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MULTIPOINT SELFADJOINT QUASI-DIFFERENTIAL
OPERATORS FOR FIRST ORDER

RUKIYE ÖZTÜRK MERT, BÜLENT YILMAZ, AND ZAMEDDIN I. ISMAILOV

Abstract. In the present paper, the aim is to described all selfadjoint ex-
tensions of the minimal operator generated by first order linear symmetric
multipoint quasi-differential operator expression in the direct sum of weighted
Hilbert spaces of vector-functions defined at the semi-infinite intervals by us-
ing the Calkin-Gorbachuk method. We have also examine the structure of the
spectrum of such extensions.

1. Introduction

The general theory of selfadjoint extensions of linear densely defined closed sym-
metric operator in any Hilbert space is mentioned for the first time in mathematical
literature in famous works of J. von Neumann [9] and M.H. Stone [11]. In math-
ematical literature there are the Glazman-Krein-Naimark and Calkin-Gorbachuk
methods (see[6,10]).
The scalar case of this theory has been studied by I.M. Glazman, M.A. Naimark,

M.G. Krein, W.N. Everitt, L. Markus, A. Zettl, J. Sun, D. O’Regan, R. Agarwal
[2-5, 8, 12] which is the motivation of this paper.
The main purpose of this paper is to generalized of mentioned above theory

to infinite dimensional case of considered problems by using Calkin-Gorbachuk
methods.
Here, the representation of all selfadjoint extension of the multipoint symmetric

quasi-differential operator, generated by first order symmetric quasi-differential op-
erator expression in the direct sum of weighted Hilbert spaces of vector-functions
defined at the semi-infinite intervals, in terms of abstract boundary values are
described. The structure of the spectrum of these selfadjoint extensions is also
investigated.
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First of all, it is better to note the views of A. Zettl’s and J. Sun’s [12] on this
area: A selfadjoint ordinary differential operator in Hilbert spaces is generated by
two things:
(1) A symmetric (formally selfadjoint) differential expression;
(2) A boundary condition which determined selfadjoint differential operators;
Given such a selfadjoint differential operator, a basic question is: What is its

spectrum?

2. Statement of the Problem

Let H be a separable Hilbert space and a1, a2∈ R. Also assume that α1 :
(−∞, a1) → (0,∞), α2 : (a2,∞) → (0,∞),

∫ a1
−∞

dx
α1(x)

= ∞,
∫∞
a2

dx
α2(x)

= ∞,
α1 ∈ C(−∞, a1), α2 ∈ C(a2,∞).
In the Hilbert space

H = L2α1(H, (−∞, a1))⊕ L
2
α2(H, (a2,∞))

of vector-functions on (−∞, a1)∪ (a2,∞), consider the following linear multi-point
differential operator expression for first order in the form

l(u) = (l1(u1), l2(u2)),

where u = (u1, u2),
l1(u1) = i(α1u1)

′
+A1u1,

l2(u2) = i(α2u2)
′
+A2u2

and for simplicity, we assume that A1 and A2 are linear bounded selfadjoint oper-
ators in H.
The minimal L10 (L20) and maximal L1 (L2) operators associated with differ-

ential expression l1 (l2) in L2α1(H, (−∞, a1)) (L
2
α2(H, (a2,∞))) can be constructed,

by using the same technique in [7].
The operators L0 = L10 ⊕ L20 and L = L1 ⊕ L2 in the Hilbert space H are

called minimal and maximal operators associated with differential expression l(·)
respectively. It is clear that the operator L0 is symmetric and L∗0 = L in H.
The minimal operator L0 is not maximal. Indeed, differential expression l(·) with
boundary condition (α1u1)(a1) = (α2u2)(a2) generates a selfadjoint extension of
L0.
The main goal in the present study is to describe all selfadjoint extensions of the

minimal operator L0 in H in terms of boundary values and investigate the structure
of the spectrum of these extensions.

3. Description of Selfadjoint Extensions

In this section, we investigate the abstract representation of all selfadjoint ex-
tensions of the minimal operator L0 with the use of Calkin-Gorbachuk method in
terms of boundary values.
We first prove the following lemma which we will need.
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Lemma 3.1. The deficiency indices of the operators L10 and L20 are in form

(m(L10), n(L10)) = (dimH, 0),

(m(L20), n(L20)) = (0, dimH).

