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Abstract

A graph is called Hamiltonian (resp. traceable) if the graph has a Hamiltonian cycle (resp.
path), a cycle (resp. path) containing all the vertices of the graph. In this note, we present
sufficient conditions involving minimum degree and size for Hamiltonian and traceable
graphs. One of the sufficient conditions strengthens the result obtained by Nikoghosyan in
[1].

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2].
For a graph G = (V, E), we use n and e to denote its order |V | and size |E|, respectively. The complement of a graph G is denoted by Gc. we
use Gr to denote any graph of order r. A graph G is empty if the graph G does not have any edge. We use G1∨G2 to denote the the join of
two disjoint graphs G1 and G2. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is
called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G.
A graph G is called traceable if G has a Hamiltonian path. We define

A (n) := {G : G is G n−2
2
∨ (Kc

n−2
2
∪K2)},

B(n) := {G : G is G n−2
2
∨Kc

n+2
2
},

C (n) := {G : G is G n−1
2
∨Kc

n+1
2
}

and

D(n) := S (n)∪ T (n),

where S (n) := {G : G is w∨ (P∪Q), where w is a vertex cut such that G−{w} has exactly two components of P and Q which are complete
graphs of order n−1

2 },
T (n) := {G : G has a vertex cut w such that G−{w} has exactly two components of P and Q, where P is a complete graph of order n−2

2
and w is adjacent to each vertex in P, Q is a graph of order n

2 with δ (Q)≥ n−4
2 , and δ (G)≥ n−2

2 }.

X (n) := {G : G is K n
2
∪K n

2
}.
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Y (n) := {G : G is K n−1
2
∪H, where H is a

(
n−3

2

)
− regular graph of order

n+1
2
}.

Nikoghosyan obtained the following sufficient condition for Hamiltonian graphs in [1] (also see [3]).

Theorem 1.1. Let G be a graph of order n≥ 3, size e, and minimum degree δ . If δ 2 +δ ≥ e+1, then G is Hamiltonian.

Motivated by Nikoghosyan’s result above, we in this note strengthen Theorem 1.1 to the following Theorem 1.2 and present an analogous
sufficient condition for the traceable graphs.

Theorem 1.2. Let G be a graph of order n ≥ 3, size e, and minimum degree δ . If δ 2 + δ ≥ e, then G is empty or G is Hamiltonian or
G ∈A (n)∪B(n)∪C (n)∪D(n)∪X (n).

Theorem 1.3. Let G be a graph of order n ≥ 2, size e, and minimum degree δ . If δ 2 + 3δ

2 ≥ e, then G is empty or G is traceable or
G ∈X (n)∪Y (n).

2. Lemmas

In order to prove Theorem 1.1 and Theorem 1.2, we need the following results as our lemmas. The first one follows from Theorem 2 proved
by Zhao in [4].

Lemma 2.1. If G is a connected graph of order n≥ 3 and δ ≥ n−2
2 , then G is Hamiltonian or G ∈A (n)∪B(n)∪C (n)∪D(n).

Notice that the statements in Lemma 2.1 are slightly different from the statements in Theorem 2 in [4]. The reason for this is the convenience
when we use Lemma 2.1 in our proofs.
The second one is Theorem 2.5 proved by Cranston and O in [5].

Lemma 2.2. Every connected k-regular graph with at most 3k+3 vertices has a Hamiltonian path.

3. Proofs

Proof of Theorem 1.2 Let G be a graph satisfying the conditions in Theorem 1.2. If δ = 0, then G is empty. From now on, we assume that
δ ≥ 1. Suppose that G is not Hamiltonian. Then, from the conditions in Theorem 1.2, we have that

δ
2 +δ ≥ e≥

∑v∈V (G) d(v)

2
≥ nδ

2
.

Therefore δ ≥ n−2
2 .

Case 1 G is disconnected.

Suppose G consists of k (k ≥ 2) components G1 of order n1, G2 of order n2, · · · , Gk of order nk. Without loss of generality, we assume that
n1 ≤ n2 ≤ ·· · ≤ nk. Then we have 2n1 ≤ ∑

k
i=1 ni = n. Thus n1 ≤ n

2 . Therefore n−2
2 ≤ δ ≤ d(x)≤ n1−1≤ n−2

2 , where x is any vertex in
G1. Hence n−2

2 = δ = n1−1 = n−2
2 . So δ 2 = n−2

2 δ and δ 2 +δ = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e≤ δ

2 +δ =
nδ

2
.

