (u,wr b tzn(mt))

1— 1,
. t1 —to
= T e
= (ta—t1)n(z,y).
(i) For to =1, let a = y + 1 (z,y). From (1.1
ny+nzy),y+tn(zy) = nlea—(1-t)n(ey)

n(a,a+(1—t1)n(y, a))
= —(1-t)n(y,a)
= (1-t)n(zy).
Consequently, the equality is true.

In recent years, many mathematicians have been studying about preinvexity and
types of preinvexity. See for more information [7 [16] 17, 19, 20, 22].
Theorem 1.7 ([I5]). Let f : [a1,a1 + tn(az,a1)] — (0,00) be a preinvex function
on the interval of the real numbers K° (the interior of K) and aj,a9 € K° with
n(az,a1) > 0. Then the following inequalities hold:

20, +1(az, a1) 1 btz ) fla1) + f(a2)
r(Perge) sy [ om0

For several recent results on inequalities for preinvex and prequasiinvex functions
which are connected to (1.3), we refer the reader to [3, 9] [11], 13] and the references
therein.

Let 0 < aq < ag, throughout this paper we will use

A = Alai,a) = o + a2

2
a12)+1 _ a119+1
(p+1)(az —a1)

1

Lp(aflva@) ) ) al#a27p€R7 p#_170
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for the arithmetic and generalized logarithmic mean, respectively. Moreover, for
shortness, the notations

a=a(ar,az,m) = a1 + W, ar = ay (a1, a2,7) = ar _HM
and
Iy(a1, a2,m) := n(az,a1) (al + 77(c122,al)> I (a1 +n(az,a1))
ar+n(az,a1)
—f (a1 +n(az, a1)) (a1 +n(az,a1)) + f(a1)as +/ fl@)dz

ai

will be used.

2. MAIN RESULTS FOR OUR LEMMA

We will use the next Lemma to obtain our main results related with the prein-
vexity and prequasiinvexity.

Lemma 2.1. Let K C R be an open invex subset with respect to mapping n(+,) :
K x K — R" and a1,a2 € K with n(az,a;) > 0. Suppose that f: K — R is a
twice differentiable function on K such that f” € Lla1,a1 +n(az,a1)]. Then the
following identity holds:

olazan) (o + 2 1 oy 4 o)

a1+n(az,a1)
~f ez, an)) an + nfazsan)) + San)ar + [ f()ds

ai

1
~Gazsa) [ o (an +8E ) 0t
0

Proof. Integrating by parts and changing the variable and we have

1
772(02,CL1)/ t <a1 +t77(6122’al)> f"(a1 +tn(az, a1))dt
0

1

= laz,an) (ant + 272 1 o+ tn(an.a)

0

1
— (a1 +tn(az,a1)) f (a1 + tn(az,a1))]g +77(a27<11)/0 f (a1 +1tn(az, a1)) dt

= n(az,ar) <a1 + 17((122,a1)) [ (a1 + n(az, a1))

a1+n(az,a1)
~ (a1 +nlaz, 1)) f (ar + naz, ar)) + flar)ar + / f(@)d.

ai
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Theorem 2.2. Let K C R be an open invex subset with respect to mapping (-, ) :
K x K — R"™ and a1,as € K with n(az,a1) > 0. Suppose that f: K — R is a
twice differentiable function on K such that f"” € Llay,a1 +n(az,a1)]. If [f"|? is
preinver on K for g > 1, then the following inequality holds:

1
9 1
1 (n*(ag,a1)\ "
I < 2¢ [ —==
| f(a1,a27U)| > K ( P+l >

x [|f"(a2)|" Cry (a1, a2) + [f"(a1)|" Capy (a1, a2)]

Q=

L (2.1)

1,1
where;—{—afl and

n(as,a) [Lgﬁ (a,a1) — a1 Ll (a,al)] )
ay > 0, o> 0,
2(a1 + a) L1 (o, —ap) — 291 4 (a9HL, (—aq)9H1) |
Ciy (a1, az) = (a1 ) Q+1( 1) q+1 ( a(l <10) a)>0
—n(as, a1) [Lgﬁ (—a1,—a) + aLi (~ai, —a)] ,
a1 <0, a<0.

—n(az,a) [Lgﬁ (,a1) — aLl(a, al)} ,
ap >0, a>0,
-2 (a1 + @) ratt (, —a1) + 22 A (aqH, (*al)qﬂ) )

— 1
02777 (ala a2) = " o a1 <0, >0
b) )

n(ag,a) [LZE (a1, —a) + alLl(—a, —a)} ,

a1 <0, a<0.