Proof. The general solutions of differential equations are as follows:

i(α1u
±
1 )

′
(t)± iu±1 (t) = 0, t < a1,

i(α2u
±
2 )

′
(t)± iu±2 (t) = 0, t > a2,

where

u±1 (t) =
1

α1(t)
exp

(
∓
∫ t

−∞

ds

α1(s)

)
f1, t < a1, f1 ∈ H,

u±2 (t) =
1

α2(t)
exp

(
±
∫ ∞
t

ds

α2(s)

)
f2, t > a2, f2 ∈ H

respectively.
Then it is obtained that

‖u+1 ‖2L2α1 (H,(−∞,a1)) =
∫ a1

−∞
‖u+1 (t)‖2Hα1(t)dt =

∫ a1

−∞
exp

(
−2
∫ t

−∞

ds

α1(s)

)
dt

α1(t)
‖f1‖2H

=

∫ a1

−∞
exp

(
−2
∫ t

−∞

ds

α1(s)

)
d

(∫ t

−∞

ds

α1(s)

)
‖f1‖2H =

1

2
‖f1‖2H <∞.

By simple calculations, we also have that

u−1 (t) =
1

α1(t)
exp

(∫ t

−∞

ds

α1(s)

)
f1 /∈ L2α1(H, (−∞, a1)).

Consequently, the deficiency indices of the operator L10 can be expressed in the
following form

(m(L10), n(L10)) = (dimH, 0).

In a similar way one can show that

(m(L20), n(L20)) = (0, dimH).

Therefore, this completes the proof of lemma. �

From last assertion one can easily see that

m(L0) = m(L10) +m(L20) = dimH

and
n(L0) = n(L10) + n(L20) = dimH.

Consequently, the symmetric minimal operator L0 has a selfadjoint extension (see
[6]).
In order to describe the all selfadjoint extensions of the minimal operator L0 it

is needed to construct a space if boundary values for it.
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Definition 3.2. ([6])Let H be any Hilbert space and S : D(S) ⊂ H → H be a
closed densely defined symmetric operator on the Hilbert space having equal finite
or infinite deficiency indices. A triplet (H, γ1, γ2), where H is a Hilbert space, γ1
and γ2 are linear mappings from D(S∗) into H, is called a space of boundary values
for the operator S, if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))H − (γ2(f), γ1(g))H
while for any F,G ∈ H, there exists a function f ∈ D(S∗) such that γ1(f) = F and
γ2(f) = G.

It is known that for any symmetric operator with equal deficiency indices, we
have at least one space of boundary values (see [6]).

Theorem 3.3. The triplet (H, γ1, γ2), where

γ1 : D(L) ⊂ H → H, γ1(u) =
1√
2
((α1u1)(a1)−(α2u2)(a2)), u = (u1, u2) ∈ D(L),

γ2 : D(L) ⊂ H → H, γ2(u) =
1

i
√
2
((α1u1)(a1)+(α2u2)(a2)), u = (u1, u2) ∈ D(L)

is a space of boundary values of the minimal operator L0 in H.

Proof. In this case, the following holds for any u = (u1, u2) and v = (v1, v2) from
D(L):

(Lu, v)H − (u, Lv)H
= (i(α1u1)

′
+A1u1, v1)L2α1 (H,(−∞,a1))

+ (i(α2u2)
′
+A2u2, v2)L2α2 (H,(a2,∞))

−(u1, i(α1v1)
′
+A1v1)L2α1 (H,(−∞,a1))

− (u2, i(α2v2)
′
+A2v2)L2α2 (H,(a2,∞))

= i[((α1u1)
′
, v1)L2α1 (H,(−∞,a1))

+ (u1, (α1v1)
′
)L2α1 (H,(−∞,a1))

]

+i[((α2u2)
′
, v2)L2α2 (H,(a2,∞))

+ (u2, (α2v2)
′
)L2α2 (H,(a2,∞))

]

= i[((α1u1)
′
, α1v1)L2α1 (H,(−∞,a1))

+ (α1u1, (α1v1)
′
)L2α1 (H,(−∞,a1))

]

+i[((α2u2)
′
, α2v2)L2α2 (H,(a2,∞))

+ (α2u2, (α2v2)
′
)L2α2 (H,(a2,∞))

]

= i[(α1u1, α1v1)
′

L2α1
(H,(−∞,a1)) + (α2u2, α2v2)

′

L2α2
(H,(a2,∞))]

