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ESTIMATION OF THE LOCATION AND THE SCALE
PARAMETERS OF BURR TYPE XII DISTRIBUTION

FATMA GUL AKGUL, SUKRU ACITAS, AND BIRDAL SENOGLU

ABSTRACT. The aim of this paper is to estimate the location and the scale pa-
rameters of Burr Type XII distribution. For this purpose, different estimation
methods, namely, maximum likelihood (ML), modified maximum likelihood
(MML), least squares (LS) and method of moments (MM) are used. The
performances of these estimation methods are compared via Monte-Carlo sim-
ulation study under different sample sizes and parameter settings. At the end
of the study, the wind speed data set and the annual flow data sets are analyzed
for illustration of the modeling performance of Burr Type XII distribution.

1. INTRODUCTION

The Burr Type XII distribution was first introduced by [12] as one of the Burr
system of distributions. Since then, it has gained significant attention due to the
potential of using it in practical studies [22]. Therefore, several authors have been
applied Burr XII distribution to different areas such as engineering [I3], [42], reliabil-
ity [2, 25], survival analysis [40, 41], hydrology [23], 27], wind energy [I1], actuarial
science [19] and so forth.

In literature, there have been considerable number of studies concerning with the
estimation of the unknown parameters of Burr Type XII distribution. For example,
Hossain and Nath [I6] considered the estimation of the shape parameters of Burr
Type XII distribution using the least squares (LS), maximum likelihood (ML) and
maximum product spacing (MPS) methodologies. Furthermore, they investigated
the performances of these estimators when the data include outliers. Watkins [39]
proposed an algorithm for maximum likelihood estimation in three-parameter Burr
Type XII distribution. Abbasi et al. [I] used a neural network approach to estimate
the location, the scale and the shape parameters of Burr XII distribution. Dogru
and Arslan [14] obtained the optimal B-robust estimators for the shape parame-
ters of the Burr Type XII distribution. In addition to these studies, inference for
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the Burr Type XII distribution has been considered under different scenarios such
as type-II censored data [41], progressively censored data [29], multiple censored
data [38], record data [21], progressive first-failure censored data [30] and middle-
censored data [4]. Furthermore, many authors are interested in the generalized
version of Burr Type XII distribution in recent years. For example, [I5] proposed
McDonald Burr Type XII distribution, [20] studied the Kumaraswamy exponenti-
ated Burr Type XII distribution and [5] investigated the Weibull Burr Type XII
distribution.

In this study, we consider the estimation of the location and the scale parameters
of Burr Type XII distribution, see also [6]. To do this, firstly we use the well-
known and widely used ML methodology. However, since the ML estimators of
the parameters cannot be obtained explicitly, we here use Tiku’s [34] [35] modified
maximum likelihood (MML) methodology. We also obtain the LS and the method
of moments (MM) estimators of the parameters of Burr Type XII distribution. The
performances of the proposed estimators are compared via Monte-Carlo simulation
study with respect to bias, mean square error (MSE) and deficiency (Def) criteria.

The rest of the paper is organized as follows. In Section 2, we introduce the Burr
Type XII distribution. The detailed information about the parameter estimation
methods used in this study is provided in Section 3. Section 4 includes an extensive
Monte-Carlo simulation study. Two real life data are analyzed in Section 5. The
paper is ended with some concluding remarks.

2. Burr TyPE XII DISTRIBUTION

The probability density function (pdf) and the cumulative density function (cdf)
of the Burr Type XII distribution are given as follows

ke (o — )\ NN
f(x):( ) (1+( )) , T >, ¢ k,o>0, —oo< pu<oo

(1)

c\ —k
F(x)zl—(1+(x;“)> , @>p e ko >0, —0<p<oo  (2)

respectively. Here p is the location, o is the scale, ¢ and k are the shape parameters.
Burr Type XII distribution with parameters p, o, ¢ and k is shortly denoted by
Burr (u,0,¢, k). It should also be noted that Burr Type XII distribution is also
known as Singh-Maddala distribution, see [28].