Thus G is δ -regular graph with δ = n−2
2 and e = δ 2 +δ . Notice that n

2 = n1 ≤ n2 ≤ ·· · ≤ nk. We must have k = 2, n2 =
n
2 , and G1 and G2

are complete graphs of order n
2 . Therefore G ∈X (n).

Case 2 G is connected.

From Lemma 2.1, we have G ∈A (n)∪B(n)∪C (n)∪D(n).

Hence, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.3 Let G be a graph satisfying the conditions in Theorem 1.3. Notice that G is empty when δ = 0 and G is empty or
traceable when n = 2 or 3. From now on, we assume that δ ≥ 1 and n≥ 4. Suppose that G is not traceable. Then, from the conditions in
Theorem 1.2, we have that

δ
2 +

3δ

2
≥ e≥

∑v∈V (G) d(v)

2
≥ nδ

2
.

Therefore δ ≥ n−3
2 .

Case 1 G is disconnected.

Suppose G consists of k (k ≥ 2) components G1 of order n1, G2 of order n2, · · · , Gk of order nk. Without loss of generality, we assume that
n1 ≤ n2 ≤ ·· · ≤ nk. Then we have 2n1 ≤ ∑

k
i=1 ni = n. Thus n1 ≤ n

2 . Therefore δ ≤ d(x)≤ n1−1≤ n−2
2 , where x is any vertex in G1.
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Case 1.1 δ = n−2
2 .

Thus n−2
2 ≤ δ ≤ d(x)≤ n1−1≤ n−2

2 , where x is any vertex in G1. Therefore n−2
2 = δ = d(x) = n1−1 = n−2

2 , where x is any vertex in
G1. Hence G1 is a complete graph of order n

2 . Notice that n
2 = n1 ≤ n2 ≤ ·· · ≤ nk. We must have k = 2 and n2 = n

2 . Since n2 = n
2 and

n−2
2 = n2−1≥ d(y)≥ δ = n−2

2 for any vertex y in G2, G2 is a complete graph of order n
2 . So G ∈X (n).

Case 1.2 δ = n−3
2 .

Thus δ 2 = n−3
2 δ and δ 2 + 3δ

2 = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e≤ δ

2 +
3δ

2
=

nδ

2
.

Thus G is δ -regular graph with δ = n−3
2 and e = δ 2 + 3δ

2 . Notice now that n is odd. Then n1 ≤ n
2 implies that n1 ≤ n−1

2 . Thus for any vertex
x in G1 we have n−3

2 = d(x)≤ n1−1≤ n−3
2 . Therefore G1 is a complete graph of order n−1

2 . Notice that n−1
2 = n1 ≤ n2 ≤ ·· · ≤ nk. We

must have k = 2 and n2 =
n+1

2 . Hence G2 is a
( n−3

2
)
-regular graph of order n+1

2 . So G ∈ Y (n).

Case 2 G is connected.

Case 2.1 n is even.

Then δ ≥ n−3
2 implies that δ ≥ n−2

2 . From Lemma 2.1, we have G is Hamiltonian or G ∈A (n)∪B(n)∪C (n)∪D(n).

First, we prove that it is impossible that G ∈B(n). Suppose, to the contrary, that G ∈B(n). Then δ = n−2
2 . Clearly, e≥ n2−4

4 . Then we can
get a contradiction from

δ
2 +

3δ

2
≥ e≥ n2−4

4
.

Obviously, G is traceable when G is Hamiltonian. It is easy to verify that G is traceable when G ∈A (n)∪C (n)∪S (n). When G ∈T (n),
notice that δ (Q)≥ |V (Q)|

2 when n≥ 8. Thus Q is Hamiltonian when n≥ 8. It is easy to verify that G is traceable when n≥ 8. When n = 4 or
6, we can also verify that G is traceable. Hence we arrive at a contradiction.

Case 2.2 n is odd.

Then δ ≥ n−3
2 +1 = n−1

2 or δ = n−3
2 .

When δ ≥ n−3
2 +1 = n−1

2 , then G 6∈A (n)∪B(n)∪T (n). From Lemma 2.1, we have G is Hamiltonian or G ∈ C (n)∪S (n). Obviously, G
is traceable when G is Hamiltonian or G ∈ C (n)∪S (n). Hence we arrive at a contradiction.

When δ = n−3
2 , then δ 2 = n−3

2 δ and δ 2 + 3δ

2 = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e≤ δ

2 +
3δ

2
=

nδ

2
.

Thus G is δ -regular graph with δ = n−3
2 and e = δ 2 + 3δ

2 . From Lemma 2.2, we have that G is traceable, a contradiction.

Hence, the proof of Theorem 1.3 is complete.
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