= i[((α1u1)(a1), (α1v1)(a1))H − ((α2u2)(a2), (α2v2)(a2))H ]
= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .
Now let f1, f2 ∈ H. Let us find the function u = (u1, u2) ∈ D(L) such that

γ1(u) =
1√
2
((α1u1)(a1)− (α2u2)(a2)) = f1

and

γ2(u) =
1

i
√
2
((α1u1)(a1) + (α2u2)(a2)) = f2.
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From this we can obtain that

(α1u1)(a1) =
(if2 + f1)√

2
, (α2u2)(a2) =

(if2 − f1)√
2

If we choose the functions u1(·) and u2(·) as

u1(t) =
1

α1(t)
exp

(∫ a1

t

ds

α1(s)

)
(if2 + f1)√

2
, t < a1,

u2(t) =
1

α2(t)
exp

(
−
∫ t

a2

ds

α2(s)

)
(if2 − f1)√

2
, t > a2

it is clear that (u1, u2) ∈ D(L) and γ1(u1) = f1, γ2(u2) = f2 which complete the
proof. �

Using the Calkin-Gorbachuk method [6], we immediately obtain the following

Theorem 3.4. If L̃ is a selfadjoint extension of the minimal operator L0 in H,
then it is generated by the differential operator expression l = (l1, l2) and boundary
condition

(α2u2)(a2) =W (α1u1)(a1),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H
is determined uniquely by the extension L̃, i.e. L̃ = LW and vice versa.

Proof. It is known that all selfadjoint extensions of the minimal operator L̃0 are
described by the differential-operator expression l = (l1, l2) with boundary condi-
tion

(V − E)γ1(u) + i(V + E)γ2(u) = 0, u = (u1, u2) ∈ D(L),

where V : H → H is a unitary operator. Therefore from Lemma 3.3, we obtain

(V − E) 1√
2
((α1u1)(a1)− (α2u2)(a2))

+i(V + E)
1

i
√
2
((α1u1)(a1) + (α2u2)(a2)) = 0.

Hence it is obtained that

(α2u2)(a2) = −V (α1u1)(a1).

Choosing W = −V in last boundary condition we have

(α2u2)(a2) =W (α1u1)(a1).

�
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4. Spectrum of Selfadjoint Extensions

In this section, we will investigate the structure of the spectrum of the selfadjoint
extension LW of the minimal operator L0 in H.
Now we can give the following result which deals with the point spectrum of the

operator LW .

Theorem 4.1. The point spectrum σp(LW ) of the selfadjoint extension LW is
empty.

Proof. Consider the following eigenvalue problem

l(u) = λu, u = (u1, u2) ∈ H, λ ∈ R,

with boundary condition

(α2u2)(a2) =W (α1u1)(a1).

Then we have

i(α1u1)
′
(t) +A1u1(t) = λu1(t), t < a1,

i(α2u2)
′
(t) +A2u2(t) = λu2(t), t > a2,

(α2u2)(a2) =W (α1u1)(a1).

The general solution of these differential equations are as follows:

u1(t;λ) =
1

α1(t)
exp

(
i(A1 − λ)

∫ a1
t

ds
α1(s)

)
f
(1)
λ , f

(1)
λ ∈ H, t < a1,

u2(t;λ) =
1

α2(t)
exp

(
i(A2 − λ)

∫ t
a2

ds
α2(s)

)
f
(2)
λ , f

(2)
λ ∈ H, t > a2.

It is clear that f (1)λ 6= 0 and f (2)λ 6= 0 the functions u1(·, λ) /∈ L2α1(H, (−∞, a1)) and
u2(·, λ) /∈ L2α2(H, (a2,∞)).
Consequently, for every unitary operator W in H, we obtain that σp(LW ) =

∅. �

Later on, since the residual spectrum of any selfadjoint operator in any Hilbert
space is empty, then we study the continuous spectrum of the selfadjoint extensions
LW of the minimal operator L0 in H. From the general theory of linear selfadjoint
operators in Hilbert spaces it is well-known that

σ(LW ) ⊂ R.

One can immediately obtain the following.