If ¢ < 1, Burr Type XII distribution is L-shaped and if ¢ < 1, it is unimodal. The
combinations of ¢ and k cover a wide range of skewness and kurtosis coefficients of
some statistical distributions such as normal, Weibull, Lomax, logistic, Kappa and
several Pearson-Type distributions etc. For example, Burr Type XII distribution
reduces to normal distribution when ¢ =4.8544 and k =6.2266. Also, the limiting
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F1GURE 1. The density plots of Burr Type XII distribution for
several values of shape parameters ¢ and k.

distribution of when £ — oo is Weibull, for more detailed information see
[26, (33, 3.

The density plots of Burr Type XII distribution for several values of shape para-
meters ¢ and k are illustrated in Figure 1. See also the following skewness (\/BT)
and kurtosis (85) values for better understanding the shape of Burr Type XII dis-
tribution:

(k) (46) (56 (66 (52) (105 (510) (438)
VA1 01779 -0.0135 -0.1468 0.6353 -0.3914 -0.1149 0.1062
B, 3.0451 3.0099 3.0653 4.6304 3.4016 2.9280 2.9362

It should be noted that for existences of \/571 and B,, ck >3 and ck >4 are
required, respectively [33]. It is clear from the skewness and the kurtosis values
that Burr Type XII distribution may have short (8, < 3) or long (8, > 3) tails
besides being symmetric or skewed. This provides flexibility for modeling various
type of data sets.

3. PARAMETER ESTIMATION METHODS

In this section, we give detailed information about the parameter estimation
methods which are used to estimate the location and the scale parameters of Burr
Type XII distribution. It should be noted that the shape parameters of Burr XII
distribution is assumed to be known throughout the study. This is because of
the fact that efficiency of the estimators for p and o are reduced when they are
estimated along with the shape parameters especially for small sizes. See also [10,
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18] in the context of parameter estimation of three-parameter Weibull distribution.
Therefore, the shape parameters ¢ and k are treated as known in this section.

3.1. Maximum Likelihood (ML) Method. Let = (x1,22,...,2,) be a ran-
dom sample of size n from Burr Type XII distribution. To obtain the ML estimators
of the unknown location and scale parameters the log-likelihood function is written
as given below

InL=nlnk+nlnc—nlno+(c—1) Zln <3:la,u> —(k+1) Zln (1 + (T) >
i=1 i=1

After taking the derivatives of In L with respect to the parameters p and o and
equating them to zero, we obtain the following likelihood equations:

oL 7(0—1)Zgl(%H@ZgQ(%):o, (3)

O i
OlnL n c—1) & E+1)c—
90 = - % Z;Zigl (z:) + % ;%’92 (z:) = 0. (4)

Here, z; = (z; —p) /o, g1 (2:) = 1)z and g2 (2;) = 2§~ /(1 + 2§). Tt is clear that the
likelihood equations cannot be solved explicitly because of the non-linear functions
g1 (z;) and g2 (2;) in and ([4). Therefore, we resort to iterative methods for
solving them.

3.2. Modified Maximum Likelihood (MML) Method. In previous subsec-
tion, it is mentioned that the ML estimators of the parameters are obtained by
using the iterative methods. However, using iterative methods may cause problem-
atic situations such as (i) convergence to wrong root, (ii) convergence to multiple
root and (iii) nonconvergence of iterations [24] B6]. To avoid the difficulties encoun-
tered in iterative methods and to obtain the explicit estimators of the parameters,
we use the MML methodology proposed by Tiku [34] [35].

