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FURTHER STUDY ON THE RESULTS OF SHEREMETA

TANMAY BISWAS

Abstract. In this paper we estimate some growth rates of composite entire
and meromorphic functions in the light of their relative (p, q)-th order and rel-
ative (p, q)-th lower order which considerably extend some results of Sheremeta
[14].

1. Introduction, Definitions and Notations

Let us consider that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna theory of meromorphic functions which are
available in [8, 10, 16, 17]. We also use the standard notations and definitions of the
theory of entire functions which are available in [18] and therefore we do not explain
those in details. Let f be an entire function and Mf (r) = max {|f (z)| : |z| = r}.
Since Mf (r) is strictly increasing and continuous, therefore there exists its inverse
function M−1f : (|f (0)| ,∞) → (0,∞) with lim

s→∞
M−1f (s) = ∞. In this connection

the following definition is relevant:

Definition 1.1. {[2]} A non-constant entire function f is said have the Property
(A) if for any σ > 1 and for all suffi ciently large r, [Mf (r)]

2 ≤ Mf (r
σ) holds. For

examples of functions with or without the Property (A), one may see [2].

However, when f is meromorphic, one may introduce another function Tf (r) de-

fined as Tf (r) = 1
2π

2π∫
0

log+
∣∣f(reiθ)∣∣ dθ known as Nevanlinna’s characteristic func-

tion of f (see [8, p.4]), playing the same role as Mf (r) . Moreover, if f is non-
constant entire then Tf (r) is strictly increasing and continuous functions of r. Also
its inverse T−1f : (Tf (0) ,∞)→ (0,∞) exist and is such that lim

s→∞
T−1f (s) =∞.

Now for x ∈ [0,∞) and k ∈ N, we define exp[k] x = exp
(
exp[k−1] x

)
and log[k] x =

log
(
log[k−1] x

)
where N be the set of all positive integers.We also denote log[0] x =
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x, log[−1] x = expx, exp[0] x = x and exp[−1] x = log x. Considering this let us recall
that Juneja et al. [9] defined the (p, q)-th order (resp. (p, q)-th lower order) of an
entire function f for any two positive integers p, q with p ≥ q which is as follows:

ρf (p, q) = lim
r→∞

log[p]Mf (r)

log[q] r

(
resp. λf (p, q) = lim

r→∞

log[p]Mf (r)

log[q] r

)
.

If f is a meromorphic function, then

ρf (p, q)
λf (p, q)

= lim
r→∞

sup
inf

log[p−1] Tf (r)

log[q] r
.

In this connection we recall the following definition due to Juneja et al. [9]:

Definition 1.2. [9] An entire function f is said to have index-pair (p, q), p ≥ q ≥ 1
if b < ρf (p, q) < ∞ and ρf (p− 1, q − 1) is not a nonzero finite number, where
b = 1 if p = q and b = 0 if p > q. Moreover if 0 < ρf (p, q) <∞, then

ρf (p− n, q) =∞ for n < p,
ρf (p, q − n) = 0 for n < q,
ρf (p+ n, q + n) = 1 for n = 1, 2, · · · .

Similarly for 0 < λf (p, q) <∞, one can easily verify that λf (p− n, q) =∞ for n < p,
λf (p, q − n) = 0 for n < q,
λf (p+ n, q + n) = 1 for n = 1, 2, · · · .

Analogously one can easily verify that Definition 1.2 of index-pair can also be
applicable to a meromorphic function f .
If p = l and q = 1 then we write ρf (l, 1) = ρ

[l]
f and λf (l, 1) = λ

[l]
f where ρ[l]f and

λ
[l]
f are respectively known as generalized order and generalized lower order of f .
For details about generalized order one may see [13]. Also for p = 2 and q = 1 we
respectively denote ρf (2, 1) and λf (2, 1) by ρf and λf . which are classical growth
indicators such as order and lower order of f . L. Bernal [1, 2] introduced the relative
order (resp. relative lower order) between two entire functions to avoid comparing
growth just with exp z which is as follows:

ρg (f)
λg (f)

= lim
r→∞

sup
inf

logM−1g Mf (r)

log r
.

