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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2].
For a graph G = (V, E), we use n and e to denote its order |V| and size |E|, respectively. The complement of a graph G is denoted by G°. we
use G, to denote any graph of order r. A graph G is empty if the graph G does not have any edge. We use G| V G, to denote the the join of
two disjoint graphs G| and G». A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is
called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G.
A graph G is called traceable if G has a Hamiltonian path. We define

(n):={G:Gis Gz V(K5 UK?)},
2

PB(n) ={G:Gis G VKt
2

and

where .7 (n) :={G: Gis wV (PUQ), where w is a vertex cut such that G — { w } has exactly two components of P and Q which are complete
graphs of order % 1,

Z (n) :={G : G has a vertex cut w such that G — { w } has exactly two components of P and Q, where P is a complete graph of order %
and w is adjacent to each vertex in P, Q is a graph of order § with §(Q) > ”;24, and 6(G) > % }.

2 (n):={G:Gis Kz UKz }.
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1

% (n):={G:Gis K% UH, where H is a (HT) — regular graph of order nt

}.

Nikoghosyan obtained the following sufficient condition for Hamiltonian graphs in [1] (also see [3]).
Theorem 1.1. Let G be a graph of order n > 3, size e, and minimum degree 8. If 8%+ 8 > e+ 1, then G is Hamiltonian.

Motivated by Nikoghosyan’s result above, we in this note strengthen Theorem 1.1 to the following Theorem 1.2 and present an analogous
sufficient condition for the traceable graphs.

Theorem 1.2. Let G be a graph of order n > 3, size e, and minimum degree 8. If 82+ 8 > e, then G is empty or G is Hamiltonian or
G € o (n)UAB(n)JE (n)U2(n)UZ (n).

Theorem 1.3. Let G be a graph of order n > 2, size e, and minimum degree 8. If 8% + % > e, then G is empty or G is traceable or
Ge Z (n)U% (n).

2. Lemmas

In order to prove Theorem 1.1 and Theorem 1.2, we need the following results as our lemmas. The first one follows from Theorem 2 proved
by Zhao in [4].
Lemma 2.1. If G is a connected graph of order n >3 and & > % then G is Hamiltonian or G € of (n)U%B(n)UE (n)UZ(n).

Notice that the statements in Lemma 2.1 are slightly different from the statements in Theorem 2 in [4]. The reason for this is the convenience
when we use Lemma 2.1 in our proofs.
The second one is Theorem 2.5 proved by Cranston and O in [5].

Lemma 2.2. Every connected k-regular graph with at most 3k + 3 vertices has a Hamiltonian path.

3. Proofs

Proof of Theorem 1.2 Let G be a graph satisfying the conditions in Theorem 1.2. If § = 0, then G is empty. From now on, we assume that
0 > 1. Suppose that G is not Hamiltonian. Then, from the conditions in Theorem 1.2, we have that

Yiev(c)d(v) _né

824+86>e> .
Foze= 2 =72
Therefore § > ”;22
Case 1 G is disconnected.
Suppose G consists of k (k > 2) components G| of order nj, G, of order ny, - - -, Gy of order n;. Without loss of generality, we assume that

ny <ny < --- < ng. Then we have 2n; < Zi»‘:l n; = n. Thus ny < 5. Therefore % <6<dx)<m—-1< % where x is any vertex in

GI.Hence%=5:n| 71:”2;2. 5052=%5and52+5=%.Nowwehave

Thus G is §-regular graph with § = % and e = 62 + 8. Notice that % =n;<np<--- <m. Wemusthave k = 2, n, = 7, and G| and G,
are complete graphs of order 7. Therefore G € 2" (n).

Case 2 G is connected.

From Lemma 2.1, we have G € & (n)U%A(n)U€ (n)UZ(n).