The MML methodology proceeds as follows: Let z(1) < z@2) < -+ < 2(p,) be the
order statistics obtained by arranging z;, ¢ = 1,2,...,n in ascending order. Since
complete sums are invariant to ordering (i.e. >°1" | 2z = > ", %)), the likelihood
equations and are rewritten in terms of the order statistics. Then, the
non-linear functions g; (.) and g (.) are linearized by using Taylor series expansion
around the expected values of standardized order statistics t(;) = E (z(i)), i =
1,2...,n as given below

g1 (z(i)) = ay; — Br26) and  go (z(i)) > ag; + B2, 1=1,2,...,n.  (5)
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Finally, incorporating the linearized functions in into the likelihood equations
in and , we obtain the modified likelihood equations as shown below:

OlnL* (c—1) < (k+1)c
P = - Z (i = Brizs)) + ———— Z (a2i + Byi2(3)) =0, (6)
H 7 = g i=1
Oln L* no (c—1) <
9o o o 2_Z;Z(i) (o = Briz) +
(E+1)c <
Y Z Z(i) (ali - 51%’(1‘)) =0. (7)
i=1
The solutions of these equations are the following MML estimators of p and o:
~ ~ . B++VB%2+44nC
u=K+Ds and 0= i +an , (8)
2¢y/n(n—1)

where

; —“1/k 1/c
t(”<(1n+1> 1> ’

ar =2/tG), By = 1/t%i)7

c—1 c c—2 2¢—2
£ (2+2t(i) c) (c— 1162 — 2

Q25 = ) i ’
(1 +tfi))2 i (1 +tfi))2
di=(c—1)By; +c(k+1) By, mzz&-, K:Z&m(i)/m,
i=1 i=1

Ai:c(k—l—l)azi—(c—l)ali, D:ZAl/m,
i=1
n n 9
i=1 1=1
It should be noted that the divisor n in expression for ¢ is replaced by y/n (n — 1)
as a bias correction.

Remark 1. For some ¢ and k, the values of the By; coefficients can be negative.
This situation may cause C < 0. This may yield negative or nonreal estimates of
o. To overcome this problem, the coefficients By; and ag; are replaced by B5; and
o5, as follows:

1+t02 ot —
@ r = 0 O i=1,

B;Z = - (20 Qg; = - 2
(1 —i—t(i)> (1 +t(i)>
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respectively. This alternative representation does not alter the asymptotic properties
of the estimators since z(;) — t(;) = 0 and consequently

i + Boiz(iy = a5y + Bazw (1=1,...,n),
see i.e. [17,[31].
3.3. Least Squares (LS) Method. The LS estimators are obtained by minimiz-

ing the following equation

n i 2

F(X) — —— 10

Zl( (X)) n+1> (10)
with respect to the parameters of interest, i.e. p and o [32]. Here, F(-) is the cdf,
X(iy is the i—th ordered observation, i.e. X1y < X(g) < -+ < X(y,) and i/(n + 1)
are the expected values of F (X(i)). Therefore, in the context of Burr Type XII
distribution, reduces to

Z<I(H<W)>kn+1>2 (11)

Then, the LS estimators of the parameters are obtained by minimizing the equation
(11)) with respect to the parameters of interest. It is clear that numerical or iterative
methods should also be performed to obtain the LS estimators.

3.4. Method of Moments (MM) estimators. The MM estimators of the lo-
cation and the scale parameters of Burr Type XII distribution are obtained by
equating the theoretical moments to the corresponding sample moments as shown
below
ED(k—1/c)T (1/c+1)

Lk+1)

T=u+

and
s KkKT'(k—=2/0)T2k+1)T(k+1)— kT2 (k—1/c)T2(1/c+1) 9

§° = T2 (k£ 1) o*.
Therefore, the MM estimators of the parameters p and o are obtained as given
below

~ kL (k -1/ T (1/c+ 1)

p=T- T'(k+1) (12)

and
_ 272 (k + 1) 3
SN T G2 gT @ DT e D) - R G =12 (e

respectively. Here, Z denotes the sample mean and s? stands for the sample stan-
dard deviation.
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4. SIMULATION STUDY

In this section, we perform an extensive Monte Carlo simulation study to com-
pare the performances of the LS, the MM, the ML and the MML estimators of the
location parameter y and the scale parameter o of Burr Type XII distribution with
respect to bias and MSE criteria. We also use the Def criterion for joint efficiencies
of i and & shown below

Def (i, &) = MSE (fi) + MSE (). (14)

The simulation study is performed for different sample sizes and different shape
parameter settings. The sample sizes are considered as n =20, 50 and 100. Here,
they are categorized as small (n =20), moderate (n =50) and large (n =100). To
investigate the effect of the shape parameters on the efficiencies of the different
parameter estimators, we consider the following cases.