These definitions coincide with the classical one [15] if g = exp z.
Extending this notion, Lahiri and Banerjee [11] introduced the definition of rel-

ative order of a meromorphic function with respect to an entire function in the
following way :
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Definition 1.3. [11] Let f be any meromorphic function and g be any entire
function. The relative order of f with respect to g is defined as

ρg (f) = inf {µ > 0 : Tf (r) < Tg (r
µ) for all suffi ciently large r}

= lim
r→∞

log T−1g Tf (r)

log r
.

It is known {cf. [11] } that if g (z) = exp z then Definition 1.3 coincides with the
classical definition of order of a meromorphic function f .

In the case of relative order, Sánchez Ruiz et al. [12] gave the definition of
relative (p, q)-th order and relative (p, q)-th lower order of an entire function in the
light of index-pair which is as follows:

Definition 1.4. [12] Let f and g be any two entire functions with index-pairs
(m, q) and (m, p) respectively where p, q,m ∈ N such that m ≥ p and m ≥ q. Then
the relative (p, q)-th order and relative (p, q)-th lower order of f with respect to g
are defined as

ρ(p,q)g (f) = lim
r→∞

log[p]M−1g Mf (r)

log[q] r
and λ(p,q)g (f) = lim

r→∞

log[p]M−1g Mf (r)

log[q] r
.

Further, Debnath et al. [6] introduced the definition of relative (p, q)-th order
and relative (p, q)-th lower order of a meromorphic function with respect to an
entire function in the following manner:

Definition 1.5. [6] Let f be any meromorphic function and g be any entire function
with index-pairs (m, q) and (m, p) respectively where p, q,m ∈ N such that m ≥ p
and m ≥ q. Then the relative (p, q)-th order and relative (p, q)-th lower order of f
with respect to g are defined as

ρ(p,q)g (f) = lim
r→∞

log[p] T−1g Tf (r)

log[q] r
and λ(p,q)g (f) = lim

r→∞

log[p] T−1g Tf (r)

log[q] r
.

If f and g have got index-pair (m, 1) and (m, k) , respectively, then Definition 1.4
and Definition 1.5 reduce to generalized relative order of f with respect to g and in
this we write ρ(k,1)g (f) = ρ

[k]
g (f) and λ(k,1)g (f) = λ[k]g (f). If f and g have the same

index-pair (p, 1) where p ∈ N, we get the definition of relative order introduced
by Bernal [1, 2] and Lahiri et al. [11]. When g = exp[m−1] z, then ρg (f) = ρ

[m]
f

and ρ(p,q)g (f) = ρf (m, q) . Moreover if f have index-pair (2, 1) and g = exp z, then
Definition 1.4 and Definition 1.5 become the classical one.
Taking into account all these above, in this paper we estimate some growth rates

of composite entire and meromorphic functions in the light of their relative (p, q)-th
order and relative (p, q)-th lower order which considerably extend some results of
Sheremeta [14].
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2. Known Results

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [5] Let f and g are any two entire functions with g (0) = 0. Also let
β satisfy 0 < β < 1 and c (β) = (1−β)2

4β . Then for all suffi ciently large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .

In addition if β = 1
2 , then for all suffi ciently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

Lemma 2.2. [3] Let f be meromorphic and g be entire then for all suffi ciently large
values of r,

Tf◦g (r) 6 {1 + o(1)}
Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2.3. [4] Suppose that f is a meromorphic function and g be an entire
function and suppose that 0 < µ < ρg ≤ ∞.Then for a sequence of values of r
tending to infinity,

Tf◦g(r) ≥ Tf (exp (rµ)) .

Lemma 2.4. [7] Let f be an entire function which satisfies the Property (A), β > 0,
δ > 1 and α > 2. Then

βTf (r) < Tf
(
αrδ
)
.

Lemma 2.5. [2] Suppose f is an entire function and α > 1, 0 < β < α. Then for
all suffi ciently large r,

Mf (αr) ≥ βMf (r).

