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Abstract 

 

In this paper, a finite element method is formulated to solve the 2nd order Fick’s model of time dependent 

concentration of semi-infinite solid in non-homogeneous materials such as concrete subjected to chloride 

environment. The method formulates a time dependent problem from the Fick’s model and proceeds to calculate the 

associated vectors from which the solution can be obtained. The result obtained is highly accurate and when compared 

with the exact solution and related literature tended fast to the transient state solution. 
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1. Introduction 

The deterioration of reinforced structures due to 

physical and chemical attack has been a major concern 

to civil engineers; hence the durability of concrete 

structures exposed to marine environment depends 

mainly on the ability of concrete to resist chloride 

ingress [1]. Also a simple model for chloride 

penetration has been developed to assess the service 

life of concrete structures exposed to marine 

environment [2]. The complex phenomenon 

associated with concrete depends on many parameters 

related to the concrete properties and to the micro-

environmental characteristics. Furthermore, when 

unprotected concrete is exposed to aggressive 

substances containing chloride, the chloride will 

penetrate the concrete. The natural content in the pore 

liquid and the binder of the near-to-surface layer of the 

concrete will raise [3]. It is widely known that the 

ingress of chloride ions constitutes a major source of 

durability problems affecting reinforced concrete 

structures which are exposed to marine environments. 

Once sufficient quantity of chloride has accumulated 

around the embedded steel, pitting corrosion of the 

metal is liable to occur unless the environmental 
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conditions are strongly anaerobic [4]. In concrete, the 

flow rate is very low [5], hence the chemical potential 

driving the diffusion transfer of moisture may include, 

temperature, solute concentration giving an osmotic 

pressure and moisture content giving rise to surface 

(adsorption) forces and vapor/water interface forces in 

the capillaries. Amongst the various exposure 

conditions that concrete and reinforced concrete 

structures may be subjected to during their service life, 

chlorides represent one of the most complex and 

eventually most hazardous attacks [6]. The capacity of 

any type of concrete to resist chloride penetration is 

the presence of the diffusion coefficient of the chloride 

and it is used to predict the service life of reinforced 

concrete structures [7]. In determining the 

fundamental properties of concrete and the diffusion 

coefficient, electrochemical test and an optimization 

model was developed. The development and 

implementation of a software that calculate the 

chloride penetration profile in concrete obtained using 

traditional Portland cements and cementitious 

mixtures from the addition of pozzolanic materials 

such as silica fume, metakaolin, fly ash, etc was 

brought forth [8]. The software calculates the 

penetration profile taking into account parameters 

such as the water-cement ratio, initial chlorides 

concentration, and the pozzolan content in the mixture. 

Furthermore, focus on the apparent chloride diffusion 

coefficient was derived by evaluating chloride profiles 

using Fick’s 2nd law of diffusion and is found to be 

time dependent and may decrease considerably with 

increasing age of the concrete [9]. The differences 

between self-diffusion, tracer diffusion and chemical 

diffusion was explained and a relationship for the 

temperature dependence of the diffusion coefficients 

in terms of the atomic jump mechanism, both for 

diffusion via interstitial mechanism and for a vacancy 

mechanism was further derived. [9]. Some of the test 

methods with real specifications to demonstrate the 

dangers of specifiers in not fully understanding the 

nature, methodology and purpose of tests chosen for 

the specification were examined, and the matter of 

time is highlighted and the real relevance of the tests 

to the design life of the structure was looked into [10]. 

2. Materials and Methods  

The equation governing the transient concentration 

problem in materials is given as: 

2

2

x

C
D

t

C




=




 (1)

 

Where x is the length of the concrete cube, C is 

concentration, D is the diffusivity coefficient and t is 

the time. 

 

2.1 Finite element formulation 

The variational form of the Fick’s 2nd equation above 

is 
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Where t is time, Ω is domain of interest, dx is the 

differential element and C  is the incremental 

change in concentration 

Expanding the above integral by means of integration 

by parts yields: 
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Eq. 4 represent the value of the secondary variables at 

the boundary hx + and x respectively 
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Since the primary variable is the function itself, the 

Lagrange interpolation family functions is admissible. 

It is proposed that C is the approximation over a 

typical finite element domain by the expression below
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Let the space around the solid be divided into a finite 

number of elements interconnected at the nodes. The  

concentration must then be expressed in terms of the 

values at the nodes thus; the finite element model 

becomes: 
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Expanding eq. 7 for one quadratic element we have

 

For i = 1 and j = 1 to 3 
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(10)

 

Using one-dimension Lagrange Quadratic 

Interpolation function of   e

i  for a linear quadratic 

element, 
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Evaluating the  ijK  and  ijM matrices for a 

Concrete Cube using eq.8 and eq, 11  
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Analyzing the cube element by element we take elements at hhhx 3,2,,0=  for both 
eK  and 

eM  matrices [11], 

the matrix can be assembled as shown in Fig1. 