Proof. If |f”|? for ¢ > 1 is preinvex on [a1,a; + n(az, a1)], using Lemma 2.1} the
Holder integral inequality and

" (a1 +tn(az, 1) < ¢[f"(a2)|" + (1 = ) [f"(a2) |,

we get

1
Ip(ar,anm)] < nPaza) / ] [f"(ar + tnlaz, ar))| de
0

1 L 1 3
(a2, a1) (/ tpdt) (/ athlf”(al+tn(a2,a1))lth>

772((12,(11)( a4 ! al? a9 ! . al? )
B (1l [ttt 17 o0l" [0 -0 e

IA

IN

1

aq
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_ (a2, a1) (2|f”(a2)|q /a

(p+1)7 \n*(az,a1)

2(x —ay)l|z|!dz

1

21/ (@)’ [° N
+ W/a (n(az,a1) — 2(x — a1)) |z| dgc)

1

1

+Lﬂw0q/amwmm)%mewW®>;

ay

o ; l
2 (L) (17 aa) Oy (ar,00) 1@ o an )]

The proof is completed. O

Corollary 1. Suppose that all the assumptions of Theorem[2.3 are satisfied. If we
choose n(az,a1) = ag — a1 then when |f"|? is convex on K for ¢ > 1 we obtain

aitas,, | fla)as — flar)a 1o
S (ag) - 11_a2—a1/a1 f(w)da

a2 — ay

1 [ (as —aq)? » 1
2t (122800 17 @)l Cr (an,an) + 1 (@) Ca . 0a)]
where
(as — a1) [Lgﬁ (4,a1) — aLl (A, al)] :
a; >0, A>0,
(3a1 4 az) LT T (A, —ay) — 294 (ATHE) (—ay)7tt),
C = g+1 q+1
1(a1,02) a1 <0, A>0,
~(az — a1) [Lgﬁ (—ar, —A) + a1 LY (—ay, —A)] :
a1 <0, A<O.
(a2 — 1) [LEL} (A, 1) — aLg (4,a1)]
a; >0, A>0,
Cs (a1,a2) = —(3a1 + a2)LgE (A, —a1) + zﬁTalA (Aq+1’ (_al)q+1) )
’ a; <0, A>0,
(a2 = @) [L4] (a1, =) + aLg (~ar, ~4)] |
a1 <0, A<O.

Remark 2.3. If the mapping 7 satisfies condition C' then by use of the preinvexity
of | f”|* we have

£ (a1 + tn(az, a1))|*

|f" (a1 +n(ag, a1) + (1 = t)n(ar, a1 + n(az, a1)))|*
t1f" (a1 4+ nlag, a))|* + (1 =) [f"(a1)|" . (2.2)

A
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for every t € [0,1]. If we use the inequality (2.2 in the proof of Theorem [2.2
then the inequality (2.1)) becomes the following inequality:

1 772(a27a1) g " q
(a1, a2,m)| < 24 o1 [1f" (a1 + n(az, a1))|" C1,y (a1, a2)

+1f"(a)l* Copy (a1, a2)] 7 - (2.3)

Q=

We note that by use of the preinvexity of |f”|?
|f" (a1 +n(az,a1))|" < [f"(a2)|*

Therefore, the inequality (2.3)) is better than the inequality (2.1)).

we get

Theorem 2.4. Let K C R be an open invex subset with respect to mapping 7 (-, ) :
K x K — R" and a1,a2 € K with n(az,a1) > 0. Suppose that f: K — R is a
twice differentiable function on K such that f"” € Llay,a1 +n(az,a1)]. If [f"|? is
preinver on K for ¢ > 1, then the following inequality holds:

1

1 1 =
[Ij(a1,a9,m)] < 270" (ag,a1)C3, (a1, a2)

(g+1) |f"(a2)|” + | f"(a1)|"] ¥

X : 2.4
(@+1)(q+2) (24)
1 1 _
where >t 7= 1 and
%Lg(a,al), a; >0, a>0,
C = 2 A (P (g )P 0 0
s (a1,a2) = ¢ 53 (Pt (=a)P*h), a1 <0, a >0,
n(aQTﬂl)Lg (—a1,—a), a1 <0, a<0.