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f , g and h be any three entire functions such that 0 < λ
(p,q)
h (f) ≤

ρ
(p,q)
h (f) < +∞. and λg (m,n) > 0 where p, q,m, n ∈ N with m ≥ n. Also let γ be
a positive continuous on [0,+∞) function increasing to +∞. Then for any number
α ≥ 0,

lim
r→+∞

log[p]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α = ∞,

when q < m and lim
r→+∞

log γ (r)

log r
= 0
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and

lim
r→+∞

log[p−1]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α = ∞,

when q > m and lim
r→+∞

log γ (r)

log[q−m+1] r
= 0 .

Proof. From the definition of ρ(p,q)h (f), it follows for all suffi ciently large values of
r that

log[p]M−1h Mf (exp
[q] γ (r)) ≤

(
ρ
(p,q)
h (f) + ε

)
γ (r) . (3.1)

Since M−1h (r) is an increasing function of r, it follows from Lemma 2.1 and
Lemma 2.5 for any β > 2 and for all suffi ciently large values r that

log[p]M−1h Mf◦g(exp
[n−1] βr) ≥ log[p]M−1h Mf

(
1

8
Mg

(
exp[n−1] r

))
i.e., log[p]M−1h Mf◦g(exp

[n−1] βr) ≥(
λ
(p,q)
h (f)− ε

)
log[q]Mg

(
exp[n−1] r

)
+O(1). (3.2)

Case I. Let q < m. Then from (3.2) it follows for all suffi ciently large values of r
that

log[p]M−1h Mf◦g(exp
[n−1] βr) ≥(

λ
(p,q)
h (f)− ε

)
exp[m−q−1] log[m−1]Mg

(
exp[n−1] r

)
+O(1) (3.3)

i.e., log[p]M−1h Mf◦g(exp
[n−1] r) ≥(

λ
(p,q)
h (f)− ε

)
β−(λg(m,n)−ε) exp[m−q−1] r(λg(m,n)−ε) +O(1) . (3.4)

Case II. Let q > m. Then from (3.2) we obtain for all suffi ciently large values of
r that

log[p]M−1h Mf◦g(exp
[n−1] βr) ≥(

λ
(p,q)
h (f)− ε

)
log[q−m] log[m]Mg

(
exp[n−1] r

)
+O(1). (3.5)

i.e., log[p]M−1h Mf◦g(exp
[n−1] r) >

(
λ
(p,q)
h (f)− ε

)
log[q−m+1] r +O(1)

i.e., log[p−1]M−1h Mf◦g(exp
[n−1] r) >

(
log[q−m] r

)(λ(p,q)h (f)−ε
)
+O(1). (3.6)

Now combining (3.1) and (3.4) of Case I it follows for all suffi ciently large values
of r that

log[p]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α ≥
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λ
(p,q)
h (f)− ε

)
β(λg(m,n)−ε) exp[m−q−1] r(λg(m,n)−ε) +O(1)(
ρ
(p,q)
h (f) + ε

)1+α
{γ (r)}1+α

.

Since lim
r→+∞

log γ(r)
log r = 0, therefore exp[m−q−1] r(λg(m,n)−ε)

{γ(r)}1+α → +∞ as r → +∞, then
from above it follows that

lim
r→+∞

log[p]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α =∞,

from which the first part of the theorem follows.
Again combining (3.1) and (3.6) of Case II it follows for all suffi ciently large

values of r that

log[p−1]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α ≥

(
log[q−m] r

)(λ(p,q)h (f)−ε
)
+O(1)(

ρ
(p,q)
h (f) + ε

)1+α
{γ (r)}1+α

.

As lim
r→+∞

log γ(r)

log[q−m+1] r
= 0, so (

log[q−m] r)(
λ
(p,q)
h

(f)−ε)

{γ(r)}1+α → +∞ as r → +∞. Thus it
follows from above that

lim
r→+∞

log[p−1]M−1h Mf◦g(exp
[n−1] r){

log[p]M−1h Mf (exp[q] γ (r))
}1+α =∞ .