Theorem 4.2. The continuous spectrum σc(LW ) of the selfadjoint extension LW
in H coincides with R, i.e. σc(LW ) = R.
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Proof. For λ ∈ C, λi = Imλ > 0 and f = (f1, f2) ∈ H one can see that

‖Rλ(LW ))f(t)‖2H = ‖
1

α1(t)
exp

i(A1 − λE) t∫
a1

ds

α1(s)

 fλ

+
i

α1(t)

a1∫
t

exp

i(A1 − λE) t∫
s

dτ

α1(τ)

 f1(s)ds‖2L2α1 (H,(−∞,a1))

+‖ i

α2(t)

∞∫
t

exp

i(A2 − λE) t∫
s

dτ

α2(τ)

 f2(s)ds‖2L2α2 (H,(a2,∞))

≥ ‖ 1

α2(t)

∞∫
t

exp

i(A2 − λE) t∫
s

dτ

α2(τ)

 f2(s)ds‖2L2α2 (H,(a2,∞)).

The vector functions f∗(t;λ) have the form

f∗(t;λ) =

0, 1

α2(t)
exp

i(A2 − λ) t∫
a2

ds

α2(s)

 f

 , λ ∈ C,

λi = Imλ > 0, f ∈ H belong to H. Indeed,

‖f∗(t;λ)‖2H =

∞∫
a2

1

α2(t)
‖exp

i(A2 − λ) t∫
a2

ds

α2(s)

 f‖2Hdt

=

∞∫
a2

1

α2(t)
exp

−2λi t∫
a2

ds

α2(s)

 dt‖f‖2H

=
1

2λi
‖f‖2H <∞.

For such functions f∗(λ; . ), we have

‖Rλ(LW )f∗(λ; . )‖2H

≥

∥∥∥∥∥∥ i

α2(t)

∞∫
t

1

α2(s)
exp

i(A2 − λE) t∫
s

dτ

α2(τ)
+ i(A2 − λE)

t∫
a2

ds

α2(s)

 fds

∥∥∥∥∥∥
2

L2α2
(H,(a2,∞))
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=

∥∥∥∥∥∥ 1

α2(t)
exp

−iλ t∫
a2

dτ

α2(τ)
+ iA2

t∫
a2

dτ

α2(τ)


×
∞∫
t

1

α2(s)
exp

−2λi s∫
a2

dτ

α2(τ)

 f(s)ds

∥∥∥∥∥∥
2

L2α2
(H,(a2,∞))

= ‖ 1

α2(t)
exp

λi t∫
a2

dτ

α2(τ)

 ∞∫
t

1

α2(s)
exp

−2λi s∫
a2

dτ

α2(τ)

 ds‖2L2α2 (H,(a2,∞))‖f‖
2
H

= ‖ 1

2λiα2(t)
exp

−λi t∫
a2

dτ

α2(τ)

 ‖2L2α2 (H,(a2,∞))‖f‖2H
=

1

4λ2i

∞∫
a2

1

α2(t)
exp

−2λi t∫
a2

dτ

α2(τ)

 dt‖f‖2H

=
1

8λ3i
‖f‖2H .

Using the above inequality one can obtain the following

‖Rλ(LW )f∗(λ; . )‖H ≥
‖f‖2H

2
√
2λi
√
λi
=

1

2λi
‖f∗(λ; t)‖H,

i.e., for λi = Imλ > 0 and f 6= 0
‖Rλ(LW )f∗(λ; . )‖H

‖f∗(λ; t)‖H
≥ 1

2λi
.

On the other hand it is clear that

‖Rλ(LW )‖ ≥
‖Rλ(LW )f∗(λ; . )‖H

‖f∗(λ; t)‖H
, f 6= 0.

Consequently, we have

‖Rλ(LW )‖ ≥
1

2λi
, for λ ∈ C and λi = Imλ > 0

which shows that every λr ∈ R belong to continuous spectrum of the extension LW .
This completes the proof. �

Note: In case when α1 = α2 = 1 the similar results have been obtained in [1].
Finally, we can provide an example for Theorem 4.2.

Example 4.3. All selfadjoint extensions Lϕ of the minimal operator L0 generated
by multipoint differential expression

l(u) = (l1(u1), l2(u2)) = (i(tu1)
′
(t, x) + xu1(t, x), i(t

−1u2)(t, x) + xu2(t, x))
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in the direct sum L2t ((−∞,−1) × (0, 1)) ⊕ L2t ((1,∞) × (0, 1)) written in terms of
boundary values are described the following boundary conditions are described

u2(1) = eiϕu1(−1), ϕ ∈ [0, 2π).
Moreover, spectrum of such extension σ(Lϕ) = σc(Lϕ) = R.
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