Proof. If |f"|? for ¢ > 1 is preinvex on [a1, a; + (b, a1)], using Lemma [2.1} the
Holder integral inequality and

" (a1 +tn(az, 1) < ¢[f"(a2)|" + (1 = ) [f"(a2) |,

we obtain

1
[T (a1, az,n)| < 772(02,01)/ tlou||f" (a1 + tn(az, a1))| dt
0

1 1

1 5 1 H
< 1P (az 1) ( / |at|1’dt) ( / mf"(al+tn<a2,a1>>|‘1dt)

1 i 1 1
<lonan) ([l ae)” (177l [ ea il [ o - o) ar)

1
q
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1 1
1941 “ 7 [1f"(a2)|” 1 L \]”
- 9% 1+q pd o\ " O
p i) ([Claras) L (g - g
(g+1)[f"(a2)|" + |f”(al)|q} ‘
(¢+1)(g+2)
The proof is completed. O

141 ¥
= 2?’]’]1—"_(1(0,27&1)031]’77 (a17a2) |:

Corollary 2. Suppose that all the assumptions of Theorem[2.]] are satisfied. If we
choose n(az,a1) = ag — a1 then when |f"|? is convex on K for ¢ > 1 we obtain

a1 +as ,, flaz)az — f(a1)as 1 az

B ) - T I D [ g
1 141 3 (g+ ) 1f" (@2)|" + | (ar)|"] *

< 2 —a) TG (na) (¢+1)(+2) } ’

ai

where
s b (A ar), ap>0,A>0,

2
Cy(ar,a2) = { =2 A (A7 (—a)™1), a1 <0,4>0,
2o b (—ay,—A) a1 <0, A<O.

Remark 2.5. If the mapping n satisfies condition C then using the inequality (2.2)) in
the proof of Theorem then the inequality (2.4)) becomes the following inequality:

1 1 L
[If(ar,a9,m)] < 2vn'*a(ag,a1)C3, (a1, 02)

(q+ 1) |f"(ar +nlaz, a1))|* + | f"(@)|"]7
(¢+1)(g+2) '
‘q

(2.5)

We note that by use of the preinvexity of |f”]? we get
|f" (a1 +n(az,a1))|” < [f"(a2)|".
Therefore, the inequality (2.5]) is better than the inequality (2.4]).

Theorem 2.6. Let K C R be an open invex subset with respect to mapping 7 (-, ) :
K x K — R" and a1,a2 € K with n(az,a1) > 0. Suppose that f: K — R is a
twice differentiable function on K such that f"” € Llay,a1 +n(az,a1)]. If [f"|? is
preinver on K for ¢ > 1, then the following inequality holds:

1 q_2 1-1
(a1, a9,m)] < 2'%an'T4(ag,a1)Dy " (a1, a2)

(1" (@2)]* Doy (a1, 2) + " (@1)|* Ds (a1, a2)] ¢ (2.6)

where

n(a22,a1) [Lg (a,a1) — alL(Ohal)} , a1 >0,a>0
D (a1, a9) := %A (a3,a ) —a A (QQ’G%) ) a1 <0, >0,
~ n(az,a1) [L% (Oé,(h) —a1L (a’al)] ,a1 <0, <0

w
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3
W7 a1 >0,a>0
3 4
Dyylar,az) = 0rle20) 4 g <0,a>0
3
_W7 a1 < 0,a <0

*(az,a1 0 (b,ay
ﬁ(aga)[L%( _ 71(4(1)7

a7a1)—a1L(a,a1)]
a3 >0, >0
n3(b,a ot
oz, ) [34 (0 a) = ad (02, a2)] - 2222 — o
a1 <0, >0
: 3
—1@2.0) (72 (0,41) — aL (a,a1)] + 202
a; <0, a<O0.

D3 ,(a1,a2) =

and 0 = 7’7(“28’“1) + %

Proof. Using Lemma [2.1] and Power-mean integral inequality, we obtain

1
\If(a1,a2,m)| < 772(a2,a1)/ tloul [f" (a1 + tn(az, a1))| dt
0

1
< n*(az,a1) (/ t|04t|dt>
0

1—1

1—1

: 1
( / t|at||f"<a1+tn<a2,a1>>|th>

1
q

1 :
< 172(a2,a1) (/ tat|dt)
0
1 1 :
< (@l [ e ladar+ 1@l [ 1= olada)
0 0
1 2 o 17% o
= 2'"ap' "4 (ay, ay) (/ (x—al)a:|dx) <f”(a2)|q/ 2(x —ay)? |z| dx
a a
+ |f"(a1)|q/ (z —a1) [n(az,a1) — 2(z — a1)] |$|d$>
ai
141 1-2 1-3
= 27an "i(az,a1)Dy " (a1, a2)
1
X [|f"(a2)|" Day (a1, a2) + [ f"(a1)|” Dsy (a1, a2)]
The proof is completed. O