(¢, k) = (5,6) = symmetric,

(¢, k) = (5,2) = long tailed positively skewed,

(¢, k) = (4,8) = short tailed positively skewed.

Without loss of generality, 1 and o are taken to be 0 and 1, respectively. It should
also be noted that "fminsearch" function, available in the optimization toolbox
of MATLAB software, is used for the numerical computations of ML, LS and MM
estimators. The results of the simulation study are reported in Table 1. It should
be stated that the smallest MSE and Def values for each setup are shown by bold
face in this table.

It is clear from Table 1 that the performances of the ML, the MML and the MM
estimators of p and o are more or less the same for all sample sizes when the shape
of the distribution is symmetric, i.e., ¢ =5, k =6. In this case, the LS estimator
demonstrates the weakest performance with the highest bias, MSE and Def values.

In the long tailed positively skewed case, i.e. ¢ =5, k =2, the MML estimators of
w1 and o have the smallest bias and they are followed by the MM estimators. In the
context of efficiency, the ML estimator demonstrates the strongest performances
with the lowest deficiency for all sample sizes. It should be noted that the ML
and the MML estimators are close to each other for the moderate and the large
sample sizes, as expected. This is because of the fact that the MML estimator is
asymptotically equivalent to the ML estimator, see [37]. On the other hand, the
MM estimator performs better than the LS estimator. Similar to the symmetric
case, the performances of the LS estimators are quite poor for all sample sizes.

When the shape parameters ¢ =4, k =8, the biases of the MM estimators of u
and ¢ are lower than the other estimators for all sample sizes. They are followed
by the MML estimators. The LS estimator underestimates p for all sample sizes.
In view of the MSE, the ML and the MML estimators perform better than the
MM estimator does. Similar to other shape parameter settings, the LS estimator
shows the worst performances. According to the Def values, the ML and the MML
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TABLE 1. Simulated Mean, MSE and Def values for parameters u

and o.
Estimator w o Def
Mean MSE Mean MSE
ML 0.0261 0.0120 0.9613 0.0252 0.0372
=5 k= MML 0.0106 0.012 0.9858  0.0253 0.0373
’ LS -0.0331  0.0209 1.05 0.0451  0.0661
MM 0.0077 0.012 0.9883  0.0253 0.0373
ML 0.0324 0.0211 0.9635 0.0306 0.0517
20 |e=51k= MML 0.007 0.0217 1.0003 0.0322 0.054
’ LS -0.0462 0.036 1.0569 0.0528  0.0889
MM 0.0181  0.0257 0.9794 0.0387  0.0645
ML 0.0246 0.0082 0.9564 0.0245 0.0327
c—d k=8 MML 0.015 0.0082 0.9767 0.0244 0.0326
’ LS -0.0254  0.0142 1.0449 0.0443  0.0586
MM 0.0068  0.0083 0.9868 0.0248  0.0332
ML 0.0105 0.0050 0.9846 0.0098 0.0148
=B k=6 MML 0.0053 0.005 0.9933  0.0099 0.015
’ LS -0.012 0.0077 1.0182 0.0158  0.0236
MM 0.0027  0.0051 0.996 0.01 0.0151
ML 0.0143 0.0080 0.983 0.0118 0.0197
50 |e=5.k=2 MML 0.0058  0.0081 0.9961 0.012 0.0201
’ LS -0.0145 0.0123 1.0169 0.0178  0.0301
MM 0.007 0.011 0.9914 0.0167  0.0277
ML 0.0111 0.0034 0.9817 0.0097 0.0132
c—d k=8 MML 0.0089  0.0035 0.9876 0.0099  0.0133
’ LS -0.0094 0.0055 1.0183 0.016 0.0215
MM 0.0036  0.0036 0.9944 0.0102 0.0138
ML 0.0062 0.0024 0.9911 0.005 0.0075
B k= MML 0.0041  0.0024  0.995 0.0051  0.0075
’ LS -0.0051 0.0039 1.0078 0.0082  0.0121
MM 0.002 0.0025 0.9973 0.0051  0.0076
ML 0.0100 0.0040 0.989 0.0061 0.0102
100 | c=5.% =2 MML 0.0071  0.0041 0.9941 0.0062  0.0103
’ LS -0.005 0.0064 1.0068 0.0092  0.0156
MM 0.0083  0.0056 0.9906 0.0088  0.0144
ML 0.0038 0.0014 0.9946 0.0042 0.0056
c—d k=38 MML 0.0036  0.0014 0.9962 0.0042  0.0057
’ LS -0.0058 0.0025 1.0121 0.0074 0.01
MM 0.0003  0.0015 1.0005 0.0045 0.006