This proves the second part of the theorem. Thus the theorem follows . �

Remark 3.2. Theorem 3.1 is still valid with “limit superior” instead of “limit” if
we replace the condition “ 0 < λ

(p,q)
h (f) ≤ ρ

(p,q)
h (f) < +∞”by “ 0 < λ

(p,q)
h (f) <

+∞”.

In the line of Theorem 3.1 one may state the following theorem without proof:

Theorem 3.3. Let f , g, h and k be any four entire functions such that g is of finite
(m,n)-th lower order, λ(p,q)h (f) > 0 and ρ(l,n)k (g) < +∞ where p, q,m, n, l ∈ N with
m ≥ min {l, n}. Also let γ be a positive continuous on [0,+∞) function increasing
to +∞. Then for any number α ≥ 0,

lim
r→+∞

log[p]M−1h Mf◦g(exp
[n−1] r){

log[l]M−1k Mg(exp[n] γ (r))
}1+α = ∞,

when q < m and lim
r→+∞

log γ (r)

log r
= 0
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and

lim
r→+∞

log[p−1]M−1h Mf◦g(exp
[n−1] r){

log[l]M−1k Mg(exp[n] γ (r))
}1+α = ∞,

when q > m and lim
r→+∞

log γ (r)

log[q−m+1] r
= 0 .

Remark 3.4. In Theorem 3.3 if we take the condition λ(p,n)h (g) < +∞ instead of

ρ
(p,n)
h (g) < +∞, then also Theorem 3.3 remains true with “limit superior”in place
of “ limit ”.

Next we prove our theorem for composite entire and meromorphic function.

Theorem 3.5. Let f be a meromorphic function and g, h be an entire function
with 0 < λ

[p]
h (f) ≤ ρ[p]h (f) < +∞ and ρg > 0 where p ∈ N. Also let γ be a positive

continuous on [0,+∞) function increasing to +∞. Then for any number α ≥ 0,

lim
r→+∞

log[p] T−1h Tf◦g(r){
log[p] T−1h Tf (exp {γ (r)})

}1+α =∞
where

lim
r→+∞

log γ (r)

log r
= 0 .

Proof. Let 0 < µ < ρg. As T
−1
h (r) is an increasing function of r, it follows from

Lemma 2.3 for a sequence of values of r tending to infinity that

log[p] T−1h Tf◦g(r) ≥ log[p] T−1h Tf (exp (r
µ))

i.e., log[p] T−1h Tf◦g(r) ≥
(
λ
[p]
h (f)− ε

)
rµ . (3.7)

Again for all suffi ciently large values of r we get that

log[p] T−1h Tf (exp {γ (r)}) ≤
(
ρ
[p]
h (f) + ε

)
γ (r) .

So combining (3.7) and above, we obtain for a sequence of values of r tending to
infinity that

log[p] T−1h Tf◦g(r){
log[p] T−1h Tf (exp {γ (r)})

}1+α ≥
(
λ
[p]
h (f)− ε

)
rµ(

ρ
[p]
h (f) + ε

)1+α
{γ (r)}1+α

.

Since lim
r→+∞

log γ(r)
log r = 0, therefore rµ

{γ(r)}1+α → +∞ as r → +∞, then from above it

follows that

lim
r→+∞

log[p] T−1h Tf◦g(r){
log[p] T−1h Tf (exp {γ (r)})

}1+α =∞ .
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Hence the theorem follows. �

Similarly one may state the following theorem without proof as it can be carried
out in the line of Theorem 3.5.

Theorem 3.6. Let f be a meromorphic function and g, h, k be any three entire
functions with λ[p]h (f) > 0, ρk (g) < +∞ and ρg > 0 where p ∈ N. Also let γ be a
positive continuous on [0,+∞) function increasing to +∞. Then for any number
α ≥ 0,

lim
r→+∞

log[p] T−1h Tf◦g (r){
log T−1k Tg(exp {γ (r)})

}1+α =∞
where

lim
r→+∞

log γ (r)

log r
= 0 .