Hence, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.3 Let G be a graph satisfying the conditions in Theorem 1.3. Notice that G is empty when § = 0 and G is empty or

traceable when n = 2 or 3. From now on, we assume that § > 1 and n > 4. Suppose that G is not traceable. Then, from the conditions in
Theorem 1.2, we have that

35 Lev(c)d(v) _ nd
824+ 0 s> O S 7Y
B R
Therefore & > %
Case 1 G is disconnected.
Suppose G consists of k (k > 2) components G| of order nj, G, of order ny, ---, Gy of order n;. Without loss of generality, we assume that

ny <ny <--- < ng. Then we have 2n; < Zf»‘zl n; = n. Thus n; < 5. Therefore § <d(x) <n;—1< %, where x is any vertex in Gy.
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Casel.l 6 ="=

Thus 252 < § <d(x) <nj — 1 < 52, where x is any vertex in Gy. Therefore 5% = § = d(x) = nj — | = 52, where x is any vertex in
G|. Hence G| is a complete graph of order 5. Notice that § =n; <np <--- <n.. We must have k =2 and ny = 5. Since np = 5 and
n

%2 =m—1>d(y)>6= %2 for any vertex y in G,, G, is a complete graph of order 5. So G € 2 (n).
Case1l.2 6 =22
Thus §% = %5 and 6% + % = % Now we have

5 _ Yievo) , 38 nd
— < T <e<$ —_— =
25T 2 S0t T
Thus G is 6-regular graph with § = "= 3 and e =82 + . Notice now that n is odd. Then n; < < % implies that n1 < %52 Thus for any vertex

x in G| we have TS =d(x)<n—1<%55= Therefore G is a complete graph of order Z 2 . Notice that 25+ = n] <np<---<my. We
must have k =2 and ny = ’”’1 . Hence G2 isa (”23) -regular graph of order ”+l .SoG e ¥ (n).

Case 2 G is connected.
Case 2.1 nis even.

Then § > 5= 3 implies that § > Tz From Lemma 2.1, we have G is Hamiltonian or G € &/ (n)UZ%(n)U% (n)UZ (n).

First, we prove that it is impossible that G € Z(n). Suppose, to the contrary, that G € Z(n). Then § = 52, Clearly, ¢ > " — . Then we can
get a contradiction from
36 n?—4
S+ >e> :
+ 7 = e> 1

Obviously, G is traceable when G is Hamiltonian. It is easy to verify that G is traceable when G € &7 (n)U% (n)U. (n). When G €  (n),

notice that 6(Q) > W(QH when n > 8. Thus Q is Hamiltonian when n > 8. It is easy to verify that G is traceable when n > 8. When n =4 or
6, we can also verify that G is traceable. Hence we arrive at a contradiction.

Case 2.2 nis odd.
Then5273+1:%0r5:%.

When § > 253 + 1 = 7L then G ¢ 7 (n)U%(n)U.7 (n). From Lemma 2.1, we have G is Hamiltonian or G € €'(n)U.#(n). Obviously, G
is traceable when G is Hamiltonian or G € €' (n)U.¥ (n). Hence we arrive at a contradiction.

When § = %3, then §2 = "53 8 and 8% + % = % Now we have
nd _ Yiev(G) , 36 nd
— < <e<d —_— =
2 = SS9t T
Thus G is 8-regular graph with § = 253 and e = 8% + 325 From Lemma 2.2, we have that G is traceable, a contradiction.

Hence, the proof of Theorem 1.3 is complete.

References

[1] Zh. G. Nikoghosyan, A size bound for Hamilton cycles, (2011), arXiv:1107.2201 [math.CO].
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[3] Zh. G. Nikoghosyan, Two sufficient conditions for Hamilton and dominating cycles, Int. J. Math. Math. Sci., 2012 (2012), Article ID 185346, 25 pages,

doi:10.1155/2012/185346. )
[4] K. Zhao, Dirac type condition and Hamiltonian graphs, Serdica Math. J. 37 (2011), 277-282.

[S] D. W. Cranston, S. O, Hamiltonicity in connected regular graphs, Inform. Process. Lett., 113 (2013), 858-860.



	Introduction
	Lemmas
	Proofs