 

Figure 1: Four quadratic element mesh 



For a four quadratic element mesh, the assembled  eK matrix is presented thus: 
 

(14) 

Substituting the values obtained from eq. 12 into eq. 14 yielded the global system of matrix as shown below. 
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Substituting the values obtained from eq. 12 into eq. 16 yielded the global system of matrix as shown below. 
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3. Time Approximation for 1-D Diffusivity 

Equation 

For a given time step s, equation 9 becomes 

 

       
s

e

s

j

e

ijs

e

ij iQCMCKD =








+
•

        (19) 

 

For the next time step 1+s , eq. 9 becomes 
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and  family of interpolation for time consideration 

is given by 
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Multiply eq. 20 by  −1  and eq. 21 by the 

resulting equations will yield: 
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Taking the initial condition given for chloride 

diffusion in solid, at ,0,0 == oCx  ,0=s that is 

initial time 0=t  which implies that  0=
s

e

iQ  and 

the rate of diffusion was constant with a constant 

diffusion coefficient ( )D  and 5.0= as the Crank 

Nicholson scheme factor Hence eq. 23 becomes eq. 26  

  









































=









































+

+

+

= +

0

0

0

0

0

0

0

0

0

4

3

4

2

4

1

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

11

Q

Q

QQ

Q

QQ

Q

QQ

Q

Q

tDQ sj
         (24) 

 

 

 

 

1

1

1

1

0

1

1

2

2

2

e e

j ij ij

e e

ij ij j

es
i

s

t
C M D K

t
M D K C

t
Q

−

+

+

 
   = +   
 

  
   −    
  
 
+ 
 

         (25) 

3.1 Boundary condition 

For a semi-infinite medium, with the following initial 

and boundary conditions apply: 

• C = 0 at x > 0 at time t = 0 (initial) 

• C = Cs at x = 0 at time t > 0 (boundary) 
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4. Results and Discussion 

In other to determine the diffusion of chloride ions 

(ingress) at different nodes in the concrete discretized, 

we substitute the various parameters in Table 1 and Eq. 

26 into eq. 25. The result obtained from the finite 

element solution is a presented in Table 2. 

 

The experimentally determined chloride along the 

diffusion path is also presented in table 2, where each 

depth represents the distance of the middle of the disc 

from the exposed surface. The result shows a gradual 

penetration chloride ion into the block to the measured 

distance of 9 mm. 
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Table 1: Parameters for calculating for concrete in Saline Environment [10] 

 

 

 

 

 

 

 
 

Table 2: Ionic quantities of chloride at various depth in the concrete cube 

 

Depth (mm) Merretz et al (2003) 

% mass of chloride 

FEA 

% mass of chloride 

Exact 

% mass of chloride 

0 0.66 0.66 0.66 

0.25 0.625 0.637 0.637 

0.75 0.562 0.589 0.589 

1.5 0.499 0.521 0.521 

2.5 0.439 0.433 0.433 

3 0.355 0.391 0.391 

5 0.246 0.245 0.245 

7 0.127 0.139 0.139 

9 0.022 0.072 0.072 

 

In Figs. 2 and 3 the plots of the two results completely 

converged due to the high accuracy of the results. To 

ascertain the accuracy of the analysis the same 

problem was analyzed using the exact solution 

differential equation method. It was realized that the 

two results obtained converged. 

 

Fig. 3 is a graph of concentration against time in days 

and it shows that the diffusion of chloride ion will 

begin just after 5days along the outer surface of the 

concrete cube. Also the figure shows that at 28days of 

penetration only about 19% (just over 0.12% by wt) of 

the concentration by mass of chloride ion had diffused 

into the concrete at a depth of 75mm. To allow for 

penetration the diffusion coefficient must be high 

enough to a maximum of 
710 −

mm2/s being the least 

else penetration cannot begin. 

 

 

Fig. 4 shows the plots of this work and that of Merretz 

[10]. This work tends better to the exact differential 

equation and completely converged due to the high 

accuracy of the results but the work of Merretz et al 

[10] shows a little variation due to measurement. 

However the results are in agreement as shown. 

 

 

Diffusion Coefficient (D) 5.61E-12 mm2/s 

Chloride Content at Surface (Cs) 0.66% mass of Cement 

Background Chloride Content (Co) 0.001% mass of Cement 

Exposure time in Saline Environment (t) 28 days 
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Fig. 2: Concentration against depth 

 

 
Fig. 3: Concentration against time (days) 

 
Fig. 4: A graph of concentration against depth 
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5. Conclusion 

Due to the semi-infinite and non-homogeneity of the 

properties of concrete, it is often difficult to obtain 

solutions in arithmetic order that can characterize the 

amount of chloride ion into the concrete, hence the 

need to analyze numerically to obtain solutions that are 

accurate as possible. In this work a finite element 

method was discussed, analyzed and used to solve the 

1-D Fick’s 2nd order differential equation. The scheme 

developed is simple and finds its basis on the Galerkin 

method and the time approximation scheme which was 

employed. Hence numerical method can predict 

chloride ion penetration profile as does experimental. 
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