Theorem 3.7. Let f be a meromorphic function and g, h be any two entire
functions such that 0 < λ

(p,q)
h (f) ≤ ρ

(p,q)
h (f) < +∞, ρg(m,n) < +∞ where

p, q,m, n ∈ N with m > n. Also let γ be a positive continuous on [0,+∞) function
increasing to +∞. If h satisfy the Property (A), then for any number α ≥ 0,

lim
r→+∞

{
log[p] T−1h Tf◦g (r)

}1+α
log[p] T−1h Tf

(
exp[q] {γ (r)}

) = 0 if q > m
and

lim
r→+∞

{
log[p+m−q−1] T−1h Tf◦g (r)

}1+α
log[p] T−1h Tf

(
exp[q] {γ (r)}

) = 0 if q < m,

where

lim
r→+∞

log γ (r)

log r
= +∞ .

Proof. Let us suppose that α > 2 and δ → 1+ in Lemma 2.4. Since T−1h (r) is an
increasing function of r, it follows from Lemma 2.2, Lemma 2.4 and the inequality
Tg(r) ≤ log+Mg(r) {cf. [8] } for all suffi ciently large values of r that

T−1h Tf◦g (r) 6 T−1h [{1 + o(1)}Tf (Mg (r))]

i.e., T−1h Tf◦g (r) 6 αT−1h Tf (Mg (r))

i.e., log[p] T−1h Tf◦g (r) 6 log[p] T−1h Tf (Mg (r)) +O(1)

i.e., log[p] T−1h Tf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
log[q]Mg (r) +O(1) . (3.8)

Now the following cases may arise :
Case I. Let q > m. Then we have from (3.8) for all suffi ciently large values of r
that

log[p] T−1h Tf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
log[m−1]Mg (r) +O(1) (3.9)
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Now from the definition of (m,n)-th order of g, we get for arbitrary positive ε and
for all suffi ciently large values of r that

log[m]Mg (r) 6
(
ρg(m,n) + ε

)
log[n] r

i.e., log[m]Mg (r) ≤
(
ρg(m,n) + ε

)
log r (3.10)

i.e., log[m−1]Mg (r) ≤ r(ρg(m,n)+ε) . (3.11)

So from (3.9) and (3.11) it follows for all suffi ciently large values of r that

log[p] T−1h Tf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
r(ρg(m,n)+ε) +O(1) . (3.12)

Case II. Let q < m. Then we get from(3.8) for all suffi ciently large values of r that

log[p] T−1h Tf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log[m]Mg (r) +O(1). (3.13)

Also we obtain from (3.10) for all suffi ciently large values of r that

exp[m−q] log[m]Mg (r) 6 exp[m−q] log r(ρg(m,n)+ε)

i.e., exp[m−q] log[m]Mg (r) 6 exp[m−q−1] r(ρg(m,n)+ε) . (3.14)

Now from (3.13) and (3.14) we obtain for all suffi ciently large values of r that

log[p] T−1h Tf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(ρg(m,n)+ε) +O(1)

i.e., log[p+m−q−1] T−1h Tf◦g (r) 6 r(ρg(m,n)+ε) +O(1) . (3.15)

Again for all suffi ciently large values of r we get that

log[p] T−1h Tf

(
exp[q] {γ (r)}

)
≥
(
λ
(p,q)
h (f)− ε

)
γ (r) . (3.16)

Now if q > m, we get from (3.12) and (3.16) for all suffi ciently large values of r
that {

log[p] T−1h Tf◦g (r)
}1+α

log[p] T−1h Tf
(
exp[q] {γ (r)}

) 6
(
ρ
(p,q)
h (f) + ε

)1+α
r(ρg(m,n)+ε)(1+α)

(
1 + O(1)(

ρ
(p,q)
h (f)+ε

)
r(ρg(m,n)+ε)

)1+α
(
λ
(p,q)
h (f)− ε

)
γ (r)

.