estimators demonstrate the strongest performances and the LS estimator shows the
worst performances among the others.

The results of the simulation study show that MML estimators can be preferred
for the following two reasons: First, they are more efficient than the MM and
the LS estimators and are as efficient as the ML estimators. Second, the MML
estimators are explicitly formulated, i.e. they are expressed as the functions of
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sample observations. In other words, the MML estimators are easy to obtain since
they do not require any iterations unlike the other methods used in this study.
Therefore, we use the MML estimators in the rest of the paper for having high
efficiency together with the computational simplicity.

5. APPLICATION

In this part of the study, we implement the considered estimation methods for
modelling wind speed data and annual flow data sets.

5.1. Wind speed data. Now, we use the annual and seasonal wind speed data
collected at Eskigehir, Turkey in 2009, see also [7l [8]. We model wind speed by
using four parameter Burr Type XII distribution. The descriptive statistics for the
data set are tabulated in Table 2.

TABLE 2. Descriptive statistics for the wind speed data.

Period T s2 N B n
Annual 1.7264 0.6308 0.9727 4.5405 8759
Summer 1.8379 0.5009 0.8447 4.3239 2208
Spring  1.7945 0.6800 0.8781 3.8146 2207
Autumn 1.4423 0.4524 0.8848 3.8199 2184
Winter 1.8303 0.7846 1.0768 4.9018 2160

As mentioned in Section 3, the shape parameters ¢ and k are assumed to be
known and the simulation study is carried out under this assumption. However,
the shape parameters should be estimated in real life problems in contrast to the
simulation study, see for example [3,[Q]. In this study, we therefore use the method-
ology known as profile likelihood to find the estimates of the shape parameters.
The profile likelihood methodology is explained step by step below:

Step 1. Calculate jiy;y,; and oararr for given c and k.

Step 2. Calculate the value of log-likelihood function using the following equa-
tion:

In L(fpspsr, 6 Mmmr, ¢, k) = nmlnk+nlnc—nlnépymr + (c— I)ZIH (%)
i=1

- T — fiap )
om0+ (2500) )
Step 3. Repeat Step 1 and Step 2 for serious values of ¢ and k.
Step 4. c and k values maximizing the log-likelihood function among the others

are chosen as a plausible values of the shape parameters. The estimates of ¢ and k
obtained at the end of this step are also denoted by ¢ and k, respectively.
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TABLE 3. The MML estimates for the wind speed data.

Period ¢ k i o R?
Annual 2.11 5.96 0.3000 3.5341 0.9981
Summer 2.77 3.40 0.2940 2.4960 0.9962

Spring 2.13 6.18 0.2942 3.7680 0.9972
Autumn 1.85 13.79 0.3000 5.0704 0.9967
Winter 2.06 5.14 0.3000 3.5166 0.9968

Step 5. [y and 0aarr are taken as the estimates of the location and the
scale parameters corresponding to ¢ and k obtained in Step 4.