Corollary 3. Suppose that all the assumptions of Theorem 3 are satisfied. If we
choose n(az,a1) = az — ay then when |f"|? is convex on K for ¢ > 1 we get

ai+ag ,, flaz)ag — f(ar)ay 1 a2
—f'(b) — R /a1 f(z)dz

2 as — a1

1 _2 1-1 1
< 2% (ag — @) TiD, 7 (a1, a0) [|f"(a2)|? Da (a1, a) + | (a1)|” Ds (ar,a2)]



INTEGRAL INEQUALITIES 959

where
G2=a1 al [L2 (A al) alL(A al)] , a1 > O, A >0
Dl(al,ag) = 2A (A3 al) —a1A (A2 0,1) a1 <0, A>0 ,
—2-0 [[2(A,a1) —a1L(A,a1)], a1 <0, A<O

(az;a1)3 (Saggfal) , a; > 07 A>0
3
Dsy(ay,az) = (azfl) (Beatbar) 4 “3—4, a1 <0, A>0 ,
_(a—a1)® (3as+5ay A
7 (), a <0, A<O
—a 3 a a
QLLEQf[L2(A.al)—»mL(Acu)] —>Q@44i2§?3iiJl,
ap >0, A>0
as—a1)°(3azx+5a1) 4
Ds(ar,a2) = (a2 —a1) [FA (4%, af) — a1 4 (A%, a})] — LL‘L“i“L EE
a1 <0, A>0
£“i—“i—[Lz(Aal)—aﬂ;(Aal)] QL&%%dﬁﬁ
a; <0, A <O.

Remark 2.7. If the mapping 7 satisfies condition C then using the inequality . in
the proof of Theorem then the inequality (2.6) becomes the following inequality:

19 2 1-1
|If(a"b7n)‘ < 21+‘”71 q(b’a)Dl,nq (G,b)

x 1" (a+mn(b,a)|* Doy (a,0) + [ f"(a)|" D3,y (a,b)]
‘q

Q=

(2.7)

We note that by use of the preinvexity of |f”
[f"(a+n(b,a))|" < [f" ()"

Therefore, the inequality (2.7)) is better than the inequality (2.6)).

Corollary 4. If we take ¢ =1 in Theorem[2.6, then we have the following inequal-
ity:

we get

4
n(az,a1)
Theorem 2.8. Let K C R be an open invex subset with respect to mapping n (-,-) :
K x K — R" and a1,a2 € K with n(az,a1) > 0. Suppose that f: K — R is a
twice differentiable function on K such that f" € L{ai,a1 +n(az,a1)]. If |f"]|? is
prequasiinver on K for g > 1, then the following inequality holds:

[If(a1,a2,m)] < [1f"(a2)| D2y (a1, a2) + |f"(a1)| Ds.y (a1, az)]

[Iy(a1,az,n)|
1
1 1 1 P 11
<2y onan) (57 ) e {17 @)l 17 @)D Gl s ea) - (28)
where
7"('12"“)Lq (a,a1), a1 > 0,a >0,
Cﬁ(q7a17a2) = qilA [aq+1 ( al)q+1:| ya1 < 0,0{ > Oa

%Lg (—a1,—a), a; <0,a<0.



960 IMDAT ISCAN, MAHIR KADAKAL, AND HURIYE KADAKAL

Proof. If |f"|? for ¢ > 1 is prequasiinvex on [a1, a; + n(a2,a1)], using Lemma
the Holder integral inequality and

| (a1 + tn(az, a1))|* < max {|f"(a1)|", [/ (a2)[*}

we obtain

1
Ip(ay, a2, )] < 7?(az,a1) / | £ (ar + tn(az, ar))| de
0

1 L 1 i
< n*(az,a1) (/0 t”dt) (/O |04t|qf”(a1+t77(a27@1))th>
1\ ([ z
<lenan) (57 ) " ([ feutmax (@)l 1" (@)} )
= 20" 5 (az,a1) <1>p(max{|f” N 1" (a2)|?}) (/ |m|qdm>q

p+1
1 1
=2in'"v (az,a1) <p+1> (max {| " (a1)|* . | " (a2)|* }) Qaa17a2)

Q=

The proof is completed. O

Corollary 5. Suppose that all the assumptions of Theorem[2.§ are satisfied. If we
choose n(b,a1) = az — ay then when |f"|? is prequasiinvez on K for ¢ > 1 we have

’al + ao f/(ag) _ f(CLQ)aZ - f(al)al _ . ial /a2 f(m)da?