Since lim
r→+∞

log γ(r)
log r = +∞, therefore r(ρg(m,n)+ε)(1+α)

γ(r) → +∞ as r → +∞, then the
first part of the theorem follows from above.
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Further when q < m, we obtain from (3.15)and (3.16) for all suffi ciently large
values of r that{

log[p+m−q−1] T−1h Tf◦g (r)
}1+α

log[p] T−1h Tf
(
exp[q] {γ (r)}

) 6
r(ρg(m,n)+ε)(1+α)

(
1 + O(1)

r(ρg(m,n)+ε)

)1+α
(
λ
(p,q)
h (f)− ε

)
γ (r)

i.e., lim
r→+∞

{
log[p+m−q−1] T−1h Tf◦g (r)

}1+α
log[p] T−1h Tf

(
exp[q] {γ (r)}

) = 0,

This proves the second part of the theorem. �

Remark 3.8. In Theorem 3.7 if we take the condition ρ(p,q)h (f) > 0 instead of λ(p,q)h (f) >
0, the theorem remains true with “ limit inferior”in place of “limit ”.

Theorem 3.9. Let f be a meromorphic function and g, h, k be any three entire
functions such that g is of finite (m,n)-th order, ρ(p,q)h (f) < +∞, ρ(l,n)k (g) > 0
where p, q,m, n, l ∈ N with m ≥ min {l, n}. Also let γ be a positive continuous on
[0,+∞) function increasing to +∞. If h satisfy the Property (A), then for any
number α ≥ 0,

lim
r→+∞

{
log[p] T−1h Tf◦g (r)

}1+α
log[l] T−1k Tg

(
exp[n] {γ (r)}

) = 0 if q > m
and

lim
r→+∞

{
log[p+m−q−1] T−1h Tf◦g (r)

}1+α
log[l] T−1k Tg

(
exp[n] {γ (r)}

) = 0 if q < m,

where

lim
r→+∞

log γ (r)

log r
= +∞ .

The proof of Theorem 3.9 would run parallel to that of Theorem 3.7. We omit
the details.

Remark 3.10. In Theorem 3.9, if we take the condition ρ(p,n)h (g) > 0 instead of

λ
(p,n)
h (g) > 0, the theorem remains true with “limit replaced by limit inferior”.

Theorem 3.11. Let f , g and h be any three entire functions such that 0 <

λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < +∞, ρg(m,n) < +∞ where p, q,m, n ∈ N with m > n.

Also let γ be a positive continuous on [0,+∞) function increasing to +∞. Then
for any number α ≥ 0,

lim
r→+∞

{
log[p]M−1h Mf◦g (r)

}1+α
log[p]M−1h Mf

(
exp[q] {γ (r)}

) = 0 if q > m
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and

lim
r→+∞

{
log[p+m−q−1]M−1h Mf◦g (r)

}1+α
log[p]M−1h Mf

(
exp[q] {γ (r)}

) = 0 if q < m,

where

lim
r→+∞

log γ (r)

log r
= +∞ .

Theorem 3.12. Let f , g, h and k be any four entire functions such that g is of
finite (m,n)-th order, ρ(p,q)h (f) < +∞, ρ(l,n)k (g) > 0 where p, q,m, n, l ∈ N with
m ≥ min {l, n}. Also let γ be a positive continuous on [0,+∞) function increasing
to +∞. Then for any number α ≥ 0,

lim
r→+∞

{
log[p]M−1h Mf◦g (r)

}1+α
log[l]M−1k Mg

(
exp[n] {γ (r)}

) = 0 if q > m
and

lim
r→+∞

{
log[p+m−q−1]M−1h Mf◦g (r)

}1+α
log[l]M−1k Mg

(
exp[n] {γ (r)}

) = 0 if q < m,

where

lim
r→+∞

log γ (r)

log r
= +∞ .

A similar arguments in the proofs of Theorem 3.7 and Theorem 3.9 respectively
will establish the results in Theorem 3.11 and Theorem 3.12 by the help of Lemma
2.1. Therefore we omit the details.

Remark 3.13. In Theorem 3.11 if we take the condition ρ
(p,q)
h (f) > 0 instead

of λ(p,q)h (f) > 0, the theorem remains true with “ limit inferior”in place of “limit
”.

Remark 3.14. In Theorem 3.12, if we take the condition ρ(p,n)h (g) > 0 instead of

λ
(p,n)
h (g) > 0, the theorem remains true with “ limit replaced by limit inferior”.
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