[3, [I7] are recommended for the details of this procedure.

The results of the parameter estimates are given in Table 3. The modelling
performance of Burr Type XII distribution for the wind speed data is measured by
using R? criterion. These criteria is formulated as follows:

)> (F (X)) = n_iH)g
> (£ (xw) —E(Xm))T

Here, F is the estimated cdf, X(iy is the i—th order statistics, E:Z Fl/n The
higher values of R? implies the better fitting.

R*=1-

a

Annual wind speed

FIGURE 2. The histogram and the fitted Burr Type XII density
for the annual wind speed data.

It is obvious from Table 3 that Burr Type XII distribution gives satisfactory
results in terms of R? criterion since it is very close to 1. It should also be noted
that Weibull distribution is commonly used for modelling the wind speed data, see
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Densty

F1GURE 3. The histogram and the fitted Burr XII density for sea-
sonal wind speed data.

also [7,[8]. Therefore, we also model the same wind speed data using Weibull distri-
bution and compare the modelling performance with Burr Type XII distribution.
The results show that Burr Type XII distribution is more preferable than Weibull
distribution in terms of R? criterion. Since this issue is out of scope of the study,
we do not include the results here for the sake of brevity. However, they can be
provided upon request.

Figure 2-3 illustrates the density plots of Burr Type XII distribution based on
the MML estimates given in Table 3. It is clear from these figures that the Burr
Type XII distribution provides substantially good fitting performance.

5.2. Annual flow data. Here, we use the annual flow data from the Pearl River
basin in China. This data set was collected by [27] and modeled by using extended
three-parameter Burr Type XII distribution. In this application, we model this data
set by using four parameter Burr Type XII distribution. The descriptive statistics
for the data set are tabulated in Table 4.

Similar as in Subsection 5.1, the estimates of the shape parameters ¢ and k are
obtained by using profile likelihood methodology. Then, based on these estimate
values, the MML estimates of the parameters ;1 and o and R? values are given in
Table 5.
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TABLE 4. Descriptive statistics for the flow data.

Period T s? v/ B B n
Annual 2.3575 0.0746 0.3637 3.5393 98

TABLE 5. The MML estimates for the flow data.

Period ¢ k it o R?
Annual 5.35 231 1.3172 1.2531 0.9939

It is clear from Table 5 that the Burr Type XII distribution provides very good
fit to annual flow data with R? values close to 1. Furthermore, in Figure 4, we draw
the density plots of Burr Type XII distribution based on the estimate values given
in Table 5. The modeling performances of Burr Type XII distribution is illustrated
apparently by this figure.

K

0 |
15 2 25 3 35
Annual flow data

FI1GURE 4. The histogram and the fitted Burr XII density for the
annual flow data.

6. CONCLUSION

In this study, the location and the scale parameters of Burr Type XII distrib-
ution are estimated via ML, MML, LS and MM methods. Different than MML
method, ML, LS and MM methods require iterative techniques in the estimation
procedure. Therefore, MML estimators have closed forms and are easy to compute.
The performances of the mentioned methods are evaluated using Monte-Carlo Sim-
ulation study under different sample sizes and parameter settings. The results of
the simulation study demonstrate that the ML and the MML estimators are more
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preferable in terms of MSE and Def criteria. It should be noted that the ML es-
timators are the most efficient ones among the others, as expected. However, the
MML estimators are also as good as the ML estimators and they do not require any
iterative methods as mentioned above. Therefore, we conclude that if the concern is
computational simplicity together with the efficiency, we propose to use the MML
estimators as an alternative to ML estimators. Wind speed data set and annual
flow data set are analyzed for illustration in the application part of the study. The
results show that the modelling performance of Burr Type XII distribution based
on the MML estimates is considerably good for these data sets.

In our future studies, we are planning to use the Burr Type XII distribution
as an error terms distribution of a linear model since its flexible data-modeling
characteristic. The model parameters will estimate by using MML methodology.
The robustness properties of these estimators will also be investigated.
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