[\]

a2 — a1

1
<2;(a2—a1>‘°(max{|f~a1q 1F7(a2)|"}) T CF (g, 01, 02)

p+1
where
2L (A, ar), a; >0,A>0,
C(Q7 CL1,CL2) = q+1ATAq+1 ( a’l)q+1:| ya1 < O>A > 0)
2 Ll (~ay, —A), a1 <0,A<0.

Remark 2.9. If the mapping n satisfies condition C then by use of the prequasiin-
vexity of |f|? we get

|f" (a1 +tn(ag,ar))|* = |f" (a1 +n(az, a1) + (1 — t)n(ar, a1 + nlaz, a1)))|*
max {|f"(a1)|", |f" (a1 + n(az,a1))|"} (2.9)

IN

for every ¢ € [0,1].
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If we use the inequality (2.9) in the proof of Theorem then the inequality
(2.8) becomes the following inequality:

vl < 2 ) () Cleow @0
x (max {|f"(@1)|", 1" (ax +n(az, a1))|}) "
We note that by use of the prequasiinvexity of |f”|? we have
[f" (a1 +n(az,a1))|" < max {|f"(a1)|*,[f" (a1 +n(az,a1))|"} .
Therefore, the inequality is better than the inequality .

Theorem 2.10. Let K C R be an open inver subset with respect to mapping
n(,) : Kx K — R" and a1,a3 € K with n(az,a;) > 0. Suppose that [ : K
— R is a twice differentiable function on K such that f” € Llayi, a1 +n(az,a1)].
If | f"|* is prequasiinvex on K for q > 1, then the following inequality holds:

[1f(ax, az,m)| < 4 (max {[f"(a1)|*, |/ (az)|" }) D (a1, az) (2.11)

where

n(az,01) [L% (a,a1) — alL(a7a1)} , a1 >0,a>0
Dy ,(a1,a2) == A (a3, a3) —aA (a2, a%) , a1 <0, a>0
—m [L3(a,a1) —aL (a,a1)] ,a1 <0, a <0

Proof. From Lemma [2.1] and Power-mean integral inequality, we obtain

1
Iyar.azn)| < (az,an) [ tlau] | (an + tnfaz, ) de
0

1 3 1 3
< r(az,a1) ( / t|at|dt) ( PRI +tn<a2,a1>>|qclt)
0 0

1 1-3 1 :
2 . d . X // q 1 d
<77(02,a1)(/0 tlaul t) (/ o) masc {| £ (a)|" | /" (a2)|") t)
Ll
— P {aa, o) ({17 @I 1 @) D) [ el

n(b, al)

1 fat
= 4 fmax {1 (@) | (@)}’ / () o

= 4 (max {|f"(a1)|*,[f"(a2)|" }) D1 n(a1,a2)
The proof is completed. ([l

1—1

Corollary 6. Suppose that all the assumptions of Theorem [2.10] are satisfied. If
we choose n(az,a1) = az — ay then when |f|? is prequasiinvex on K for ¢ > 1 we
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have
— 1 a2
%.}N(GQ) _ f(aQ)a‘Q f(al)a'l - / f(aj)daj
az —ax az — a1 Jg,
D1 (a1, az) " a e g1t
< 4——= q
s T [max {[ " (a1)|" . [f"(a2)|"}]
where
@z [L3 (A a) — a1 L (A a1)] a1 >0, A>0
Dl(al’a2) = %A (AS’CL?) —a1A (sza%) ) a1 <0, A>0
—eg [L% (A, a1) — a1 L (4, a1)] ) a1 <0, A<O

Remark 2.11. If we use the inequality (2.9) in the proof of Theorem [2.10} then the
inequality (2.11)) becomes the following inequality:

1

[1(ar, az,m)| <4 (max {|f"(a1)|*, |/ (a1 + n(az,a1))|"}) * D1,y(a1,a2)

This inequality is better than the inequality (2.11]).

Corollary 7. If we take ¢ = 1 in Theorem 7, then we have the following inequality:

11

[12

13

]

]

[I5(a,b,m)| < dmax {|f"(a)], [f"(b)]} D1.y(a,b)
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